#survival

library(survival)
library(survminer)
## Loading required package: ggplot2
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
datapath="inflation rates.csv"
data1=read.csv("inflation rates.CSV")
data1
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D1=data1$Annual.Average.Inflation;D1
##   [1] 3.74 3.81 3.98 4.21 4.50 4.81 5.14 5.50 5.77 5.97 4.64 6.49 6.73 6.97 7.26
##  [16] 7.50 7.67 7.87 8.10 8.32 8.52 8.68 8.77 8.78 8.71 8.59 8.30 7.95 7.66 7.38
##  [31] 7.48 6.81 6.61 6.45 6.29 6.16 6.05 6.29 6.23 6.08 5.62 6.10 6.07 5.35 5.71
##  [46] 5.53 5.35 5.20 4.66 5.17 5.16 5.74 5.41 5.53 5.67 5.79 5.87 6.01 6.16 6.18
##  [61] 6.03 5.84 5.72 5.29 5.20 5.19 5.19 5.24 5.40 5.32 5.16 5.04 4.91 4.91 4.67
##  [76] 4.65 4.68 4.69 4.59 4.53 4.53 4.63 4.95 5.20 5.61 6.24 6.89 7.40 7.79 7.98
##  [91] 8.15 8.33 8.40 8.36 8.21 8.13 7.84 7.20 6.76 6.43 6.26 6.30 6.43 6.48 6.50
## [106] 6.47 6.44 6.46 6.59 6.72 6.88 6.87 6.77 6.58 6.42 6.31 6.29 6.34 6.54
hist(D1)

barplot(D1,col='blue',xlab = 'time',ylab = 'rates', main = 'inflation rates in kenya')

parmfrow=c(2,1)

#fGARCH

library(fGarch)
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
library(timeSeries)
## Loading required package: timeDate
## 
## Attaching package: 'timeSeries'
## The following objects are masked from 'package:graphics':
## 
##     lines, points
import= read.csv("inflation rates.csv");import
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D2=import$Annual.Average.Inflation;D2
##   [1] 3.74 3.81 3.98 4.21 4.50 4.81 5.14 5.50 5.77 5.97 4.64 6.49 6.73 6.97 7.26
##  [16] 7.50 7.67 7.87 8.10 8.32 8.52 8.68 8.77 8.78 8.71 8.59 8.30 7.95 7.66 7.38
##  [31] 7.48 6.81 6.61 6.45 6.29 6.16 6.05 6.29 6.23 6.08 5.62 6.10 6.07 5.35 5.71
##  [46] 5.53 5.35 5.20 4.66 5.17 5.16 5.74 5.41 5.53 5.67 5.79 5.87 6.01 6.16 6.18
##  [61] 6.03 5.84 5.72 5.29 5.20 5.19 5.19 5.24 5.40 5.32 5.16 5.04 4.91 4.91 4.67
##  [76] 4.65 4.68 4.69 4.59 4.53 4.53 4.63 4.95 5.20 5.61 6.24 6.89 7.40 7.79 7.98
##  [91] 8.15 8.33 8.40 8.36 8.21 8.13 7.84 7.20 6.76 6.43 6.26 6.30 6.43 6.48 6.50
## [106] 6.47 6.44 6.46 6.59 6.72 6.88 6.87 6.77 6.58 6.42 6.31 6.29 6.34 6.54
plot(D2)

ts.plot(D2)

log.D2=diff(D2);log.D2
##   [1]  0.07  0.17  0.23  0.29  0.31  0.33  0.36  0.27  0.20 -1.33  1.85  0.24
##  [13]  0.24  0.29  0.24  0.17  0.20  0.23  0.22  0.20  0.16  0.09  0.01 -0.07
##  [25] -0.12 -0.29 -0.35 -0.29 -0.28  0.10 -0.67 -0.20 -0.16 -0.16 -0.13 -0.11
##  [37]  0.24 -0.06 -0.15 -0.46  0.48 -0.03 -0.72  0.36 -0.18 -0.18 -0.15 -0.54
##  [49]  0.51 -0.01  0.58 -0.33  0.12  0.14  0.12  0.08  0.14  0.15  0.02 -0.15
##  [61] -0.19 -0.12 -0.43 -0.09 -0.01  0.00  0.05  0.16 -0.08 -0.16 -0.12 -0.13
##  [73]  0.00 -0.24 -0.02  0.03  0.01 -0.10 -0.06  0.00  0.10  0.32  0.25  0.41
##  [85]  0.63  0.65  0.51  0.39  0.19  0.17  0.18  0.07 -0.04 -0.15 -0.08 -0.29
##  [97] -0.64 -0.44 -0.33 -0.17  0.04  0.13  0.05  0.02 -0.03 -0.03  0.02  0.13
## [109]  0.13  0.16 -0.01 -0.10 -0.19 -0.16 -0.11 -0.02  0.05  0.20
plot(log.D2)

