Load Required Libraries

Load and Prepare Data

data_path <- "financial_Data.csv"
import <- read.csv(data_path)
h <- import$High

log.h <- na.omit(diff(h))
log.h_ts <- ts(log.h)

Exploratory Data Analysis

par(mfrow = c(2, 2))
plot(h, type = "l", main = "Raw High Prices", ylab = "Price")
plot(log.h, type = "l", main = "Log Returns", ylab = "Return")
acf(log.h, main = "ACF of Log Returns")
pacf(log.h, main = "PACF of Log Returns")

par(mfrow = c(1,1))

GARCH(1,1), GARCH(1,2), GARCH(2,1), GARCH(2,2) using fGarch

garch11_model <- garchFit(~ garch(1, 1), data = log.h, trace = FALSE)
## Warning in sqrt(diag(fit$cvar)): NaNs produced
garch12_model <- garchFit(~ garch(1, 2), data = log.h, trace = FALSE)
## Warning in sqrt(diag(fit$cvar)): NaNs produced
garch21_model <- garchFit(~ garch(2, 1), data = log.h, trace = FALSE)
## Warning in sqrt(diag(fit$cvar)): NaNs produced
garch22_model <- garchFit(~ garch(2, 2), data = log.h, trace = FALSE)
## Warning in sqrt(diag(fit$cvar)): NaNs produced
summary(garch11_model)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = log.h, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x0000026c72e23ea8>
##  [data = log.h]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu        omega       alpha1        beta1  
## -0.10302076   0.41140792   0.00000001   0.99999999  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -1.030e-01   9.894e-01   -0.104    0.917    
## omega   4.114e-01   1.110e+00    0.371    0.711    
## alpha1  1.000e-08         NaN      NaN      NaN    
## beta1   1.000e+00   4.215e-03  237.257   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -1030.33    normalized:  -4.171378 
## 
## Description:
##  Tue May  6 09:42:55 2025 by user: victo 
## 
## 
## Standardised Residuals Tests:
##                                    Statistic   p-Value
##  Jarque-Bera Test   R    Chi^2  1.812496e+05 0.0000000
##  Shapiro-Wilk Test  R    W      2.702137e-01 0.0000000
##  Ljung-Box Test     R    Q(10)  1.407700e+00 0.9991952
##  Ljung-Box Test     R    Q(15)  2.281588e+00 0.9999295
##  Ljung-Box Test     R    Q(20)  2.822732e+00 0.9999976
##  Ljung-Box Test     R^2  Q(10)  1.188498e-01 1.0000000
##  Ljung-Box Test     R^2  Q(15)  1.799509e-01 1.0000000
##  Ljung-Box Test     R^2  Q(20)  2.529911e-01 1.0000000
##  LM Arch Test       R    TR^2   1.515726e-01 1.0000000
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 8.375146 8.431978 8.374632 8.398027
summary(garch12_model)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 2), data = log.h, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 2)
## <environment: 0x0000026c7437cbd0>
##  [data = log.h]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu        omega       alpha1        beta1        beta2  
## -0.09197634   0.00025330   0.00000001   0.99999999   0.00153416  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -9.198e-02   9.881e-01   -0.093 0.925840    
## omega   2.533e-04   1.510e+00    0.000 0.999866    
## alpha1  1.000e-08         NaN      NaN      NaN    
## beta1   1.000e+00   2.611e-01    3.830 0.000128 ***
## beta2   1.534e-03   2.657e-01    0.006 0.995393    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -1030.135    normalized:  -4.170587 
## 
## Description:
##  Tue May  6 09:42:55 2025 by user: victo 
## 
## 
## Standardised Residuals Tests:
##                                    Statistic   p-Value
##  Jarque-Bera Test   R    Chi^2  1.783573e+05 0.0000000
##  Shapiro-Wilk Test  R    W      2.715645e-01 0.0000000
##  Ljung-Box Test     R    Q(10)  1.420902e+00 0.9991613
##  Ljung-Box Test     R    Q(15)  2.296993e+00 0.9999264
##  Ljung-Box Test     R    Q(20)  2.842354e+00 0.9999974
##  Ljung-Box Test     R^2  Q(10)  1.204329e-01 1.0000000
##  Ljung-Box Test     R^2  Q(15)  1.824890e-01 1.0000000
##  Ljung-Box Test     R^2  Q(20)  2.566449e-01 1.0000000
##  LM Arch Test       R    TR^2   1.537039e-01 1.0000000
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 8.381660 8.452700 8.380862 8.410261
summary(garch21_model)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(2, 1), data = log.h, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ garch(2, 1)
## <environment: 0x0000026c764400b0>
##  [data = log.h]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu        omega       alpha1       alpha2        beta1  
## -0.10189597   0.41736275   0.00000001   0.00000001   0.99999999  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -1.019e-01   9.891e-01   -0.103    0.918    
## omega   4.174e-01   1.116e+00    0.374    0.709    
## alpha1  1.000e-08         NaN      NaN      NaN    
## alpha2  1.000e-08         NaN      NaN      NaN    
## beta1   1.000e+00   4.233e-03  236.257   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -1030.29    normalized:  -4.171213 
## 
## Description:
##  Tue May  6 09:42:55 2025 by user: victo 
## 
## 
## Standardised Residuals Tests:
##                                    Statistic   p-Value
##  Jarque-Bera Test   R    Chi^2  1.809666e+05 0.0000000
##  Shapiro-Wilk Test  R    W      2.703369e-01 0.0000000
##  Ljung-Box Test     R    Q(10)  1.408933e+00 0.9991920
##  Ljung-Box Test     R    Q(15)  2.282837e+00 0.9999293
##  Ljung-Box Test     R    Q(20)  2.824183e+00 0.9999976
##  Ljung-Box Test     R^2  Q(10)  1.190041e-01 1.0000000
##  Ljung-Box Test     R^2  Q(15)  1.802002e-01 1.0000000
##  Ljung-Box Test     R^2  Q(20)  2.533500e-01 1.0000000
##  LM Arch Test       R    TR^2   1.517803e-01 1.0000000
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 8.382912 8.453952 8.382114 8.411513
summary(garch22_model)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(2, 2), data = log.h, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ garch(2, 2)
## <environment: 0x0000026c77791d20>
##  [data = log.h]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu        omega       alpha1       alpha2        beta1        beta2  
## -0.09198733   0.00025330   0.00000001   0.00000001   0.99999999   0.00153417  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu     -9.199e-02   9.881e-01   -0.093 0.925831    
## omega   2.533e-04   1.502e+00    0.000 0.999865    
## alpha1  1.000e-08         NaN      NaN      NaN    
## alpha2  1.000e-08         NaN      NaN      NaN    
## beta1   1.000e+00   2.608e-01    3.834 0.000126 ***
## beta2   1.534e-03   2.655e-01    0.006 0.995389    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -1030.135    normalized:  -4.170587 
## 
## Description:
##  Tue May  6 09:42:55 2025 by user: victo 
## 
## 
## Standardised Residuals Tests:
##                                    Statistic   p-Value
##  Jarque-Bera Test   R    Chi^2  1.783571e+05 0.0000000
##  Shapiro-Wilk Test  R    W      2.715645e-01 0.0000000
##  Ljung-Box Test     R    Q(10)  1.420903e+00 0.9991612
##  Ljung-Box Test     R    Q(15)  2.296994e+00 0.9999264
##  Ljung-Box Test     R    Q(20)  2.842354e+00 0.9999974
##  Ljung-Box Test     R^2  Q(10)  1.204331e-01 1.0000000
##  Ljung-Box Test     R^2  Q(15)  1.824893e-01 1.0000000
##  Ljung-Box Test     R^2  Q(20)  2.566453e-01 1.0000000
##  LM Arch Test       R    TR^2   1.537041e-01 1.0000000
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 8.389758 8.475006 8.388614 8.424079
predict(garch11_model, n.ahead = 120, plot = TRUE)

##     meanForecast meanError standardDeviation lowerInterval upperInterval
## 1     -0.1030208  18.82311          18.82311     -36.99564      36.78959
## 2     -0.1030208  18.83403          18.83403     -37.01705      36.81101
## 3     -0.1030208  18.84495          18.84495     -37.03845      36.83241
## 4     -0.1030208  18.85586          18.85586     -37.05984      36.85380
## 5     -0.1030208  18.86677          18.86677     -37.08121      36.87517
## 6     -0.1030208  18.87767          18.87767     -37.10258      36.89653
## 7     -0.1030208  18.88856          18.88856     -37.12393      36.91789
## 8     -0.1030208  18.89945          18.89945     -37.14527      36.93922
## 9     -0.1030208  18.91033          18.91033     -37.16659      36.96055
## 10    -0.1030208  18.92121          18.92121     -37.18791      36.98186
## 11    -0.1030208  18.93208          18.93208     -37.20921      37.00317
## 12    -0.1030208  18.94294          18.94294     -37.23050      37.02446
## 13    -0.1030208  18.95379          18.95379     -37.25177      37.04573
## 14    -0.1030208  18.96464          18.96464     -37.27304      37.06700
## 15    -0.1030208  18.97549          18.97549     -37.29429      37.08825
## 16    -0.1030208  18.98632          18.98632     -37.31553      37.10949
## 17    -0.1030208  18.99716          18.99716     -37.33676      37.13072
## 18    -0.1030208  19.00798          19.00798     -37.35798      37.15194
## 19    -0.1030208  19.01880          19.01880     -37.37918      37.17314
## 20    -0.1030208  19.02961          19.02961     -37.40038      37.19434
## 21    -0.1030208  19.04042          19.04042     -37.42156      37.21552
## 22    -0.1030208  19.05122          19.05122     -37.44273      37.23668
## 23    -0.1030208  19.06201          19.06201     -37.46388      37.25784
## 24    -0.1030208  19.07280          19.07280     -37.48503      37.27899
## 25    -0.1030208  19.08358          19.08358     -37.50616      37.30012
## 26    -0.1030208  19.09436          19.09436     -37.52728      37.32124
## 27    -0.1030208  19.10513          19.10513     -37.54839      37.34235
## 28    -0.1030208  19.11589          19.11589     -37.56949      37.36344
## 29    -0.1030208  19.12665          19.12665     -37.59057      37.38453
## 30    -0.1030208  19.13740          19.13740     -37.61164      37.40560
## 31    -0.1030208  19.14815          19.14815     -37.63271      37.42666
## 32    -0.1030208  19.15889          19.15889     -37.65375      37.44771
## 33    -0.1030208  19.16962          19.16962     -37.67479      37.46875
## 34    -0.1030208  19.18035          19.18035     -37.69582      37.48978
## 35    -0.1030208  19.19107          19.19107     -37.71683      37.51079
## 36    -0.1030208  19.20179          19.20179     -37.73784      37.53179
## 37    -0.1030208  19.21250          19.21250     -37.75883      37.55278
## 38    -0.1030208  19.22320          19.22320     -37.77981      37.57376
## 39    -0.1030208  19.23390          19.23390     -37.80077      37.59473
## 40    -0.1030208  19.24459          19.24459     -37.82173      37.61569
## 41    -0.1030208  19.25528          19.25528     -37.84267      37.63663
## 42    -0.1030208  19.26596          19.26596     -37.86360      37.65756
## 43    -0.1030208  19.27663          19.27663     -37.88453      37.67848
## 44    -0.1030208  19.28730          19.28730     -37.90543      37.69939
## 45    -0.1030208  19.29796          19.29796     -37.92633      37.72029
## 46    -0.1030208  19.30862          19.30862     -37.94722      37.74118
## 47    -0.1030208  19.31927          19.31927     -37.96809      37.76205
## 48    -0.1030208  19.32991          19.32991     -37.98896      37.78292
## 49    -0.1030208  19.34055          19.34055     -38.00981      37.80377
## 50    -0.1030208  19.35119          19.35119     -38.03065      37.82461
## 51    -0.1030208  19.36181          19.36181     -38.05148      37.84544
## 52    -0.1030208  19.37243          19.37243     -38.07229      37.86625
## 53    -0.1030208  19.38305          19.38305     -38.09310      37.88706
## 54    -0.1030208  19.39366          19.39366     -38.11390      37.90785
## 55    -0.1030208  19.40426          19.40426     -38.13468      37.92864
## 56    -0.1030208  19.41486          19.41486     -38.15545      37.94941
## 57    -0.1030208  19.42545          19.42545     -38.17621      37.97017
## 58    -0.1030208  19.43604          19.43604     -38.19696      37.99092
## 59    -0.1030208  19.44662          19.44662     -38.21770      38.01166
## 60    -0.1030208  19.45720          19.45720     -38.23842      38.03238
## 61    -0.1030208  19.46777          19.46777     -38.25914      38.05310
## 62    -0.1030208  19.47833          19.47833     -38.27984      38.07380
## 63    -0.1030208  19.48889          19.48889     -38.30054      38.09450
## 64    -0.1030208  19.49944          19.49944     -38.32122      38.11518
## 65    -0.1030208  19.50999          19.50999     -38.34189      38.13585
## 66    -0.1030208  19.52053          19.52053     -38.36255      38.15651
## 67    -0.1030208  19.53106          19.53106     -38.38320      38.17716
## 68    -0.1030208  19.54159          19.54159     -38.40383      38.19779
## 69    -0.1030208  19.55211          19.55211     -38.42446      38.21842
## 70    -0.1030208  19.56263          19.56263     -38.44507      38.23903
## 71    -0.1030208  19.57314          19.57314     -38.46568      38.25964
## 72    -0.1030208  19.58365          19.58365     -38.48627      38.28023
## 73    -0.1030208  19.59415          19.59415     -38.50685      38.30081
## 74    -0.1030208  19.60465          19.60465     -38.52742      38.32138
## 75    -0.1030208  19.61514          19.61514     -38.54798      38.34194
## 76    -0.1030208  19.62562          19.62562     -38.56853      38.36249
## 77    -0.1030208  19.63610          19.63610     -38.58907      38.38303
## 78    -0.1030208  19.64657          19.64657     -38.60960      38.40355
## 79    -0.1030208  19.65704          19.65704     -38.63011      38.42407
## 80    -0.1030208  19.66750          19.66750     -38.65062      38.44458
## 81    -0.1030208  19.67796          19.67796     -38.67111      38.46507
## 82    -0.1030208  19.68841          19.68841     -38.69159      38.48555
## 83    -0.1030208  19.69885          19.69885     -38.71207      38.50602
## 84    -0.1030208  19.70929          19.70929     -38.73253      38.52649
## 85    -0.1030208  19.71973          19.71973     -38.75298      38.54694
## 86    -0.1030208  19.73016          19.73016     -38.77342      38.56738
## 87    -0.1030208  19.74058          19.74058     -38.79385      38.58781
## 88    -0.1030208  19.75100          19.75100     -38.81426      38.60822
## 89    -0.1030208  19.76141          19.76141     -38.83467      38.62863
## 90    -0.1030208  19.77182          19.77182     -38.85507      38.64903
## 91    -0.1030208  19.78222          19.78222     -38.87545      38.66941
## 92    -0.1030208  19.79261          19.79261     -38.89583      38.68979
## 93    -0.1030208  19.80300          19.80300     -38.91619      38.71015
## 94    -0.1030208  19.81339          19.81339     -38.93655      38.73051
## 95    -0.1030208  19.82377          19.82377     -38.95689      38.75085
## 96    -0.1030208  19.83414          19.83414     -38.97722      38.77118
## 97    -0.1030208  19.84451          19.84451     -38.99755      38.79150
## 98    -0.1030208  19.85487          19.85487     -39.01786      38.81182
## 99    -0.1030208  19.86523          19.86523     -39.03816      38.83212
## 100   -0.1030208  19.87558          19.87558     -39.05845      38.85241
## 101   -0.1030208  19.88593          19.88593     -39.07873      38.87269
## 102   -0.1030208  19.89627          19.89627     -39.09900      38.89295
## 103   -0.1030208  19.90661          19.90661     -39.11925      38.91321
## 104   -0.1030208  19.91694          19.91694     -39.13950      38.93346
## 105   -0.1030208  19.92726          19.92726     -39.15974      38.95370
## 106   -0.1030208  19.93758          19.93758     -39.17997      38.97393
## 107   -0.1030208  19.94790          19.94790     -39.20018      38.99414
## 108   -0.1030208  19.95821          19.95821     -39.22039      39.01435
## 109   -0.1030208  19.96851          19.96851     -39.24059      39.03454
## 110   -0.1030208  19.97881          19.97881     -39.26077      39.05473
## 111   -0.1030208  19.98910          19.98910     -39.28095      39.07490
## 112   -0.1030208  19.99939          19.99939     -39.30111      39.09507
## 113   -0.1030208  20.00968          20.00968     -39.32126      39.11522
## 114   -0.1030208  20.01995          20.01995     -39.34141      39.13537
## 115   -0.1030208  20.03023          20.03023     -39.36154      39.15550
## 116   -0.1030208  20.04049          20.04049     -39.38166      39.17562
## 117   -0.1030208  20.05075          20.05075     -39.40178      39.19573
## 118   -0.1030208  20.06101          20.06101     -39.42188      39.21584
## 119   -0.1030208  20.07126          20.07126     -39.44197      39.23593
## 120   -0.1030208  20.08151          20.08151     -39.46205      39.25601
predict(garch12_model, n.ahead = 120, plot = TRUE)

##     meanForecast meanError standardDeviation lowerInterval upperInterval
## 1    -0.09197634  19.19048          19.19048     -37.70463      37.52067
## 2    -0.09197634  19.20518          19.20518     -37.73343      37.54948
## 3    -0.09197634  19.21989          19.21989     -37.76227      37.57831
## 4    -0.09197634  19.23461          19.23461     -37.79112      37.60717
## 5    -0.09197634  19.24934          19.24934     -37.82000      37.63604
## 6    -0.09197634  19.26409          19.26409     -37.84889      37.66494
## 7    -0.09197634  19.27884          19.27884     -37.87781      37.69386
## 8    -0.09197634  19.29361          19.29361     -37.90676      37.72280
## 9    -0.09197634  19.30839          19.30839     -37.93572      37.75177
## 10   -0.09197634  19.32318          19.32318     -37.96471      37.78075
## 11   -0.09197634  19.33798          19.33798     -37.99372      37.80976
## 12   -0.09197634  19.35279          19.35279     -38.02275      37.83879
## 13   -0.09197634  19.36761          19.36761     -38.05180      37.86785
## 14   -0.09197634  19.38245          19.38245     -38.08088      37.89692
## 15   -0.09197634  19.39729          19.39729     -38.10997      37.92602
## 16   -0.09197634  19.41215          19.41215     -38.13909      37.95514
## 17   -0.09197634  19.42702          19.42702     -38.16824      37.98428
## 18   -0.09197634  19.44190          19.44190     -38.19740      38.01345
## 19   -0.09197634  19.45679          19.45679     -38.22659      38.04263
## 20   -0.09197634  19.47169          19.47169     -38.25580      38.07184
## 21   -0.09197634  19.48661          19.48661     -38.28503      38.10107
## 22   -0.09197634  19.50153          19.50153     -38.31428      38.13033
## 23   -0.09197634  19.51647          19.51647     -38.34356      38.15960
## 24   -0.09197634  19.53142          19.53142     -38.37286      38.18890
## 25   -0.09197634  19.54638          19.54638     -38.40218      38.21822
## 26   -0.09197634  19.56135          19.56135     -38.43152      38.24757
## 27   -0.09197634  19.57633          19.57633     -38.46089      38.27693
## 28   -0.09197634  19.59133          19.59133     -38.49027      38.30632
## 29   -0.09197634  19.60633          19.60633     -38.51969      38.33573
## 30   -0.09197634  19.62135          19.62135     -38.54912      38.36517
## 31   -0.09197634  19.63638          19.63638     -38.57857      38.39462
## 32   -0.09197634  19.65142          19.65142     -38.60805      38.42410
## 33   -0.09197634  19.66647          19.66647     -38.63755      38.45360
## 34   -0.09197634  19.68154          19.68154     -38.66708      38.48313
## 35   -0.09197634  19.69661          19.69661     -38.69662      38.51267
## 36   -0.09197634  19.71170          19.71170     -38.72619      38.54224
## 37   -0.09197634  19.72680          19.72680     -38.75578      38.57183
## 38   -0.09197634  19.74190          19.74190     -38.78540      38.60145
## 39   -0.09197634  19.75703          19.75703     -38.81504      38.63108
## 40   -0.09197634  19.77216          19.77216     -38.84469      38.66074
## 41   -0.09197634  19.78730          19.78730     -38.87438      38.69042
## 42   -0.09197634  19.80246          19.80246     -38.90408      38.72013
## 43   -0.09197634  19.81763          19.81763     -38.93381      38.74986
## 44   -0.09197634  19.83281          19.83281     -38.96356      38.77961
## 45   -0.09197634  19.84800          19.84800     -38.99333      38.80938
## 46   -0.09197634  19.86320          19.86320     -39.02313      38.83918
## 47   -0.09197634  19.87841          19.87841     -39.05295      38.86899
## 48   -0.09197634  19.89364          19.89364     -39.08279      38.89884
## 49   -0.09197634  19.90887          19.90887     -39.11265      38.92870
## 50   -0.09197634  19.92412          19.92412     -39.14254      38.95859
## 51   -0.09197634  19.93938          19.93938     -39.17245      38.98850
## 52   -0.09197634  19.95466          19.95466     -39.20238      39.01843
## 53   -0.09197634  19.96994          19.96994     -39.23234      39.04839
## 54   -0.09197634  19.98524          19.98524     -39.26232      39.07837
## 55   -0.09197634  20.00054          20.00054     -39.29232      39.10837
## 56   -0.09197634  20.01586          20.01586     -39.32234      39.13839
## 57   -0.09197634  20.03119          20.03119     -39.35239      39.16844
## 58   -0.09197634  20.04654          20.04654     -39.38246      39.19851
## 59   -0.09197634  20.06189          20.06189     -39.41256      39.22860
## 60   -0.09197634  20.07726          20.07726     -39.44267      39.25872
## 61   -0.09197634  20.09263          20.09263     -39.47281      39.28886
## 62   -0.09197634  20.10802          20.10802     -39.50298      39.31902
## 63   -0.09197634  20.12342          20.12342     -39.53316      39.34921
## 64   -0.09197634  20.13884          20.13884     -39.56337      39.37942
## 65   -0.09197634  20.15426          20.15426     -39.59360      39.40965
## 66   -0.09197634  20.16970          20.16970     -39.62386      39.43991
## 67   -0.09197634  20.18515          20.18515     -39.65414      39.47018
## 68   -0.09197634  20.20061          20.20061     -39.68444      39.50049
## 69   -0.09197634  20.21608          20.21608     -39.71476      39.53081
## 70   -0.09197634  20.23156          20.23156     -39.74511      39.56116
## 71   -0.09197634  20.24706          20.24706     -39.77548      39.59153
## 72   -0.09197634  20.26257          20.26257     -39.80588      39.62192
## 73   -0.09197634  20.27809          20.27809     -39.83630      39.65234
## 74   -0.09197634  20.29362          20.29362     -39.86674      39.68278
## 75   -0.09197634  20.30916          20.30916     -39.89720      39.71325
## 76   -0.09197634  20.32472          20.32472     -39.92769      39.74374
## 77   -0.09197634  20.34028          20.34028     -39.95820      39.77425
## 78   -0.09197634  20.35586          20.35586     -39.98873      39.80478
## 79   -0.09197634  20.37145          20.37145     -40.01929      39.83534
## 80   -0.09197634  20.38706          20.38706     -40.04987      39.86592
## 81   -0.09197634  20.40267          20.40267     -40.08048      39.89652
## 82   -0.09197634  20.41830          20.41830     -40.11110      39.92715
## 83   -0.09197634  20.43394          20.43394     -40.14176      39.95780
## 84   -0.09197634  20.44959          20.44959     -40.17243      39.98848
## 85   -0.09197634  20.46525          20.46525     -40.20313      40.01918
## 86   -0.09197634  20.48092          20.48092     -40.23385      40.04990
## 87   -0.09197634  20.49661          20.49661     -40.26460      40.08064
## 88   -0.09197634  20.51231          20.51231     -40.29536      40.11141
## 89   -0.09197634  20.52802          20.52802     -40.32616      40.14220
## 90   -0.09197634  20.54374          20.54374     -40.35697      40.17302
## 91   -0.09197634  20.55948          20.55948     -40.38781      40.20386
## 92   -0.09197634  20.57522          20.57522     -40.41868      40.23472
## 93   -0.09197634  20.59098          20.59098     -40.44956      40.26561
## 94   -0.09197634  20.60675          20.60675     -40.48047      40.29652
## 95   -0.09197634  20.62254          20.62254     -40.51141      40.32745
## 96   -0.09197634  20.63833          20.63833     -40.54236      40.35841
## 97   -0.09197634  20.65414          20.65414     -40.57335      40.38939
## 98   -0.09197634  20.66996          20.66996     -40.60435      40.42040
## 99   -0.09197634  20.68579          20.68579     -40.63538      40.45143
## 100  -0.09197634  20.70163          20.70163     -40.66643      40.48248
## 101  -0.09197634  20.71749          20.71749     -40.69751      40.51356
## 102  -0.09197634  20.73336          20.73336     -40.72861      40.54466
## 103  -0.09197634  20.74924          20.74924     -40.75973      40.57578
## 104  -0.09197634  20.76513          20.76513     -40.79088      40.60693
## 105  -0.09197634  20.78103          20.78103     -40.82205      40.63810
## 106  -0.09197634  20.79695          20.79695     -40.85325      40.66929
## 107  -0.09197634  20.81288          20.81288     -40.88447      40.70051
## 108  -0.09197634  20.82882          20.82882     -40.91571      40.73176
## 109  -0.09197634  20.84477          20.84477     -40.94698      40.76302
## 110  -0.09197634  20.86074          20.86074     -40.97827      40.79432
## 111  -0.09197634  20.87671          20.87671     -41.00958      40.82563
## 112  -0.09197634  20.89270          20.89270     -41.04092      40.85697
## 113  -0.09197634  20.90870          20.90870     -41.07228      40.88833
## 114  -0.09197634  20.92472          20.92472     -41.10367      40.91972
## 115  -0.09197634  20.94075          20.94075     -41.13508      40.95113
## 116  -0.09197634  20.95678          20.95678     -41.16652      40.98257
## 117  -0.09197634  20.97283          20.97283     -41.19798      41.01402
## 118  -0.09197634  20.98890          20.98890     -41.22946      41.04551
## 119  -0.09197634  21.00497          21.00497     -41.26097      41.07701
## 120  -0.09197634  21.02106          21.02106     -41.29250      41.10855
predict(garch22_model, n.ahead = 120, plot = TRUE)