ts.plot(log.D2)

acf(log.D2)

pacf(log.D2)

s=log.D2^2;s
##   [1] 0.0049 0.0289 0.0529 0.0841 0.0961 0.1089 0.1296 0.0729 0.0400 1.7689
##  [11] 3.4225 0.0576 0.0576 0.0841 0.0576 0.0289 0.0400 0.0529 0.0484 0.0400
##  [21] 0.0256 0.0081 0.0001 0.0049 0.0144 0.0841 0.1225 0.0841 0.0784 0.0100
##  [31] 0.4489 0.0400 0.0256 0.0256 0.0169 0.0121 0.0576 0.0036 0.0225 0.2116
##  [41] 0.2304 0.0009 0.5184 0.1296 0.0324 0.0324 0.0225 0.2916 0.2601 0.0001
##  [51] 0.3364 0.1089 0.0144 0.0196 0.0144 0.0064 0.0196 0.0225 0.0004 0.0225
##  [61] 0.0361 0.0144 0.1849 0.0081 0.0001 0.0000 0.0025 0.0256 0.0064 0.0256
##  [71] 0.0144 0.0169 0.0000 0.0576 0.0004 0.0009 0.0001 0.0100 0.0036 0.0000
##  [81] 0.0100 0.1024 0.0625 0.1681 0.3969 0.4225 0.2601 0.1521 0.0361 0.0289
##  [91] 0.0324 0.0049 0.0016 0.0225 0.0064 0.0841 0.4096 0.1936 0.1089 0.0289
## [101] 0.0016 0.0169 0.0025 0.0004 0.0009 0.0009 0.0004 0.0169 0.0169 0.0256
## [111] 0.0001 0.0100 0.0361 0.0256 0.0121 0.0004 0.0025 0.0400
plot(s)

ts.plot(s)

M2=garchFit(~garch(1,1),data = log.D2,trace = F);M2
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = log.D2, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x00000203be7b4ee8>
##  [data = log.D2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1       beta1  
## -0.0224632   0.0096866   0.8708402   0.3139453  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)   
## mu     -0.022463    0.023956   -0.938  0.34840   
## omega   0.009687    0.005584    1.735  0.08279 . 
## alpha1  0.870840    0.321604    2.708  0.00677 **
## beta1   0.313945    0.116863    2.686  0.00722 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -11.23655    normalized:  -0.09522499 
## 
## Description:
##  Tue May  6 18:26:37 2025 by user: SILVENUS
summary(M2)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = log.D2, trace = F) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x00000203be7b4ee8>
##  [data = log.D2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1       beta1  
## -0.0224632   0.0096866   0.8708402   0.3139453  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)   
## mu     -0.022463    0.023956   -0.938  0.34840   
## omega   0.009687    0.005584    1.735  0.08279 . 
## alpha1  0.870840    0.321604    2.708  0.00677 **
## beta1   0.313945    0.116863    2.686  0.00722 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -11.23655    normalized:  -0.09522499 
## 
## Description:
##  Tue May  6 18:26:37 2025 by user: SILVENUS 
## 
## 
## Standardised Residuals Tests:
##                                  Statistic      p-Value
##  Jarque-Bera Test   R    Chi^2  52.2611358 4.483747e-12
##  Shapiro-Wilk Test  R    W       0.9321416 1.534461e-05
##  Ljung-Box Test     R    Q(10)  23.4110865 9.326786e-03
##  Ljung-Box Test     R    Q(15)  31.8778266 6.689206e-03
##  Ljung-Box Test     R    Q(20)  38.5065827 7.674429e-03
##  Ljung-Box Test     R^2  Q(10)   3.2880888 9.738088e-01
##  Ljung-Box Test     R^2  Q(15)   4.5347064 9.953867e-01
##  Ljung-Box Test     R^2  Q(20)   6.7619136 9.973959e-01
##  LM Arch Test       R    TR^2    6.4689585 8.906240e-01
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## 0.2582466 0.3521681 0.2560473 0.2963815
plot(M2, which=1)