##     meanForecast meanError standardDeviation lowerInterval upperInterval
## 1    -0.09198733  19.19051          19.19051     -37.70470      37.52073
## 2    -0.09198733  19.20521          19.20521     -37.73351      37.54954
## 3    -0.09198733  19.21992          19.21992     -37.76234      37.57837
## 4    -0.09198733  19.23464          19.23464     -37.79120      37.60722
## 5    -0.09198733  19.24938          19.24938     -37.82007      37.63610
## 6    -0.09198733  19.26412          19.26412     -37.84897      37.66500
## 7    -0.09198733  19.27888          19.27888     -37.87789      37.69392
## 8    -0.09198733  19.29364          19.29364     -37.90683      37.72286
## 9    -0.09198733  19.30842          19.30842     -37.93580      37.75182
## 10   -0.09198733  19.32321          19.32321     -37.96479      37.78081
## 11   -0.09198733  19.33801          19.33801     -37.99380      37.80982
## 12   -0.09198733  19.35282          19.35282     -38.02283      37.83885
## 13   -0.09198733  19.36765          19.36765     -38.05188      37.86791
## 14   -0.09198733  19.38248          19.38248     -38.08096      37.89698
## 15   -0.09198733  19.39733          19.39733     -38.11005      37.92608
## 16   -0.09198733  19.41219          19.41219     -38.13917      37.95520
## 17   -0.09198733  19.42706          19.42706     -38.16832      37.98434
## 18   -0.09198733  19.44194          19.44194     -38.19748      38.01351
## 19   -0.09198733  19.45683          19.45683     -38.22667      38.04269
## 20   -0.09198733  19.47173          19.47173     -38.25588      38.07190
## 21   -0.09198733  19.48664          19.48664     -38.28511      38.10113
## 22   -0.09198733  19.50157          19.50157     -38.31436      38.13039
## 23   -0.09198733  19.51651          19.51651     -38.34364      38.15967
## 24   -0.09198733  19.53146          19.53146     -38.37294      38.18896
## 25   -0.09198733  19.54642          19.54642     -38.40226      38.21829
## 26   -0.09198733  19.56139          19.56139     -38.43160      38.24763
## 27   -0.09198733  19.57637          19.57637     -38.46097      38.27700
## 28   -0.09198733  19.59137          19.59137     -38.49036      38.30639
## 29   -0.09198733  19.60637          19.60637     -38.51977      38.33580
## 30   -0.09198733  19.62139          19.62139     -38.54920      38.36523
## 31   -0.09198733  19.63642          19.63642     -38.57866      38.39469
## 32   -0.09198733  19.65146          19.65146     -38.60814      38.42417
## 33   -0.09198733  19.66651          19.66651     -38.63764      38.45367
## 34   -0.09198733  19.68157          19.68157     -38.66717      38.48319
## 35   -0.09198733  19.69665          19.69665     -38.69671      38.51274
## 36   -0.09198733  19.71174          19.71174     -38.72628      38.54231
## 37   -0.09198733  19.72683          19.72683     -38.75587      38.57190
## 38   -0.09198733  19.74194          19.74194     -38.78549      38.60151
## 39   -0.09198733  19.75707          19.75707     -38.81512      38.63115
## 40   -0.09198733  19.77220          19.77220     -38.84478      38.66081
## 41   -0.09198733  19.78734          19.78734     -38.87447      38.69049
## 42   -0.09198733  19.80250          19.80250     -38.90417      38.72020
## 43   -0.09198733  19.81767          19.81767     -38.93390      38.74993
## 44   -0.09198733  19.83285          19.83285     -38.96365      38.77968
## 45   -0.09198733  19.84804          19.84804     -38.99342      38.80945
## 46   -0.09198733  19.86324          19.86324     -39.02322      38.83925
## 47   -0.09198733  19.87845          19.87845     -39.05304      38.86907
## 48   -0.09198733  19.89368          19.89368     -39.08288      38.89891
## 49   -0.09198733  19.90892          19.90892     -39.11275      38.92877
## 50   -0.09198733  19.92417          19.92417     -39.14263      38.95866
## 51   -0.09198733  19.93943          19.93943     -39.17254      38.98857
## 52   -0.09198733  19.95470          19.95470     -39.20248      39.01850
## 53   -0.09198733  19.96998          19.96998     -39.23243      39.04846
## 54   -0.09198733  19.98528          19.98528     -39.26241      39.07844
## 55   -0.09198733  20.00059          20.00059     -39.29242      39.10844
## 56   -0.09198733  20.01591          20.01591     -39.32244      39.13847
## 57   -0.09198733  20.03124          20.03124     -39.35249      39.16851
## 58   -0.09198733  20.04658          20.04658     -39.38256      39.19858
## 59   -0.09198733  20.06193          20.06193     -39.41265      39.22868
## 60   -0.09198733  20.07730          20.07730     -39.44277      39.25880
## 61   -0.09198733  20.09268          20.09268     -39.47291      39.28894
## 62   -0.09198733  20.10807          20.10807     -39.50307      39.31910
## 63   -0.09198733  20.12347          20.12347     -39.53326      39.34929
## 64   -0.09198733  20.13888          20.13888     -39.56347      39.37950
## 65   -0.09198733  20.15431          20.15431     -39.59370      39.40973
## 66   -0.09198733  20.16974          20.16974     -39.62396      39.43998
## 67   -0.09198733  20.18519          20.18519     -39.65424      39.47026
## 68   -0.09198733  20.20065          20.20065     -39.68454      39.50056
## 69   -0.09198733  20.21612          20.21612     -39.71486      39.53089
## 70   -0.09198733  20.23161          20.23161     -39.74521      39.56124
## 71   -0.09198733  20.24711          20.24711     -39.77558      39.59161
## 72   -0.09198733  20.26261          20.26261     -39.80598      39.62200
## 73   -0.09198733  20.27813          20.27813     -39.83640      39.65242
## 74   -0.09198733  20.29366          20.29366     -39.86684      39.68286
## 75   -0.09198733  20.30921          20.30921     -39.89730      39.71333
## 76   -0.09198733  20.32476          20.32476     -39.92779      39.74382
## 77   -0.09198733  20.34033          20.34033     -39.95830      39.77433
## 78   -0.09198733  20.35591          20.35591     -39.98884      39.80486
## 79   -0.09198733  20.37150          20.37150     -40.01940      39.83542
## 80   -0.09198733  20.38710          20.38710     -40.04998      39.86600
## 81   -0.09198733  20.40272          20.40272     -40.08058      39.89661
## 82   -0.09198733  20.41835          20.41835     -40.11121      39.92724
## 83   -0.09198733  20.43398          20.43398     -40.14186      39.95789
## 84   -0.09198733  20.44964          20.44964     -40.17254      39.98856
## 85   -0.09198733  20.46530          20.46530     -40.20324      40.01926
## 86   -0.09198733  20.48097          20.48097     -40.23396      40.04998
## 87   -0.09198733  20.49666          20.49666     -40.26470      40.08073
## 88   -0.09198733  20.51236          20.51236     -40.29547      40.11150
## 89   -0.09198733  20.52807          20.52807     -40.32627      40.14229
## 90   -0.09198733  20.54379          20.54379     -40.35708      40.17311
## 91   -0.09198733  20.55953          20.55953     -40.38792      40.20395
## 92   -0.09198733  20.57527          20.57527     -40.41879      40.23481
## 93   -0.09198733  20.59103          20.59103     -40.44967      40.26570
## 94   -0.09198733  20.60680          20.60680     -40.48058      40.29661
## 95   -0.09198733  20.62259          20.62259     -40.51152      40.32754
## 96   -0.09198733  20.63838          20.63838     -40.54248      40.35850
## 97   -0.09198733  20.65419          20.65419     -40.57346      40.38948
## 98   -0.09198733  20.67001          20.67001     -40.60446      40.42049
## 99   -0.09198733  20.68584          20.68584     -40.63549      40.45152
## 100  -0.09198733  20.70169          20.70169     -40.66654      40.48257
## 101  -0.09198733  20.71754          20.71754     -40.69762      40.51365
## 102  -0.09198733  20.73341          20.73341     -40.72872      40.54475
## 103  -0.09198733  20.74929          20.74929     -40.75985      40.57587
## 104  -0.09198733  20.76518          20.76518     -40.79099      40.60702
## 105  -0.09198733  20.78109          20.78109     -40.82217      40.63819
## 106  -0.09198733  20.79700          20.79700     -40.85336      40.66939
## 107  -0.09198733  20.81293          20.81293     -40.88458      40.70061
## 108  -0.09198733  20.82887          20.82887     -40.91583      40.73185
## 109  -0.09198733  20.84482          20.84482     -40.94709      40.76312
## 110  -0.09198733  20.86079          20.86079     -40.97838      40.79441
## 111  -0.09198733  20.87677          20.87677     -41.00970      40.82573
## 112  -0.09198733  20.89276          20.89276     -41.04104      40.85706
## 113  -0.09198733  20.90876          20.90876     -41.07240      40.88843
## 114  -0.09198733  20.92477          20.92477     -41.10379      40.91982
## 115  -0.09198733  20.94080          20.94080     -41.13520      40.95123
## 116  -0.09198733  20.95684          20.95684     -41.16664      40.98266
## 117  -0.09198733  20.97289          20.97289     -41.19810      41.01412
## 118  -0.09198733  20.98895          20.98895     -41.22958      41.04561
## 119  -0.09198733  21.00503          21.00503     -41.26109      41.07711
## 120  -0.09198733  21.02112          21.02112     -41.29262      41.10864

eGARCH Models using rugarch

# eGARCH Models using `rugarch`

# Define eGARCH model specifications
egarch_models <- list(
  egarch11 = ugarchspec(
    variance.model = list(model = "eGARCH", garchOrder = c(1, 1)),
    mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
    distribution.model = "norm"
  ),
  egarch12 = ugarchspec(
    variance.model = list(model = "eGARCH", garchOrder = c(1, 2)),
    mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
    distribution.model = "norm"
  ),
  egarch21 = ugarchspec(
    variance.model = list(model = "eGARCH", garchOrder = c(2, 1)),
    mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
    distribution.model = "norm"
  ),
  egarch22 = ugarchspec(
    variance.model = list(model = "eGARCH", garchOrder = c(2, 2)),
    mean.model = list(armaOrder = c(0, 0), include.mean = TRUE),
    distribution.model = "norm"
  )
)

# Fit models to the data (ensure `log.h` is defined and numeric)
fit_egarch <- lapply(egarch_models, function(spec) {
  ugarchfit(spec = spec, data = log.h, solver = "hybrid")
})

# Extract model coefficients
egarch_coefs <- lapply(fit_egarch, coef)
print(egarch_coefs)
## $egarch11
##         mu      omega     alpha1      beta1     gamma1 
## 0.27778059 3.47117756 1.00788084 0.01926387 1.06366206 
## 
## $egarch12
##         mu      omega     alpha1      beta1      beta2     gamma1 
## -1.4500122  6.4319537  2.4091016  0.3962988 -0.3797081  2.9621385 
## 
## $egarch21
##          mu       omega      alpha1      alpha2       beta1      gamma1 
##  0.08387409 -0.08023885  0.11971505  0.04468266  0.99999999 -0.54928852 
##      gamma2 
##  0.42233103 
## 
## $egarch22
##         mu      omega     alpha1     alpha2      beta1      beta2     gamma1 
##  0.1654386 -0.2142866  0.9316198 -0.2810897  0.6377920  0.4064154  0.5958231 
##     gamma2 
## -0.4636316
# Optional: Forecast using the fitted models
egarch_forecasts <- lapply(fit_egarch, function(fit) ugarchforecast(fit, n.ahead = 10))
# You can inspect a specific forecast like this:
print(egarch_forecasts$egarch11)
## 
## *------------------------------------*
## *       GARCH Model Forecast         *
## *------------------------------------*
## Model: eGARCH
## Horizon: 10
## Roll Steps: 0
## Out of Sample: 0
## 
## 0-roll forecast [T0=1970-09-05]:
##      Series Sigma
## T+1  0.2778 3.813
## T+2  0.2778 5.820
## T+3  0.2778 5.868
## T+4  0.2778 5.869
## T+5  0.2778 5.869
## T+6  0.2778 5.869
## T+7  0.2778 5.869
## T+8  0.2778 5.869
## T+9  0.2778 5.869
## T+10 0.2778 5.869
# Optional: Plot diagnostics
#lapply(fit_egarch, plot)

GJR-GARCH Models using rugarch

gjr_models <- list(
  gjr11 = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model=list(armaOrder=c(0,0)), distribution.model="norm"),
  gjr12 = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,2)), mean.model=list(armaOrder=c(0,0)), distribution.model="norm"),
  gjr21 = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(2,1)), mean.model=list(armaOrder=c(0,0)), distribution.model="norm"),
  gjr22 = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(2,2)), mean.model=list(armaOrder=c(0,0)), distribution.model="norm")
)

fit_gjr_models <- lapply(gjr_models, function(spec) ugarchfit(data=log.h, spec=spec, solver="hybrid"))
lapply(fit_gjr_models, coef)
## $gjr11
##          mu       omega      alpha1       beta1      gamma1 
## -0.93841343  0.41903772  0.01262167  0.99557055 -0.01928445 
## 
## $gjr12
##            mu         omega        alpha1         beta1         beta2 
##  7.382630e-02  1.069272e-01  1.036676e-20  3.928563e-01  6.144344e-01 
##        gamma1 
## -1.985695e-02 
## 
## $gjr21
##            mu         omega        alpha1        alpha2         beta1 
##  1.811668e-01  1.664226e-06  1.065664e-10  3.628408e-18  9.885479e-01 
##        gamma1        gamma2 
## -9.252576e-01  9.139672e-01 
## 
## $gjr22
##           mu        omega       alpha1       alpha2        beta1        beta2 
##  0.698430545  1.707849016  0.006329759  0.636465648  0.013075105  0.664617463 
##       gamma1       gamma2 
## -0.006151383 -0.636824562
lapply(fit_gjr_models, summary)
## $gjr11
##    Length     Class      Mode 
##         1 uGARCHfit        S4 
## 
## $gjr12
##    Length     Class      Mode 
##         1 uGARCHfit        S4 
## 
## $gjr21
##    Length     Class      Mode 
##         1 uGARCHfit        S4 
## 
## $gjr22
##    Length     Class      Mode 
##         1 uGARCHfit        S4
# lapply(fit_gjr_models, plot)

Compare GJR-GARCH Models

model_names <- names(fit_gjr_models)
gjr_ic <- sapply(fit_gjr_models, function(fit) infocriteria(fit))
colnames(gjr_ic) <- model_names
gjr_llh <- sapply(fit_gjr_models, function(fit) likelihood(fit))
names(gjr_llh) <- model_names

print("Information Criteria (lower is better):")
## [1] "Information Criteria (lower is better):"
print(round(gjr_ic, 4))
##       gjr11  gjr12  gjr21  gjr22
## [1,] 7.7157 7.4058 6.9727 6.8647
## [2,] 7.7867 7.4910 7.0722 6.9784
## [3,] 7.7149 7.4046 6.9712 6.8627
## [4,] 7.7443 7.4401 7.0128 6.9105
print("Log-Likelihoods (higher is better):")
## [1] "Log-Likelihoods (higher is better):"
print(round(gjr_llh, 4))
##     gjr11     gjr12     gjr21     gjr22 
## -947.8897 -908.6129 -854.1328 -839.7955

GJR-GARCH(2,2) with Different Distributions

fit_gjr_by_dist <- function(distribution) {
  spec <- ugarchspec(
    variance.model = list(model = "gjrGARCH", garchOrder = c(2, 2)),
    mean.model = list(armaOrder = c(0, 0)),
    distribution.model = distribution
  )
  ugarchfit(spec = spec, data = log.h, solver = "hybrid")
}

model_norm <- fit_gjr_by_dist("norm")
model_std  <- fit_gjr_by_dist("std")
model_ged  <- fit_gjr_by_dist("ged")

ic_table <- cbind(
  norm = infocriteria(model_norm),
  std = infocriteria(model_std),
  ged = infocriteria(model_ged)
)
colnames(ic_table) <- c("Normal", "Student-t", "GED")
print(round(ic_table, 4))
##              Normal Student-t     GED
## Akaike       7.0434    5.7560 15.4882
## Bayes        7.1571    5.8839 15.6161
## Shibata      7.0414    5.7535 15.4857
## Hannan-Quinn 7.0892    5.8075 15.5397
llh <- c(
  Normal = likelihood(model_norm),
  Student_t = likelihood(model_std),
  GED = likelihood(model_ged)
)
print(round(llh, 4))
##     Normal  Student_t        GED 
##  -861.8604  -701.8682 -1903.7953