plot(M2, which=6)

plot(M2,which=13)

#gjrGARCH

D1=read.csv("inflation rates.csv");D1
##     Year     Month Annual.Average.Inflation X12.Month.Inflation
## 1   2025     April                     3.74                4.11
## 2   2025     March                     3.81                3.62
## 3   2025  February                     3.98                3.45
## 4   2025   January                     4.21                3.28
## 5   2024  December                     4.50                2.99
## 6   2024  November                     4.81                2.75
## 7   2024   October                     5.14                2.72
## 8   2024 September                     5.50                3.56
## 9   2024    August                     5.77                4.36
## 10  2024      July                     5.97                4.31
## 11  2024      June                     4.64                6.22
## 12  2024       May                     6.49                5.10
## 13  2024     April                     6.73                5.00
## 14  2024     March                     6.97                5.70
## 15  2024  February                     7.26                6.31
## 16  2024   January                     7.50                6.85
## 17  2023  December                     7.67                6.63
## 18  2023  November                     7.87                6.80
## 19  2023   October                     8.10                6.92
## 20  2023 September                     8.32                6.78
## 21  2023    August                     8.52                6.73
## 22  2023      July                     8.68                7.28
## 23  2023      June                     8.77                7.88
## 24  2023       May                     8.78                8.03
## 25  2023     April                     8.71                7.90
## 26  2023     March                     8.59                9.19
## 27  2023  February                     8.30                9.23
## 28  2023   January                     7.95                8.98
## 29  2022  December                     7.66                9.06
## 30  2022  November                     7.38                9.48
## 31  2022   October                     7.48                9.59
## 32  2022 September                     6.81                9.18
## 33  2022    August                     6.61                8.53
## 34  2022      July                     6.45                8.32
## 35  2022      June                     6.29                7.91
## 36  2022       May                     6.16                7.08
## 37  2022     April                     6.05                6.47
## 38  2022     March                     6.29                5.56
## 39  2022  February                     6.23                5.08
## 40  2022   January                     6.08                5.39
## 41  2021  December                     5.62                5.73
## 42  2021  November                     6.10                5.80
## 43  2021   October                     6.07                6.45
## 44  2021 September                     5.35                6.91
## 45  2021    August                     5.71                6.57
## 46  2021      July                     5.53                6.55
## 47  2021      June                     5.35                6.32
## 48  2021       May                     5.20                5.87
## 49  2021     April                     4.66                5.76
## 50  2021     March                     5.17                5.90
## 51  2021  February                     5.16                5.78
## 52  2021   January                     5.74                5.69
## 53  2020  December                     5.41                5.62
## 54  2020  November                     5.53                5.33
## 55  2020   October                     5.67                4.84
## 56  2020 September                     5.79                4.20
## 57  2020    August                     5.87                4.36
## 58  2020      July                     