Extra: Built-in Data Extraction and Correlation/Regression Analysis

# EXTRACT IN BUILT DATA
data2 = read.csv("financial_Data.csv"); data2
##          Date    Open    High     Low   Close Adj.Close    Volume
## 1    2/7/2023 150.640 155.230 150.640 154.650  154.4142  83322600
## 2    2/8/2023 153.880 154.580 151.170 151.920  151.6884  64120100
## 3    2/9/2023 153.780 154.330 150.420 150.870  150.6400  56007100
## 4   2/10/2023 149.460 151.340 149.220 151.010  151.0100  57450700
## 5   2/13/2023 150.950 154.260 150.920 153.850  153.8500  62199000
## 6   2/14/2023 152.120 153.770 150.860 153.200  153.2000  61707600
## 7   2/15/2023 153.110 155.500 152.880 155.330  155.3300  65573800
## 8   2/16/2023 153.510 156.330 153.350 153.710  153.7100  68167900
## 9   2/17/2023 152.350 153.000 150.850 152.550  152.5500  59144100
## 10  2/21/2023 150.200 151.300 148.410 148.480  148.4800  58867200
## 11  2/22/2023 148.870 149.950 147.160 148.910  148.9100  51011300
## 12  2/23/2023 150.090 150.340 147.240 149.400  149.4000  48394200
## 13  2/24/2023 147.110 147.190 145.720 146.710  146.7100  55469600
## 14  2/27/2023 147.710 149.170 147.450 147.920  147.9200  44998500
## 15  2/28/2023 147.050 149.080 146.830 147.410  147.4100  50547000
## 16   3/1/2023 146.830 147.230 145.010 145.310  145.3100  55479000
## 17   3/2/2023 144.380 146.710 143.900 145.910  145.9100  52238100
## 18   3/3/2023 148.040 151.110 147.330 151.030  151.0300  70732300
## 19   3/6/2023 153.790 156.300 153.460 153.830  153.8300  87558000
## 20   3/7/2023 153.700 154.030 151.130 151.600  151.6000  56182000
## 21   3/8/2023 152.810 153.470 151.830 152.870  152.8700  47204800
## 22   3/9/2023 153.560 154.540 150.230 150.590  150.5900  53833600
## 23  3/10/2023 150.210 150.940 147.610 148.500  148.5000  68572400
## 24  3/13/2023 147.810 153.140 147.700 150.470  150.4700  84457100
## 25  3/14/2023 151.280 153.400 150.100 152.590  152.5900  73695900
## 26  3/15/2023 151.190 153.250 149.920 152.990  152.9900  77167900
## 27  3/16/2023 152.160 156.460 151.640 155.850  155.8500  76161100
## 28  3/17/2023 156.080 156.740 154.280 155.000  155.0000  98944600
## 29  3/20/2023 155.070 157.820 154.150 157.400  157.4000  73641400
## 30  3/21/2023 157.320 159.400 156.540 159.280  159.2800  73938300
## 31  3/22/2023 159.300 162.140 157.810 157.830  157.8300  75701800
## 32  3/23/2023 158.830 161.550 157.680 158.930  158.9300  67622100
## 33  3/24/2023 158.860 160.340 157.850 160.250  160.2500  59196500
## 34  3/27/2023 159.940 160.770 157.870 158.280  158.2800  52390300
## 35  3/28/2023 157.970 158.490 155.980 157.650  157.6500  45992200
## 36  3/29/2023 159.370 161.050 159.350 160.770  160.7700  51305700
## 37  3/30/2023 161.530 162.470 161.270 162.360  162.3600  49501700
## 38  3/31/2023 162.440 165.000 161.910 164.900  164.9000  68749800
## 39   4/3/2023 164.270 166.290 164.220 166.170  166.1700  56976200
## 40   4/4/2023 166.600 166.840 165.110 165.630  165.6300  46278300
## 41   4/5/2023 164.740 165.050 161.800 163.760  163.7600  51511700
## 42   4/6/2023 162.430 164.960 162.000 164.660  164.6600  45390100
## 43  4/10/2023 161.420 162.030 160.080 162.030  162.0300  47716900
## 44  4/11/2023 162.350 162.360 160.510 160.800  160.8000  47644200
## 45  4/12/2023 161.220 162.060 159.780 160.100  160.1000  50133100
## 46  4/13/2023 161.630 165.800 161.420 165.560  165.5600  68445600
## 47  4/14/2023 164.590 166.320 163.820 165.210  165.2100  49386500
## 48  4/17/2023 165.090 165.390 164.030 165.230  165.2300  41516200
## 49  4/18/2023 166.100 167.410 165.650 166.470  166.4700  49923000
## 50  4/19/2023 165.800 168.160 165.540 167.630  167.6300  47720200
## 51  4/20/2023 166.090 167.870 165.560 166.650  166.6500  52456400
## 52  4/21/2023 165.050 166.450 164.490 165.020  165.0200  58337300
## 53  4/24/2023 165.000 165.600 163.890 165.330  165.3300  41949600
## 54  4/25/2023 165.190 166.310 163.730 163.770  163.7700  48714100
## 55  4/26/2023 163.060 165.280 162.800 163.760  163.7600  45498800
## 56  4/27/2023 165.190 168.560 165.190 168.410  168.4100  64902300
## 57  4/28/2023 168.490 169.850 167.880 169.680  169.6800  55209200
## 58   5/1/2023 169.280 170.450 168.640 169.590  169.5900  52472900
## 59   5/2/2023 170.090 170.350 167.540 168.540  168.5400  48425700
## 60   5/3/2023 169.500 170.920 167.160 167.450  167.4500  65136000
## 61   5/4/2023 164.890 167.040 164.310 165.790  165.7900  81235400
## 62   5/5/2023 170.980 174.300 170.760 173.570  173.5700 113316400
## 63   2/7/2023 260.530 268.770 260.080 267.560  266.8915  50841400
## 64   2/8/2023 273.200 276.760 266.210 266.730  266.0636  54686000
## 65   2/9/2023 273.800 273.980 262.800 263.620  262.9614  42375100
## 66  2/10/2023 261.530 264.090 260.660 263.100  262.4427  25818500
## 67  2/13/2023 267.640 274.600 267.150 271.320  270.6421  44630900
## 68  2/14/2023 272.670 274.970 269.280 272.170  271.4900  37047900
## 69  2/15/2023 268.320 270.730 266.180 269.320  269.3200  28922400
## 70  2/16/2023 264.020 266.740 261.900 262.150  262.1500  29603600
## 71  2/17/2023 259.390 260.090 256.000 258.060  258.0600  30000100
## 72  2/21/2023 254.480 255.490 251.590 252.670  252.6700  28397400
## 73  2/22/2023 254.090 254.340 250.340 251.510  251.5100  22491100
## 74  2/23/2023 255.560 256.840 250.480 254.770  254.7700  29219100
## 75  2/24/2023 249.960 251.000 248.100 249.220  249.2200  24990900
## 76  2/27/2023 252.460 252.820 249.390 250.160  250.1600  21190000
## 77  2/28/2023 249.070 251.490 248.730 249.420  249.4200  22491000
## 78   3/1/2023 250.760 250.930 245.790 246.270  246.2700  27565300
## 79   3/2/2023 246.550 251.400 245.610 251.110  251.1100  24808200
## 80   3/3/2023 252.190 255.620 251.390 255.290  255.2900  30760100
## 81   3/6/2023 256.430 260.120 255.980 256.870  256.8700  24109800
## 82   3/7/2023 256.300 257.690 253.390 254.150  254.1500  21473200
## 83   3/8/2023 254.040 254.540 250.810 253.700  253.7000  17340200
## 84   3/9/2023 255.820 259.560 251.580 252.320  252.3200  26653400
## 85  3/10/2023 251.080 252.790 247.600 248.590  248.5900  28333900
## 86  3/13/2023 247.400 257.910 245.730 253.920  253.9200  33339700
## 87  3/14/2023 256.750 261.070 255.860 260.790  260.7900  33620300
## 88  3/15/2023 259.980 266.480 259.210 265.440  265.4400  46028000
## 89  3/16/2023 265.210 276.560 263.280 276.200  276.2000  54768800
## 90  3/17/2023 278.260 283.330 276.320 279.430  279.4300  69527400
## 91  3/20/2023 276.980 277.480 269.850 272.230  272.2300  43466600
## 92  3/21/2023 274.880 275.000 269.520 273.780  273.7800  34558700
## 93  3/22/2023 273.400 281.040 272.180 272.290  272.2900  34873300
## 94  3/23/2023 277.940 281.060 275.200 277.660  277.6600  36610900
## 95  3/24/2023 277.240 280.630 275.280 280.570  280.5700  28172000
## 96  3/27/2023 280.500 281.460 275.520 276.380  276.3800  26840200
## 97  3/28/2023 275.790 276.140 272.050 275.230  275.2300  21878600
## 98  3/29/2023 278.960 281.140 278.410 280.510  280.5100  25087000
## 99  3/30/2023 284.230 284.460 281.480 284.050  284.0500  25053400
## 100 3/31/2023 283.730 289.270 283.000 288.300  288.3000  32766000
## 101  4/3/2023 286.520 288.270 283.950 287.230  287.2300  24883300
## 102  4/4/2023 287.230 290.450 285.670 287.180  287.1800  25824300
## 103  4/5/2023 285.850 287.150 282.920 284.340  284.3400  22064800
## 104  4/6/2023 283.210 292.080 282.030 291.600  291.6000  29770300
## 105 4/10/2023 289.210 289.600 284.710 289.390  289.3900  23103000
## 106 4/11/2023 285.750 285.980 281.640 282.830  282.8300  27276600
## 107 4/12/2023 284.790 287.010 281.960 283.490  283.4900  27403400
## 108 4/13/2023 283.590 289.900 283.170 289.840  289.8400  24222700
## 109 4/14/2023 287.000 288.480 283.690 286.140  286.1400  20987900
## 110 4/17/2023 289.930 291.600 286.160 288.800  288.8000  23836200
## 111 4/18/2023 291.570 291.760 287.010 288.370  288.3700  20161800
## 112 4/19/2023 285.990 289.050 284.540 288.450  288.4500  17150300
## 113 4/20/2023 285.250 289.030 285.080 286.110  286.1100  23244400
## 114 4/21/2023 285.010 286.270 283.060 285.760  285.7600  21676400
## 115 4/24/2023 282.090 284.950 278.720 281.770  281.7700  26611000
## 116 4/25/2023 279.510 281.600 275.370 275.420  275.4200  45772200
## 117 4/26/2023 296.700 299.570 292.730 295.370  295.3700  64599200
## 118 4/27/2023 295.970 305.200 295.250 304.830  304.8300  46462600
## 119 4/28/2023 304.010 308.930 303.310 307.260  307.2600  36446700
## 120  5/1/2023 306.970 308.600 305.150 305.560  305.5600  21294100
## 121  5/2/2023 307.760 309.180 303.910 305.410  305.4100  26404400
## 122  5/3/2023 306.620 308.610 304.090 304.400  304.4000  22360800
## 123  5/4/2023 306.240 307.760 303.400 305.410  305.4100  22519900
## 124  5/5/2023 305.720 311.970 304.270 310.650  310.6500  28181200
## 125  2/7/2023 358.510 364.180 354.180 362.950  362.9500   6289400
## 126  2/8/2023 360.020 368.190 358.310 366.830  366.8300   6253200
## 127  2/9/2023 372.410 373.830 361.740 362.500  362.5000   6901100
## 128 2/10/2023 359.160 362.140 347.140 347.360  347.3600   7291100
## 129 2/13/2023 349.500 359.700 344.250 358.570  358.5700   7134400
## 130 2/14/2023 357.550 363.750 353.400 359.960  359.9600   4624800
## 131 2/15/2023 356.630 362.880 354.240 361.420  361.4200   3966000
## 132 2/16/2023 355.000 361.500 350.310 350.710  350.7100   5215700
## 133 2/17/2023 347.910 349.000 342.440 347.960  347.9600   5294700
## 134 2/21/2023 342.850 344.130 336.420 337.500  337.5000   5710300
## 135 2/22/2023 337.500 341.910 332.820 334.880  334.8800   4546200
## 136 2/23/2023 331.230 331.280 314.300 323.650  323.6500  13238700
## 137 2/24/2023 319.300 321.500 314.520 317.150  317.1500   6830700
## 138 2/27/2023 323.870 330.000 322.120 323.030  323.0300   6142600
## 139 2/28/2023 323.700 327.620 321.170 322.130  322.1300   3676100
## 140  3/1/2023 321.550 326.600 312.360 313.480  313.4800   4911300
## 141  3/2/2023 310.960 315.570 310.380 311.880  311.8800   4911000
## 142  3/3/2023 315.450 317.490 310.820 315.180  315.1800   5953300
## 143  3/6/2023 317.000 323.300 311.840 312.030  312.0300   5660700
## 144  3/7/2023 312.680 314.300 306.620 308.470  308.4700   4553100
## 145  3/8/2023 309.290 311.830 305.750 311.790  311.7900   3479500
## 146  3/9/2023 312.080 312.510 294.880 297.780  297.7800   7443400
## 147 3/10/2023 297.900 298.790 289.000 292.760  292.7600   5759300
## 148 3/13/2023 287.340 299.240 285.330 293.510  293.5100   6292400
## 149 3/14/2023 295.970 297.450 290.310 294.940  294.9400   5956700
## 150 3/15/2023 292.510 306.310 292.280 303.790  303.7900   9215300
## 151 3/16/2023 304.750 316.600 301.710 310.060  310.0600   7903700
## 152 3/17/2023 310.060 310.760 300.000 303.500  303.5000   6918800
## 153 3/20/2023 299.790 307.500 296.000 305.130  305.1300   5113400
## 154 3/21/2023 306.320 307.920 300.430 305.790  305.7900   4886300
## 155 3/22/2023 306.310 306.450 293.540 293.900  293.9000   5808000
## 156 3/23/2023 304.680 322.780 304.140 320.370  320.3700  15653300
## 157 3/24/2023 320.630 331.830 320.630 328.390  328.3900  12991700
## 158 3/27/2023 327.550 336.440 324.410 327.660  327.6600   8625800
## 159 3/28/2023 326.060 333.320 321.280 323.520  323.5200   6489400
## 160 3/29/2023 326.290 332.850 325.730 332.030  332.0300   6287300
## 161 3/30/2023 340.270 343.290 335.300 338.430  338.4300   7131500
## 162 3/31/2023 340.050 345.840 337.200 345.480  345.4800   5610200
## 163  4/3/2023 341.830 348.580 340.400 348.280  348.2800   4413700
## 164  4/4/2023 348.490 349.800 343.950 346.750  346.7500   3298100
## 165  4/5/2023 345.300 345.430 336.250 342.350  342.3500   4205500
## 166  4/6/2023 339.340 340.480 332.630 339.330  339.3300   4660500
## 167 4/10/2023 335.270 339.880 333.360 338.990  338.9900   2657900
## 168 4/11/2023 343.450 347.140 337.640 338.210  338.2100   4044800
## 169 4/12/2023 340.810 342.800 330.040 331.030  331.0300   3965400
## 170 4/13/2023 339.990 346.430 338.750 346.190  346.1900   7406400
## 171 4/14/2023 342.940 344.850 336.410 338.630  338.6300   5350500
## 172 4/17/2023 338.000 338.390 327.500 332.720  332.7200   6136000
## 173 4/18/2023 335.000 337.190 330.500 333.700  333.7000  17944500
## 174 4/19/2023 324.210 325.750 316.100 323.120  323.1200  22128300
## 175 4/20/2023 320.390 331.430 318.330 325.350  325.3500   9947800
## 176 4/21/2023 323.000 328.290 319.500 327.980  327.9800   6348000
## 177 4/24/2023 330.200 334.660 326.750 329.020  329.0200   5586600
## 178 4/25/2023 328.500 328.660 321.100 322.550  322.5500   5426600
## 179 4/26/2023 321.360 325.900 320.470 321.150  321.1500   4623200
## 180 4/27/2023 324.300 327.450 317.440 325.850  325.8500   5618800
## 181 4/28/2023 325.240 330.810 324.000 329.930  329.9300   4221900
## 182  5/1/2023 329.440 331.230 318.090 324.120  324.1200   5341500
## 183  5/2/2023 325.000 326.070 315.620 317.550  317.5500   4318600
## 184  5/3/2023 317.550 324.620 315.850 319.300  319.3000   5064100
## 185  5/4/2023 319.010 323.610 317.950 320.780  320.7800   3879700
## 186  5/5/2023 323.610 324.150 319.440 322.760  322.7600   3988600
## 187  2/7/2023 103.630 108.670 103.548 108.040  108.0400  33738800
## 188  2/8/2023 102.690 103.580  98.455 100.000  100.0000  73546000
## 189  2/9/2023 100.540 100.610  93.860  95.460   95.4600  97798600
## 190 2/10/2023  95.740  97.020  94.530  94.860   94.8600  49325300
## 191 2/13/2023  95.010  95.350  94.050  95.000   95.0000  43116600
## 192 2/14/2023  94.660  95.175  92.650  94.950   94.9500  42513100
## 193 2/15/2023  94.740  97.340  94.360  97.100   97.1000  36964500
## 194 2/16/2023  95.540  97.880  94.970  95.780   95.7800  35642100
## 195 2/17/2023  95.070  95.750  93.450  94.590   94.5900  31095100
## 196 2/21/2023  93.240  93.415  92.000  92.050   92.0500  28367200
## 197 2/22/2023  91.934  92.360  90.870  91.800   91.8000  29891100
## 198 2/23/2023  92.130  92.130  90.010  91.070   91.0700  32423700
## 199 2/24/2023  89.630  90.130  88.860  89.350   89.3500  31295600
## 200 2/27/2023  90.090  90.450  89.610  90.100   90.1000  22724300
## 201 2/28/2023  89.540  91.450  89.520  90.300   90.3000  30546900
## 202  3/1/2023  90.160  91.200  89.850  90.510   90.5100  26323900
## 203  3/2/2023  89.860  92.480  89.770  92.310   92.3100  23328600
## 204  3/3/2023  92.740  94.110  92.660  94.020   94.0200  30242500
## 205  3/6/2023  94.360  96.300  94.300  95.580   95.5800  28288200
## 206  3/7/2023  95.420  96.090  93.844  94.170   94.1700  24101500
## 207  3/8/2023  94.405  96.240  94.405  94.650   94.6500  25395200
## 208  3/9/2023  94.490  95.920  92.355  92.660   92.6600  24438900
## 209 3/10/2023  92.500  93.180  90.800  91.010   91.0100  32850100
## 210 3/13/2023  90.565  93.080  89.940  91.660   91.6600  31508600
## 211 3/14/2023  93.070  94.830  92.780  94.250   94.2500  32303900
## 212 3/15/2023  93.540  97.250  93.040  96.550   96.5500  38367300
## 213 3/16/2023  96.570 101.970  95.870 101.070  101.0700  54499500
## 214 3/17/2023 100.840 103.490 100.750 102.460  102.4600  76140300
## 215 3/20/2023 101.060 102.580 100.790 101.930  101.9300  26033900
## 216 3/21/2023 101.980 105.960 101.860 105.840  105.8400  33122800
## 217 3/22/2023 105.140 107.510 104.210 104.220  104.2200  32336900
## 218 3/23/2023 105.890 107.101 105.410 106.260  106.2600  31385800
## 219 3/24/2023 105.740 106.160 104.740 106.060  106.0600  25245000
## 220 3/27/2023 105.320 105.400 102.630 103.060  103.0600  25393400
## 221 3/28/2023 103.000 103.000 100.280 101.360  101.3600  24913500
## 222 3/29/2023 102.720 102.820 101.030 101.900  101.9000  26148300
## 223 3/30/2023 101.440 101.610 100.290 101.320  101.3200  25009800
## 224 3/31/2023 101.710 104.190 101.440 104.000  104.0000  28086500
## 225  4/3/2023 102.670 104.950 102.380 104.910  104.9100  20719900
## 226  4/4/2023 104.840 106.100 104.600 105.120  105.1200  20377200
## 227  4/5/2023 106.120 106.540 104.102 104.950  104.9500  21864200
## 228  4/6/2023 105.770 109.630 104.815 108.900  108.9000  34684200
## 229 4/10/2023 107.390 107.970 105.600 106.950  106.9500  19741500
## 230 4/11/2023 106.920 107.220 105.280 106.120  106.1200  18721300
## 231 4/12/2023 107.390 107.587 104.970 105.220  105.2200  22761600
## 232 4/13/2023 106.470 108.265 106.440 108.190  108.1900  21650700
## 233 4/14/2023 107.690 109.580 107.590 109.460  109.4600  20745400
## 234 4/17/2023 105.430 106.710 105.320 106.420  106.4200  29043400
## 235 4/18/2023 107.000 107.050 104.780 105.120  105.1200  17641400
## 236 4/19/2023 104.215 105.725 103.800 105.020  105.0200  16732000
## 237 4/20/2023 104.650 106.888 104.640 105.900  105.9000  22515300
## 238 4/21/2023 106.090 106.640 105.485 105.910  105.9100  22369800
## 239 4/24/2023 106.050 107.320 105.360 106.780  106.7800  21410900
## 240 4/25/2023 106.610 107.440 104.560 104.610  104.6100  31408100
## 241 4/26/2023 105.560 107.020 103.270 104.450  104.4500  37068200
## 242 4/27/2023 105.230 109.150 104.420 108.370  108.3700  38235200
## 243 4/28/2023 107.800 108.290 106.040 108.220  108.2200  23957900
## 244  5/1/2023 107.720 108.680 107.500 107.710  107.7100  20926300
## 245  5/2/2023 107.660 107.730 104.500 105.980  105.9800  20343100
## 246  5/3/2023 106.220 108.130 105.620 106.120  106.1200  17116300
## 247  5/4/2023 106.160 106.300 104.700 105.210  105.2100  19780600
## 248  5/5/2023 105.320 106.440 104.739 106.215  106.2150  20705300
data3 = data2$Adj.Close; data3
##   [1] 154.4142 151.6884 150.6400 151.0100 153.8500 153.2000 155.3300 153.7100
##   [9] 152.5500 148.4800 148.9100 149.4000 146.7100 147.9200 147.4100 145.3100
##  [17] 145.9100 151.0300 153.8300 151.6000 152.8700 150.5900 148.5000 150.4700
##  [25] 152.5900 152.9900 155.8500 155.0000 157.4000 159.2800 157.8300 158.9300
##  [33] 160.2500 158.2800 157.6500 160.7700 162.3600 164.9000 166.1700 165.6300
##  [41] 163.7600 164.6600 162.0300 160.8000 160.1000 165.5600 165.2100 165.2300
##  [49] 166.4700 167.6300 166.6500 165.0200 165.3300 163.7700 163.7600 168.4100
##  [57] 169.6800 169.5900 168.5400 167.4500 165.7900 173.5700 266.8915 266.0636
##  [65] 262.9614 262.4427 270.6421 271.4900 269.3200 262.1500 258.0600 252.6700
##  [73] 251.5100 254.7700 249.2200 250.1600 249.4200 246.2700 251.1100 255.2900
##  [81] 256.8700 254.1500 253.7000 252.3200 248.5900 253.9200 260.7900 265.4400
##  [89] 276.2000 279.4300 272.2300 273.7800 272.2900 277.6600 280.5700 276.3800
##  [97] 275.2300 280.5100 284.0500 288.3000 287.2300 287.1800 284.3400 291.6000
## [105] 289.3900 282.8300 283.4900 289.8400 286.1400 288.8000 288.3700 288.4500
## [113] 286.1100 285.7600 281.7700 275.4200 295.3700 304.8300 307.2600 305.5600
## [121] 305.4100 304.4000 305.4100 310.6500 362.9500 366.8300 362.5000 347.3600
## [129] 358.5700 359.9600 361.4200 350.7100 347.9600 337.5000 334.8800 323.6500
## [137] 317.1500 323.0300 322.1300 313.4800 311.8800 315.1800 312.0300 308.4700
## [145] 311.7900 297.7800 292.7600 293.5100 294.9400 303.7900 310.0600 303.5000
## [153] 305.1300 305.7900 293.9000 320.3700 328.3900 327.6600 323.5200 332.0300
## [161] 338.4300 345.4800 348.2800 346.7500 342.3500 339.3300 338.9900 338.2100
## [169] 331.0300 346.1900 338.6300 332.7200 333.7000 323.1200 325.3500 327.9800
## [177] 329.0200 322.5500 321.1500 325.8500 329.9300 324.1200 317.5500 319.3000
## [185] 320.7800 322.7600 108.0400 100.0000  95.4600  94.8600  95.0000  94.9500
## [193]  97.1000  95.7800  94.5900  92.0500  91.8000  91.0700  89.3500  90.1000
## [201]  90.3000  90.5100  92.3100  94.0200  95.5800  94.1700  94.6500  92.6600
## [209]  91.0100  91.6600  94.2500  96.5500 101.0700 102.4600 101.9300 105.8400
## [217] 104.2200 106.2600 106.0600 103.0600 101.3600 101.9000 101.3200 104.0000
## [225] 104.9100 105.1200 104.9500 108.9000 106.9500 106.1200 105.2200 108.1900
## [233] 109.4600 106.4200 105.1200 105.0200 105.9000 105.9100 106.7800 104.6100
## [241] 104.4500 108.3700 108.2200 107.7100 105.9800 106.1200 105.2100 106.2150
# VISUALIZATION
hist(data3)