6.01                4.36
## 59  2020      June                     6.16                4.59
## 60  2020       May                     6.18                5.33
## 61  2020     April                     6.03                6.01
## 62  2020     March                     5.84                5.84
## 63  2020  February                     5.72                7.17
## 64  2020   January                     5.29                5.78
## 65  2019  December                     5.20                5.82
## 66  2019  November                     5.19                5.56
## 67  2019   October                     5.19                4.95
## 68  2019 September                     5.24                3.83
## 69  2019    August                     5.40                5.00
## 70  2019      July                     5.32                6.27
## 71  2019      June                     5.16                5.70
## 72  2019       May                     5.04                4.49
## 73  2019     April                     4.91                6.58
## 74  2019     April                     4.91                6.58
## 75  2019     March                     4.67                4.35
## 76  2019  February                     4.65                4.14
## 77  2019   January                     4.68                4.70
## 78  2018  December                     4.69                5.71
## 79  2018  November                     4.59                5.58
## 80  2018   October                     4.53                5.53
## 81  2018 September                     4.53                5.70
## 82  2018    August                     4.63                4.04
## 83  2018      July                     4.95                4.35
## 84  2018      June                     5.20                4.28
## 85  2018       May                     5.61                3.95
## 86  2018     April                     6.24                3.73
## 87  2018     March                     6.89                4.18
## 88  2018  February                     7.40                4.46
## 89  2018   January                     7.79                4.83
## 90  2017  December                     7.98                4.50
## 91  2017  November                     8.15                4.73
## 92  2017   October                     8.33                5.72
## 93  2017 September                     8.40                7.06
## 94  2017    August                     8.36                8.04
## 95  2017      July                     8.21                7.47
## 96  2017      June                     8.13                9.21
## 97  2017       May                     7.84               11.70
## 98  2017     April                     7.20               11.48
## 99  2017     March                     6.76               10.28
## 100 2017  February                     6.43                9.04
## 101 2017   January                     6.26                6.99
## 102 2016  December                     6.30                6.35
## 103 2016  November                     6.43                6.68
## 104 2016   October                     6.48                6.47
## 105 2016 September                     6.50                6.34
## 106 2016    August                     6.47                6.26
## 107 2016      July                     6.44                6.40
## 108 2016      June                     6.46                5.80
## 109 2016       May                     6.59                5.00
## 110 2016     April                     6.72                5.27
## 111 2016     March                     6.88                6.45
## 112 2016  February                     6.87                6.84
## 113 2016   January                     6.77                7.78
## 114 2015  December                     6.58                8.01
## 115 2015  November                     6.42                7.32
## 116 2015   October                     6.31                6.72
## 117 2015 September                     6.29                5.97
## 118 2015    August                     6.34                5.84
## 119 2015      July                     6.54                6.62
D2=D1$Annual.Average.Inflation;D2