barplot(data3)

hist(data3, col='blue')

library(survival)

# import of data and variables
data2 = read.csv("financial_Data.csv"); data2
##          Date    Open    High     Low   Close Adj.Close    Volume
## 1    2/7/2023 150.640 155.230 150.640 154.650  154.4142  83322600
## 2    2/8/2023 153.880 154.580 151.170 151.920  151.6884  64120100
## 3    2/9/2023 153.780 154.330 150.420 150.870  150.6400  56007100
## 4   2/10/2023 149.460 151.340 149.220 151.010  151.0100  57450700
## 5   2/13/2023 150.950 154.260 150.920 153.850  153.8500  62199000
## 6   2/14/2023 152.120 153.770 150.860 153.200  153.2000  61707600
## 7   2/15/2023 153.110 155.500 152.880 155.330  155.3300  65573800
## 8   2/16/2023 153.510 156.330 153.350 153.710  153.7100  68167900
## 9   2/17/2023 152.350 153.000 150.850 152.550  152.5500  59144100
## 10  2/21/2023 150.200 151.300 148.410 148.480  148.4800  58867200
## 11  2/22/2023 148.870 149.950 147.160 148.910  148.9100  51011300
## 12  2/23/2023 150.090 150.340 147.240 149.400  149.4000  48394200
## 13  2/24/2023 147.110 147.190 145.720 146.710  146.7100  55469600
## 14  2/27/2023 147.710 149.170 147.450 147.920  147.9200  44998500
## 15  2/28/2023 147.050 149.080 146.830 147.410  147.4100  50547000
## 16   3/1/2023 146.830 147.230 145.010 145.310  145.3100  55479000
## 17   3/2/2023 144.380 146.710 143.900 145.910  145.9100  52238100
## 18   3/3/2023 148.040 151.110 147.330 151.030  151.0300  70732300
## 19   3/6/2023 153.790 156.300 153.460 153.830  153.8300  87558000
## 20   3/7/2023 153.700 154.030 151.130 151.600  151.6000  56182000
## 21   3/8/2023 152.810 153.470 151.830 152.870  152.8700  47204800
## 22   3/9/2023 153.560 154.540 150.230 150.590  150.5900  53833600
## 23  3/10/2023 150.210 150.940 147.610 148.500  148.5000  68572400
## 24  3/13/2023 147.810 153.140 147.700 150.470  150.4700  84457100
## 25  3/14/2023 151.280 153.400 150.100 152.590  152.5900  73695900
## 26  3/15/2023 151.190 153.250 149.920 152.990  152.9900  77167900
## 27  3/16/2023 152.160 156.460 151.640 155.850  155.8500  76161100
## 28  3/17/2023 156.080 156.740 154.280 155.000  155.0000  98944600
## 29  3/20/2023 155.070 157.820 154.150 157.400  157.4000  73641400
## 30  3/21/2023 157.320 159.400 156.540 159.280  159.2800  73938300
## 31  3/22/2023 159.300 162.140 157.810 157.830  157.8300  75701800
## 32  3/23/2023 158.830 161.550 157.680 158.930  158.9300  67622100
## 33  3/24/2023 158.860 160.340 157.850 160.250  160.2500  59196500
## 34  3/27/2023 159.940 160.770 157.870 158.280  158.2800  52390300
## 35  3/28/2023 157.970 158.490 155.980 157.650  157.6500  45992200
## 36  3/29/2023 159.370 161.050 159.350 160.770  160.7700  51305700
## 37  3/30/2023 161.530 162.470 161.270 162.360  162.3600  49501700
## 38  3/31/2023 162.440 165.000 161.910 164.900  164.9000  68749800
## 39   4/3/2023 164.270 166.290 164.220 166.170  166.1700  56976200
## 40   4/4/2023 166.600 166.840 165.110 165.630  165.6300  46278300
## 41   4/5/2023 164.740 165.050 161.800 163.760  163.7600  51511700
## 42   4/6/2023 162.430 164.960 162.000 164.660  164.6600  45390100
## 43  4/10/2023 161.420 162.030 160.080 162.030  162.0300  47716900
## 44  4/11/2023 162.350 162.360 160.510 160.800  160.8000  47644200
## 45  4/12/2023 161.220 162.060 159.780 160.100  160.1000  50133100
## 46  4/13/2023 161.630 165.800 161.420 165.560  165.5600  68445600
## 47  4/14/2023 164.590 166.320 163.820 165.210  165.2100  49386500
## 48  4/17/2023 165.090 165.390 164.030 165.230  165.2300  41516200
## 49  4/18/2023 166.100 167.410 165.650 166.470  166.4700  49923000
## 50  4/19/2023 165.800 168.160 165.540 167.630  167.6300  47720200
## 51  4/20/2023 166.090 167.870 165.560 166.650  166.6500  52456400
## 52  4/21/2023 165.050 166.450 164.490 165.020  165.0200  58337300
## 53  4/24/2023 165.000 165.600 163.890 165.330  165.3300  41949600
## 54  4/25/2023 165.190 166.310 163.730 163.770  163.7700  48714100
## 55  4/26/2023 163.060 165.280 162.800 163.760  163.7600  45498800
## 56  4/27/2023 165.190 168.560 165.190 168.410  168.4100  64902300
## 57  4/28/2023 168.490 169.850 167.880 169.680  169.6800  55209200
## 58   5/1/2023 169.280 170.450 168.640 169.590  169.5900  52472900
## 59   5/2/2023 170.090 170.350 167.540 168.540  168.5400  48425700
## 60   5/3/2023 169.500 170.920 167.160 167.450  167.4500  65136000
## 61   5/4/2023 164.890 167.040 164.310 165.790  165.7900  81235400
## 62   5/5/2023 170.980 174.300 170.760 173.570  173.5700 113316400
## 63   2/7/2023 260.530 268.770 260.080 267.560  266.8915  50841400
## 64   2/8/2023 273.200 276.760 266.210 266.730  266.0636  54686000
## 65   2/9/2023 273.800 273.980 262.800 263.620  262.9614  42375100
## 66  2/10/2023 261.530 264.090 260.660 263.100  262.4427  25818500
## 67  2/13/2023 267.640 274.600 267.150 271.320  270.6421  44630900
## 68  2/14/2023 272.670 274.970 269.280 272.170  271.4900  37047900
## 69  2/15/2023 268.320 270.730 266.180 269.320  269.3200  28922400
## 70  2/16/2023 264.020 266.740 261.900 262.150  262.1500  29603600
## 71  2/17/2023 259.390 260.090 256.000 258.060  258.0600  30000100
## 72  2/21/2023 254.480 255.490 251.590 252.670  252.6700  28397400
## 73  2/22/2023 254.090 254.340 250.340 251.510  251.5100  22491100
## 74  2/23/2023 255.560 256.840 250.480 254.770  254.7700  29219100
## 75  2/24/2023 249.960 251.000 248.100 249.220  249.2200  24990900
## 76  2/27/2023 252.460 252.820 249.390 250.160  250.1600  21190000
## 77  2/28/2023 249.070 251.490 248.730 249.420  249.4200  22491000
## 78   3/1/2023 250.760 250.930 245.790 246.270  246.2700  27565300
## 79   3/2/2023 246.550 251.400 245.610 251.110  251.1100  24808200
## 80   3/3/2023 252.190 255.620 251.390 255.290  255.2900  30760100
## 81   3/6/2023 256.430 260.120 255.980 256.870  256.8700  24109800
## 82   3/7/2023 256.300 257.690 253.390 254.150  254.1500  21473200
## 83   3/8/2023 254.040 254.540 250.810 253.700  253.7000  17340200
## 84   3/9/2023 255.820 259.560 251.580 252.320  252.3200  26653400
## 85  3/10/2023 251.080 252.790 247.600 248.590  248.5900  28333900
## 86  3/13/2023 247.400 257.910 245.730 253.920  253.9200  33339700
## 87  3/14/2023 256.750 261.070 255.860 260.790  260.7900  33620300
## 88  3/15/2023 259.980 266.480 259.210 265.440  265.4400  46028000
## 89  3/16/2023 265.210 276.560 263.280 276.200  276.2000  54768800
## 90  3/17/2023 278.260 283.330 276.320 279.430  279.4300  69527400
## 91  3/20/2023 276.980 277.480 269.850 272.230  272.2300  43466600
## 92  3/21/2023 274.880 275.000 269.520 273.780  273.7800  34558700
## 93  3/22/2023 273.400 281.040 272.180 272.290  272.2900  34873300
## 94  3/23/2023 277.940 281.060 275.200 277.660  277.6600  36610900
## 95  3/24/2023 277.240 280.630 275.280 280.570  280.5700  28172000
## 96  3/27/2023 280.500 281.460 275.520 276.380  276.3800  26840200
## 97  3/28/2023 275.790 276.140 272.050 275.230  275.2300  21878600
## 98  3/29/2023 278.960 281.140 278.410 280.510  280.5100  25087000
## 99  3/30/2023 284.230 284.460 281.480 284.050  284.0500  25053400
## 100 3/31/2023 283.730 289.270 283.000 288.300  288.3000  32766000
## 101  4/3/2023 286.520 288.270 283.950 287.230  287.2300  24883300
## 102  4/4/2023 287.230 290.450 285.670 287.180  287.1800  25824300
## 103  4/5/2023 285.850 287.150 282.920 284.340  284.3400  22064800
## 104  4/6/2023 283.210 292.080 282.030 291.600  291.6000  29770300
## 105 4/10/2023 289.210 289.600 284.710 289.390  289.3900  23103000
## 106 4/11/2023 285.750 285.980 281.640 282.830  282.8300  27276600
## 107 4/12/2023 284.790 287.010 281.960 283.490  283.4900  27403400
## 108 4/13/2023 283.590 289.900 283.170 289.840  289.8400  24222700
## 109 4/14/2023 287.000 288.480 283.690 286.140  286.1400  20987900
## 110 4/17/2023 289.930 291.600 286.160 288.800  288.8000  23836200
## 111 4/18/2023 291.570 291.760 287.010 288.370  288.3700  20161800
## 112 4/19/2023 285.990 289.050 284.540 288.450  288.4500  17150300
## 113 4/20/2023 285.250 289.030 285.080 286.110  286.1100  23244400
## 114 4/21/2023 285.010 286.270 283.060 285.760  285.7600  21676400
## 115 4/24/2023 282.090 284.950 278.720 281.770  281.7700  26611000
## 116 4/25/2023 279.510 281.600 275.370 275.420  275.4200  45772200
## 117 4/26/2023 296.700 299.570 292.730 295.370  295.3700  64599200
## 118 4/27/2023 295.970 305.200 295.250 304.830  304.8300  46462600
## 119 4/28/2023 304.010 308.930 303.310 307.260  307.2600  36446700
## 120  5/1/2023 306.970 308.600 305.150 305.560  305.5600  21294100
## 121  5/2/2023 307.760 309.180 303.910 305.410  305.4100  26404400
## 122  5/3/2023 306.620 308.610 304.090 304.400  304.4000  22360800
## 123  5/4/2023 306.240 307.760 303.400 305.410  305.4100  22519900
## 124  5/5/2023 305.720 311.970 304.270 310.650  310.6500  28181200
## 125  2/7/2023 358.510 364.180 354.180 362.950  362.9500   6289400
## 126  2/8/2023 360.020 368.190 358.310 366.830  366.8300   6253200
## 127  2/9/2023 372.410 373.830 361.740 362.500  362.5000   6901100
## 128 2/10/2023 359.160 362.140 347.140 347.360  347.3600   7291100
## 129 2/13/2023 349.500 359.700 344.250 358.570  358.5700   7134400
## 130 2/14/2023 357.550 363.750 353.400 359.960  359.9600   4624800
## 131 2/15/2023 356.630 362.880 354.240 361.420  361.4200   3966000
## 132 2/16/2023 355.000 361.500 350.310 350.710  350.7100   5215700
## 133 2/17/2023 347.910 349.000 342.440 347.960  347.9600   5294700
## 134 2/21/2023 342.850 344.130 336.420 337.500  337.5000   5710300
## 135 2/22/2023 337.500 341.910 332.820 334.880  334.8800   4546200
## 136 2/23/2023 331.230 331.280 314.300 323.650  323.6500  13238700
## 137 2/24/2023 319.300 321.500 314.520 317.150  317.1500   6830700
## 138 2/27/2023 323.870 330.000 322.120 323.030  323.0300   6142600
## 139 2/28/2023 323.700 327.620 321.170 322.130  322.1300   3676100
## 140  3/1/2023 321.550 326.600 312.360 313.480  313.4800   4911300
## 141  3/2/2023 310.960 315.570 310.380 311.880  311.8800   4911000
## 142  3/3/2023 315.450 317.490 310.820 315.180  315.1800   5953300
## 143  3/6/2023 317.000 323.300 311.840 312.030  312.0300   5660700
## 144  3/7/2023 312.680 314.300 306.620 308.470  308.4700   4553100
## 145  3/8/2023 309.290 311.830 305.750 311.790  311.7900   3479500
## 146  3/9/2023 312.080 312.510 294.880 297.780  297.7800   7443400
## 147 3/10/2023 297.900 298.790 289.000 292.760  292.7600   5759300
## 148 3/13/2023 287.340 299.240 285.330 293.510  293.5100   6292400
## 149 3/14/2023 295.970 297.450 290.310 294.940  294.9400   5956700
## 150 3/15/2023 292.510 306.310 292.280 303.790  303.7900   9215300
## 151 3/16/2023 304.750 316.600 301.710 310.060  310.0600   7903700
## 152 3/17/2023 310.060 310.760 300.000 303.500  303.5000   6918800
## 153 3/20/2023 299.790 307.500 296.000 305.130  305.1300   5113400
## 154 3/21/2023 306.320 307.920 300.430 305.790  305.7900   4886300
## 155 3/22/2023 306.310 306.450 293.540 293.900  293.9000   5808000
## 156 3/23/2023 304.680 322.780 304.140 320.370  320.3700  15653300
## 157 3/24/2023 320.630 331.830 320.630 328.390  328.3900  12991700
## 158 3/27/2023 327.550 336.440 324.410 327.660  327.6600   8625800
## 159 3/28/2023 326.060 333.320 321.280 323.520  323.5200   6489400
## 160 3/29/2023 326.290 332.850 325.730 332.030  332.0300   6287300
## 161 3/30/2023 340.270 343.290 335.300 338.430  338.4300   7131500
## 162 3/31/2023 340.050 345.840 337.200 345.480  345.4800   5610200
## 163  4/3/2023 341.830 348.580 340.400 348.280  348.2800   4413700
## 164  4/4/2023 348.490 349.800 343.950 346.750  346.7500   3298100
## 165  4/5/2023 345.300 345.430 336.250 342.350  342.3500   4205500
## 166  4/6/2023 339.340 340.480 332.630 339.330  339.3300   4660500
## 167 4/10/2023 335.270 339.880 333.360 338.990  338.9900   2657900
## 168 4/11/2023 343.450 347.140 337.640 338.210  338.2100   4044800
## 169 4/12/2023 340.810 342.800 330.040 331.030  331.0300   3965400
## 170 4/13/2023 339.990 346.430 338.750 346.190  346.1900   7406400
## 171 4/14/2023 342.940 344.850 336.410 338.630  338.6300   5350500
## 172 4/17/2023 338.000 338.390 327.500 332.720  332.7200   6136000
## 173 4/18/2023 335.000 337.190 330.500 333.700  333.7000  17944500
## 174 4/19/2023 324.210 325.750 316.100 323.120  323.1200  22128300
## 175 4/20/2023 320.390 331.430 318.330 325.350  325.3500   9947800
## 176 4/21/2023 323.000 328.290 319.500 327.980  327.9800   6348000
## 177 4/24/2023 330.200 334.660 326.750 329.020  329.0200   5586600
## 178 4/25/2023 328.500 328.660 321.100 322.550  322.5500   5426600
## 179 4/26/2023 321.360 325.900 320.470 321.150  321.1500   4623200
## 180 4/27/2023 324.300 327.450 317.440 325.850  325.8500   5618800
## 181 4/28/2023 325.240 330.810 324.000 329.930  329.9300   4221900
## 182  5/1/2023 329.440 331.230 318.090 324.120  324.1200   5341500
## 183  5/2/2023 325.000 326.070 315.620 317.550  317.5500   4318600
## 184  5/3/2023 317.550 324.620 315.850 319.300  319.3000   5064100
## 185  5/4/2023 319.010 323.610 317.950 320.780  320.7800   3879700
## 186  5/5/2023 323.610 324.150 319.440 322.760  322.7600   3988600
## 187  2/7/2023 103.630 108.670 103.548 108.040  108.0400  33738800
## 188  2/8/2023 102.690 103.580  98.455 100.000  100.0000  73546000
## 189  2/9/2023 100.540 100.610  93.860  95.460   95.4600  97798600
## 190 2/10/2023  95.740  97.020  94.530  94.860   94.8600  49325300
## 191 2/13/2023  95.010  95.350  94.050  95.000   95.0000  43116600
## 192 2/14/2023  94.660  95.175  92.650  94.950   94.9500  42513100
## 193 2/15/2023  94.740  97.340  94.360  97.100   97.1000  36964500
## 194 2/16/2023  95.540  97.880  94.970  95.780   95.7800  35642100
## 195 2/17/2023  95.070  95.750  93.450  94.590   94.5900  31095100
## 196 2/21/2023  93.240  93.415  92.000  92.050   92.0500  28367200
## 197 2/22/2023  91.934  92.360  90.870  91.800   91.8000  29891100
## 198 2/23/2023  92.130  92.130  90.010  91.070   91.0700  32423700
## 199 2/24/2023  89.630  90.130  88.860  89.350   89.3500  31295600
## 200 2/27/2023  90.090  90.450  89.610  90.100   90.1000  22724300
## 201 2/28/2023  89.540  91.450  89.520  90.300   90.3000  30546900
## 202  3/1/2023  90.160  91.200  89.850  90.510   90.5100  26323900
## 203  3/2/2023  89.860  92.480  89.770  92.310   92.3100  23328600
## 204  3/3/2023  92.740  94.110  92.660  94.020   94.0200  30242500
## 205  3/6/2023  94.360  96.300  94.300  95.580   95.5800  28288200
## 206  3/7/2023  95.420  96.090  93.844  94.170   94.1700  24101500
## 207  3/8/2023  94.405  96.240  94.405  94.650   94.6500  25395200
## 208  3/9/2023  94.490  95.920  92.355  92.660   92.6600  24438900
## 209 3/10/2023  92.500  93.180  90.800  91.010   91.0100  32850100
## 210 3/13/2023  90.565  93.080  89.940  91.660   91.6600  31508600
## 211 3/14/2023  93.070  94.830  92.780  94.250   94.2500  32303900
## 212 3/15/2023  93.540  97.250  93.040  96.550   96.5500  38367300
## 213 3/16/2023  96.570 101.970  95.870 101.070  101.0700  54499500
## 214 3/17/2023 100.840 103.490 100.750 102.460  102.4600  76140300
## 215 3/20/2023 101.060 102.580 100.790 101.930  101.9300  26033900
## 216 3/21/2023 101.980 105.960 101.860 105.840  105.8400  33122800
## 217 3/22/2023 105.140 107.510 104.210 104.220  104.2200  32336900
## 218 3/23/2023 105.890 107.101 105.410 106.260  106.2600  31385800
## 219 3/24/2023 105.740 106.160 104.740 106.060  106.0600  25245000
## 220 3/27/2023 105.320 105.400 102.630 103.060  103.0600  25393400
## 221 3/28/2023 103.000 103.000 100.280 101.360  101.3600  24913500
## 222 3/29/2023 102.720 102.820 101.030 101.900  101.9000  26148300
## 223 3/30/2023 101.440 101.610 100.290 101.320  101.3200  25009800
## 224 3/31/2023 101.710 104.190 101.440 104.000  104.0000  28086500
## 225  4/3/2023 102.670 104.950 102.380 104.910  104.9100  20719900
## 226  4/4/2023 104.840 106.100 104.600 105.120  105.1200  20377200
## 227  4/5/2023 106.120 106.540 104.102 104.950  104.9500  21864200
## 228  4/6/2023 105.770 109.630 104.815 108.900  108.9000  34684200
## 229 4/10/2023 107.390 107.970 105.600 106.950  106.9500  19741500
## 230 4/11/2023 106.920 107.220 105.280 106.120  106.1200  18721300
## 231 4/12/2023 107.390 107.587 104.970 105.220  105.2200  22761600
## 232 4/13/2023 106.470 108.265 106.440 108.190  108.1900  21650700
## 233 4/14/2023 107.690 109.580 107.590 109.460  109.4600  20745400
## 234 4/17/2023 105.430 106.710 105.320 106.420  106.4200  29043400
## 235 4/18/2023 107.000 107.050 104.780 105.120  105.1200  17641400
## 236 4/19/2023 104.215 105.725 103.800 105.020  105.0200  16732000
## 237 4/20/2023 104.650 106.888 104.640 105.900  105.9000  22515300
## 238 4/21/2023 106.090 106.640 105.485 105.910  105.9100  22369800
## 239 4/24/2023 106.050 107.320 105.360 106.780  106.7800  21410900
## 240 4/25/2023 106.610 107.440 104.560 104.610  104.6100  31408100
## 241 4/26/2023 105.560 107.020 103.270 104.450  104.4500  37068200
## 242 4/27/2023 105.230 109.150 104.420 108.370  108.3700  38235200
## 243 4/28/2023 107.800 108.290 106.040 108.220  108.2200  23957900
## 244  5/1/2023 107.720 108.680 107.500 107.710  107.7100  20926300
## 245  5/2/2023 107.660 107.730 104.500 105.980  105.9800  20343100
## 246  5/3/2023 106.220 108.130 105.620 106.120  106.1200  17116300
## 247  5/4/2023 106.160 106.300 104.700 105.210  105.2100  19780600
## 248  5/5/2023 105.320 106.440 104.739 106.215  106.2150  20705300
d = data2$Close
h = data2$High
g = data2$Low