##   [1] 3.74 3.81 3.98 4.21 4.50 4.81 5.14 5.50 5.77 5.97 4.64 6.49 6.73 6.97 7.26
##  [16] 7.50 7.67 7.87 8.10 8.32 8.52 8.68 8.77 8.78 8.71 8.59 8.30 7.95 7.66 7.38
##  [31] 7.48 6.81 6.61 6.45 6.29 6.16 6.05 6.29 6.23 6.08 5.62 6.10 6.07 5.35 5.71
##  [46] 5.53 5.35 5.20 4.66 5.17 5.16 5.74 5.41 5.53 5.67 5.79 5.87 6.01 6.16 6.18
##  [61] 6.03 5.84 5.72 5.29 5.20 5.19 5.19 5.24 5.40 5.32 5.16 5.04 4.91 4.91 4.67
##  [76] 4.65 4.68 4.69 4.59 4.53 4.53 4.63 4.95 5.20 5.61 6.24 6.89 7.40 7.79 7.98
##  [91] 8.15 8.33 8.40 8.36 8.21 8.13 7.84 7.20 6.76 6.43 6.26 6.30 6.43 6.48 6.50
## [106] 6.47 6.44 6.46 6.59 6.72 6.88 6.87 6.77 6.58 6.42 6.31 6.29 6.34 6.54
D3=diff(D2);D3
##   [1]  0.07  0.17  0.23  0.29  0.31  0.33  0.36  0.27  0.20 -1.33  1.85  0.24
##  [13]  0.24  0.29  0.24  0.17  0.20  0.23  0.22  0.20  0.16  0.09  0.01 -0.07
##  [25] -0.12 -0.29 -0.35 -0.29 -0.28  0.10 -0.67 -0.20 -0.16 -0.16 -0.13 -0.11
##  [37]  0.24 -0.06 -0.15 -0.46  0.48 -0.03 -0.72  0.36 -0.18 -0.18 -0.15 -0.54
##  [49]  0.51 -0.01  0.58 -0.33  0.12  0.14  0.12  0.08  0.14  0.15  0.02 -0.15
##  [61] -0.19 -0.12 -0.43 -0.09 -0.01  0.00  0.05  0.16 -0.08 -0.16 -0.12 -0.13
##  [73]  0.00 -0.24 -0.02  0.03  0.01 -0.10 -0.06  0.00  0.10  0.32  0.25  0.41
##  [85]  0.63  0.65  0.51  0.39  0.19  0.17  0.18  0.07 -0.04 -0.15 -0.08 -0.29
##  [97] -0.64 -0.44 -0.33 -0.17  0.04  0.13  0.05  0.02 -0.03 -0.03  0.02  0.13
## [109]  0.13  0.16 -0.01 -0.10 -0.19 -0.16 -0.11 -0.02  0.05  0.20
library(rugarch)
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## 
## Attaching package: 'forecast'
## The following object is masked from 'package:ggpubr':
## 
##     gghistogram
M2=ugarchspec(variance.model=list(model="gjrGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="norm");M2
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : gjrGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(0,0,0)
## Include Mean     : FALSE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
M2fit=ugarchfit(D3,spec=M2);M2fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.01265    0.007435  1.70134 0.088880
## alpha1   0.74355    0.256466  2.89920 0.003741
## beta1    0.34263    0.110622  3.09729 0.001953
## gamma1  -0.17435    0.283386 -0.61523 0.538406
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega    0.01265    0.008884  1.42386 0.154487
## alpha1   0.74355    0.329786  2.25463 0.024157
## beta1    0.34263    0.116339  2.94508 0.003229
## gamma1  -0.17435    0.336144 -0.51867 0.603994
## 
## LogLikelihood : -12.22014 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       0.27492
## Bayes        0.36884
## Shibata      0.27272
## Hannan-Quinn 0.31305
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic  p-value
## Lag[1]                      6.234 0.012531
## Lag[2*(p+q)+(p+q)-1][2]    10.247 0.001644
## Lag[4*(p+q)+(p+q)-1][5]    14.892 0.000475
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.3116  0.5767
## Lag[2*(p+q)+(p+q)-1][5]    1.0306  0.8527
## Lag[4*(p+q)+(p+q)-1][9]    1.5005  0.9555
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01228 0.500 2.000  0.9118
## ARCH Lag[5]   0.37938 1.440 1.667  0.9185
## ARCH Lag[7]   0.73405 2.315 1.543  0.9526
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.9008
## Individual Statistics:             
## omega  0.5321
## alpha1 0.4912
## beta1  0.4402
## gamma1 0.3748
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.07 1.24 1.6
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.2044 0.8384    
## Negative Sign Bias  0.2749 0.7839    
## Positive Sign Bias  0.5225 0.6024    
## Joint Effect        0.3990 0.9405    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     22.34      0.26771
## 2    30     39.63      0.09022
## 3    40     50.58      0.10142
## 4    50     60.15      0.13204
## 
## 
## Elapsed time : 1.775362
plot(M2fit, which=9)

plot(M2fit, which=10)

plot(M2fit, which=2)
## 
## please wait...calculating quantiles...

summary(M2fit, which=9)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=10)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=2)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
#plotting the forecast
forc=ugarchforecast(fitORspec=M2fit,n.ahead = 12);forc
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: gjrGARCH
## Horizon: 12
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-04-29]:
##      Series  Sigma
## T+1       0 0.2241
## T+2       0 0.2507
## T+3       0 0.2746
## T+4       0 0.2966
## T+5       0 0.3171
## T+6       0 0.3363
## T+7       0 0.3545
## T+8       0 0.3717
## T+9       0 0.3882
## T+10      0 0.4040
## T+11      0 0.4191
## T+12      0 0.4338
plot(forc, which=1)

plot(forc, which=3)

#eGARCH

library(rugarch)
library(forecast)
M2=ugarchspec(variance.model=list(model="eGARCH",garchOrder=c(1,1)),mean.model=list(armaOrder=c(0,0),include.mean=F),distribution.model="norm");M2
## 
## *---------------------------------*
## *       GARCH Model Spec          *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## ------------------------------------
## GARCH Model      : eGARCH(1,1)
## Variance Targeting   : FALSE 
## 
## Conditional Mean Dynamics
## ------------------------------------
## Mean Model       : ARFIMA(0,0,0)
## Include Mean     : FALSE 
## GARCH-in-Mean        : FALSE 
## 
## Conditional Distribution
## ------------------------------------
## Distribution :  norm 
## Includes Skew    :  FALSE 
## Includes Shape   :  FALSE 
## Includes Lambda  :  FALSE
M2fit=ugarchfit(D3,spec=M2);M2fit
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : norm 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## omega  -0.603023    0.246867 -2.44271 0.014578
## alpha1  0.081554    0.115579  0.70561 0.480431
## beta1   0.758233    0.088915  8.52767 0.000000
## gamma1  0.949852    0.205476  4.62269 0.000004
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## omega  -0.603023    0.282966 -2.13108 0.033082
## alpha1  0.081554    0.121534  0.67104 0.502196
## beta1   0.758233    0.083103  9.12398 0.000000
## gamma1  0.949852    0.185846  5.11097 0.000000
## 
## LogLikelihood : -9.480091 
## 
## Information Criteria
## ------------------------------------
##                     
## Akaike       0.22848
## Bayes        0.32240
## Shibata      0.22628
## Hannan-Quinn 0.26661
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic   p-value
## Lag[1]                      7.919 0.0048919
## Lag[2*(p+q)+(p+q)-1][2]    12.149 0.0005174
## Lag[4*(p+q)+(p+q)-1][5]    17.006 0.0001276
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                   0.007734  0.9299
## Lag[2*(p+q)+(p+q)-1][5]  0.759587  0.9112
## Lag[4*(p+q)+(p+q)-1][9]  1.393928  0.9638
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.06164 0.500 2.000  0.8039
## ARCH Lag[5]   0.38749 1.440 1.667  0.9162
## ARCH Lag[7]   0.92035 2.315 1.543  0.9262
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.8825
## Individual Statistics:              
## omega  0.32888
## alpha1 0.03955
## beta1  0.38274
## gamma1 0.51148
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.07 1.24 1.6
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.0933 0.9258    
## Negative Sign Bias  0.1178 0.9064    
## Positive Sign Bias  0.5700 0.5698    
## Joint Effect        0.3557 0.9492    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     28.44      0.07531
## 2    30     39.63      0.09022
## 3    40     60.31      0.01586
## 4    50     66.75      0.04663
## 
## 
## Elapsed time : 0.339668
plot(M2fit, which=10)

plot(M2fit, which=8)

plot(M2fit, which=1)

summary(M2fit, which=10)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=8)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
summary(M2fit,which=1)
##    Length     Class      Mode 
##         1 uGARCHfit        S4
#plotting the forecast
forc=ugarchforecast(fitORspec=M2fit,n.ahead = 12);forc
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: eGARCH
## Horizon: 12
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-04-29]:
##      Series  Sigma
## T+1       0 0.2386
## T+2       0 0.2495
## T+3       0 0.2582
## T+4       0 0.2650
## T+5       0 0.2702
## T+6       0 0.2742
## T+7       0 0.2774
## T+8       0 0.2797
## T+9       0 0.2816
## T+10      0 0.2829
## T+11      0 0.2840
## T+12      0 0.2848
plot(forc, which=1)

plot(forc, which=3)

#kaplan meier

library(survival)
library(survminer)
d1=data.frame(time=c(2,10,12,18,4),event=c(1,0,1,1,0))
kmc=with(d1,Surv(time,event));
kmc
## [1]  2  10+ 12  18   4+
plot(kmc)

plot(kmc,fun="cumhaz")

kmc2=survfit(Surv(time,event)~1,data=d1);kmc2
## Call: survfit(formula = Surv(time, event) ~ 1, data = d1)
## 
##      n events median 0.95LCL 0.95UCL
## [1,] 5      3     12      12      NA
summary(kmc2)
## Call: survfit(formula = Surv(time, event) ~ 1, data = d1)
## 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     2      5       1      0.8   0.179       0.5161            1
##    12      2       1      0.4   0.297       0.0935            1
##    18      1       1      0.0     NaN           NA           NA