# creating data frame
data.frame(d, h, g)
##           d       h       g
## 1   154.650 155.230 150.640
## 2   151.920 154.580 151.170
## 3   150.870 154.330 150.420
## 4   151.010 151.340 149.220
## 5   153.850 154.260 150.920
## 6   153.200 153.770 150.860
## 7   155.330 155.500 152.880
## 8   153.710 156.330 153.350
## 9   152.550 153.000 150.850
## 10  148.480 151.300 148.410
## 11  148.910 149.950 147.160
## 12  149.400 150.340 147.240
## 13  146.710 147.190 145.720
## 14  147.920 149.170 147.450
## 15  147.410 149.080 146.830
## 16  145.310 147.230 145.010
## 17  145.910 146.710 143.900
## 18  151.030 151.110 147.330
## 19  153.830 156.300 153.460
## 20  151.600 154.030 151.130
## 21  152.870 153.470 151.830
## 22  150.590 154.540 150.230
## 23  148.500 150.940 147.610
## 24  150.470 153.140 147.700
## 25  152.590 153.400 150.100
## 26  152.990 153.250 149.920
## 27  155.850 156.460 151.640
## 28  155.000 156.740 154.280
## 29  157.400 157.820 154.150
## 30  159.280 159.400 156.540
## 31  157.830 162.140 157.810
## 32  158.930 161.550 157.680
## 33  160.250 160.340 157.850
## 34  158.280 160.770 157.870
## 35  157.650 158.490 155.980
## 36  160.770 161.050 159.350
## 37  162.360 162.470 161.270
## 38  164.900 165.000 161.910
## 39  166.170 166.290 164.220
## 40  165.630 166.840 165.110
## 41  163.760 165.050 161.800
## 42  164.660 164.960 162.000
## 43  162.030 162.030 160.080
## 44  160.800 162.360 160.510
## 45  160.100 162.060 159.780
## 46  165.560 165.800 161.420
## 47  165.210 166.320 163.820
## 48  165.230 165.390 164.030
## 49  166.470 167.410 165.650
## 50  167.630 168.160 165.540
## 51  166.650 167.870 165.560
## 52  165.020 166.450 164.490
## 53  165.330 165.600 163.890
## 54  163.770 166.310 163.730
## 55  163.760 165.280 162.800
## 56  168.410 168.560 165.190
## 57  169.680 169.850 167.880
## 58  169.590 170.450 168.640
## 59  168.540 170.350 167.540
## 60  167.450 170.920 167.160
## 61  165.790 167.040 164.310
## 62  173.570 174.300 170.760
## 63  267.560 268.770 260.080
## 64  266.730 276.760 266.210
## 65  263.620 273.980 262.800
## 66  263.100 264.090 260.660
## 67  271.320 274.600 267.150
## 68  272.170 274.970 269.280
## 69  269.320 270.730 266.180
## 70  262.150 266.740 261.900
## 71  258.060 260.090 256.000
## 72  252.670 255.490 251.590
## 73  251.510 254.340 250.340
## 74  254.770 256.840 250.480
## 75  249.220 251.000 248.100
## 76  250.160 252.820 249.390
## 77  249.420 251.490 248.730
## 78  246.270 250.930 245.790
## 79  251.110 251.400 245.610
## 80  255.290 255.620 251.390
## 81  256.870 260.120 255.980
## 82  254.150 257.690 253.390
## 83  253.700 254.540 250.810
## 84  252.320 259.560 251.580
## 85  248.590 252.790 247.600
## 86  253.920 257.910 245.730
## 87  260.790 261.070 255.860
## 88  265.440 266.480 259.210
## 89  276.200 276.560 263.280
## 90  279.430 283.330 276.320
## 91  272.230 277.480 269.850
## 92  273.780 275.000 269.520
## 93  272.290 281.040 272.180
## 94  277.660 281.060 275.200
## 95  280.570 280.630 275.280
## 96  276.380 281.460 275.520
## 97  275.230 276.140 272.050
## 98  280.510 281.140 278.410
## 99  284.050 284.460 281.480
## 100 288.300 289.270 283.000
## 101 287.230 288.270 283.950
## 102 287.180 290.450 285.670
## 103 284.340 287.150 282.920
## 104 291.600 292.080 282.030
## 105 289.390 289.600 284.710
## 106 282.830 285.980 281.640
## 107 283.490 287.010 281.960
## 108 289.840 289.900 283.170
## 109 286.140 288.480 283.690
## 110 288.800 291.600 286.160
## 111 288.370 291.760 287.010
## 112 288.450 289.050 284.540
## 113 286.110 289.030 285.080
## 114 285.760 286.270 283.060
## 115 281.770 284.950 278.720
## 116 275.420 281.600 275.370
## 117 295.370 299.570 292.730
## 118 304.830 305.200 295.250
## 119 307.260 308.930 303.310
## 120 305.560 308.600 305.150
## 121 305.410 309.180 303.910
## 122 304.400 308.610 304.090
## 123 305.410 307.760 303.400
## 124 310.650 311.970 304.270
## 125 362.950 364.180 354.180
## 126 366.830 368.190 358.310
## 127 362.500 373.830 361.740
## 128 347.360 362.140 347.140
## 129 358.570 359.700 344.250
## 130 359.960 363.750 353.400
## 131 361.420 362.880 354.240
## 132 350.710 361.500 350.310
## 133 347.960 349.000 342.440
## 134 337.500 344.130 336.420
## 135 334.880 341.910 332.820
## 136 323.650 331.280 314.300
## 137 317.150 321.500 314.520
## 138 323.030 330.000 322.120
## 139 322.130 327.620 321.170
## 140 313.480 326.600 312.360
## 141 311.880 315.570 310.380
## 142 315.180 317.490 310.820
## 143 312.030 323.300 311.840
## 144 308.470 314.300 306.620
## 145 311.790 311.830 305.750
## 146 297.780 312.510 294.880
## 147 292.760 298.790 289.000
## 148 293.510 299.240 285.330
## 149 294.940 297.450 290.310
## 150 303.790 306.310 292.280
## 151 310.060 316.600 301.710
## 152 303.500 310.760 300.000
## 153 305.130 307.500 296.000
## 154 305.790 307.920 300.430
## 155 293.900 306.450 293.540
## 156 320.370 322.780 304.140
## 157 328.390 331.830 320.630
## 158 327.660 336.440 324.410
## 159 323.520 333.320 321.280
## 160 332.030 332.850 325.730
## 161 338.430 343.290 335.300
## 162 345.480 345.840 337.200
## 163 348.280 348.580 340.400
## 164 346.750 349.800 343.950
## 165 342.350 345.430 336.250
## 166 339.330 340.480 332.630
## 167 338.990 339.880 333.360
## 168 338.210 347.140 337.640
## 169 331.030 342.800 330.040
## 170 346.190 346.430 338.750
## 171 338.630 344.850 336.410
## 172 332.720 338.390 327.500
## 173 333.700 337.190 330.500
## 174 323.120 325.750 316.100
## 175 325.350 331.430 318.330
## 176 327.980 328.290 319.500
## 177 329.020 334.660 326.750
## 178 322.550 328.660 321.100
## 179 321.150 325.900 320.470
## 180 325.850 327.450 317.440
## 181 329.930 330.810 324.000
## 182 324.120 331.230 318.090
## 183 317.550 326.070 315.620
## 184 319.300 324.620 315.850
## 185 320.780 323.610 317.950
## 186 322.760 324.150 319.440
## 187 108.040 108.670 103.548
## 188 100.000 103.580  98.455
## 189  95.460 100.610  93.860
## 190  94.860  97.020  94.530
## 191  95.000  95.350  94.050
## 192  94.950  95.175  92.650
## 193  97.100  97.340  94.360
## 194  95.780  97.880  94.970
## 195  94.590  95.750  93.450
## 196  92.050  93.415  92.000
## 197  91.800  92.360  90.870
## 198  91.070  92.130  90.010
## 199  89.350  90.130  88.860
## 200  90.100  90.450  89.610
## 201  90.300  91.450  89.520
## 202  90.510  91.200  89.850
## 203  92.310  92.480  89.770
## 204  94.020  94.110  92.660
## 205  95.580  96.300  94.300
## 206  94.170  96.090  93.844
## 207  94.650  96.240  94.405
## 208  92.660  95.920  92.355
## 209  91.010  93.180  90.800
## 210  91.660  93.080  89.940
## 211  94.250  94.830  92.780
## 212  96.550  97.250  93.040
## 213 101.070 101.970  95.870
## 214 102.460 103.490 100.750
## 215 101.930 102.580 100.790
## 216 105.840 105.960 101.860
## 217 104.220 107.510 104.210
## 218 106.260 107.101 105.410
## 219 106.060 106.160 104.740
## 220 103.060 105.400 102.630
## 221 101.360 103.000 100.280
## 222 101.900 102.820 101.030
## 223 101.320 101.610 100.290
## 224 104.000 104.190 101.440
## 225 104.910 104.950 102.380
## 226 105.120 106.100 104.600
## 227 104.950 106.540 104.102
## 228 108.900 109.630 104.815
## 229 106.950 107.970 105.600
## 230 106.120 107.220 105.280
## 231 105.220 107.587 104.970
## 232 108.190 108.265 106.440
## 233 109.460 109.580 107.590
## 234 106.420 106.710 105.320
## 235 105.120 107.050 104.780
## 236 105.020 105.725 103.800
## 237 105.900 106.888 104.640
## 238 105.910 106.640 105.485
## 239 106.780 107.320 105.360
## 240 104.610 107.440 104.560
## 241 104.450 107.020 103.270
## 242 108.370 109.150 104.420
## 243 108.220 108.290 106.040
## 244 107.710 108.680 107.500
## 245 105.980 107.730 104.500
## 246 106.120 108.130 105.620
## 247 105.210 106.300 104.700
## 248 106.215 106.440 104.739
# correlation
cor(d, h)
## [1] 0.9996436
cor(d, g)
## [1] 0.9996625
cor(h, g)
## [1] 0.999654
# regression
lm(d ~ g + h)
## 
## Call:
## lm(formula = d ~ g + h)
## 
## Coefficients:
## (Intercept)            g            h  
##      0.1723       0.5349       0.4655
# analysis of variance
aov(lm(d ~ g + h))
## Call:
##    aov(formula = lm(d ~ g + h))
## 
## Terms:
##                         g         h Residuals
## Sum of Squares  2064833.6     319.3    1075.1
## Deg. of Freedom         1         1       245
## 
## Residual standard error: 2.094752
## Estimated effects may be unbalanced
summary(lm(d ~ g + h))
## 
## Call:
## lm(formula = d ~ g + h)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.0668 -1.0546 -0.0468  1.0636  7.2652 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.17232    0.34677   0.497     0.62    
## g            0.53490    0.05621   9.517  < 2e-16 ***
## h            0.46548    0.05456   8.531 1.53e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.095 on 245 degrees of freedom
## Multiple R-squared:  0.9995, Adjusted R-squared:  0.9995 
## F-statistic: 2.353e+05 on 2 and 245 DF,  p-value: < 2.2e-16
# plot
hist(d)

hist(h)

hist(g)

plot(lm(d ~ g + h))

library(survminer)
## Loading required package: ggpubr
## 
## Attaching package: 'survminer'
## The following object is masked from 'package:survival':
## 
##     myeloma
d1 = data.frame(time=c(3,4,6,11,17,21,24,25,26,30),
                event=c(1,1,0,2,0,1,0,0,1,0))

kmc = with(d1, Surv(time, event)); kmc
## Warning in Surv(time, event): Invalid status value, converted to NA
##  [1]  3+  4+  6? 11  17? 21+ 24? 25? 26+ 30?
plot(kmc)

plot(kmc, fun = "cumhaz")

kmc2 = surv_fit(Surv(time, event) ~ 1, data = d1); kmc2
## Warning in Surv(time, event): Invalid status value, converted to NA
## Call: survfit(formula = Surv(time, event) ~ 1, data = structure(list(
##     time = c(3, 4, 6, 11, 17, 21, 24, 25, 26, 30), event = c(1, 
##     1, 0, 2, 0, 1, 0, 0, 1, 0)), class = "data.frame", row.names = c(NA, 
## -10L)))
## 
##    5 observations deleted due to missingness 
##      n events median 0.95LCL 0.95UCL
## [1,] 5      1     NA      11      NA
summary(kmc2)
## Call: survfit(formula = Surv(time, event) ~ 1, data = structure(list(
##     time = c(3, 4, 6, 11, 17, 21, 24, 25, 26, 30), event = c(1, 
##     1, 0, 2, 0, 1, 0, 0, 1, 0)), class = "data.frame", row.names = c(NA, 
## -10L)))
## 
## 5 observations deleted due to missingness 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    11      3       1    0.667   0.272          0.3            1