Obtener comentarios
reviews_top <- google_place_details(place_id = data_top$place_id[1], key = gmaps_key)
reviews_bot <- google_place_details(place_id = data_bottom$place_id[1], key = gmaps_key)
reviews_top
## $html_attributions
## list()
##
## $result
## $result$address_components
## long_name short_name
## 1 Centro Comercial Galerías Centro Comercial Galerías
## 2 2500 2500
## 3 Avenida Insurgentes Av Insurgentes
## 4 Vista Hermosa Vista Hermosa
## 5 Monterrey Monterrey
## 6 Nuevo León N.L.
## 7 Mexico MX
## 8 64620 64620
## types
## 1 premise
## 2 street_number
## 3 route
## 4 sublocality_level_1, sublocality, political
## 5 locality, political
## 6 administrative_area_level_1, political
## 7 country, political
## 8 postal_code
##
## $result$adr_address
## [1] "Centro Comercial Galerías, <span class=\"street-address\">Av Insurgentes 2500</span>, <span class=\"extended-address\">Vista Hermosa</span>, <span class=\"postal-code\">64620</span> <span class=\"locality\">Monterrey</span>, <span class=\"region\">N.L.</span>, <span class=\"country-name\">Mexico</span>"
##
## $result$business_status
## [1] "OPERATIONAL"
##
## $result$current_opening_hours
## $result$current_opening_hours$open_now
## [1] TRUE
##
## $result$current_opening_hours$periods
## close.date close.day close.time open.date open.day open.time
## 1 2025-05-11 0 2100 2025-05-11 0 0900
## 2 2025-05-05 1 2100 2025-05-05 1 0900
## 3 2025-05-06 2 2100 2025-05-06 2 0900
## 4 2025-05-07 3 2100 2025-05-07 3 0900
## 5 2025-05-08 4 2100 2025-05-08 4 0900
## 6 2025-05-09 5 2100 2025-05-09 5 0900
## 7 2025-05-10 6 2100 2025-05-10 6 0900
##
## $result$current_opening_hours$weekday_text
## [1] "Monday: 9:00 AM – 9:00 PM" "Tuesday: 9:00 AM – 9:00 PM"
## [3] "Wednesday: 9:00 AM – 9:00 PM" "Thursday: 9:00 AM – 9:00 PM"
## [5] "Friday: 9:00 AM – 9:00 PM" "Saturday: 9:00 AM – 9:00 PM"
## [7] "Sunday: 9:00 AM – 9:00 PM"
##
##
## $result$delivery
## [1] TRUE
##
## $result$dine_in
## [1] TRUE
##
## $result$editorial_summary
## $result$editorial_summary$language
## [1] "en"
##
## $result$editorial_summary$overview
## [1] "Seattle-based coffeehouse chain known for its signature roasts, light bites and WiFi availability."
##
##
## $result$formatted_address
## [1] "Centro Comercial Galerías, Av Insurgentes 2500, Vista Hermosa, 64620 Monterrey, N.L., Mexico"
##
## $result$geometry
## $result$geometry$location
## $result$geometry$location$lat
## [1] 25.68114
##
## $result$geometry$location$lng
## [1] -100.3545
##
##
## $result$geometry$viewport
## $result$geometry$viewport$northeast
## $result$geometry$viewport$northeast$lat
## [1] 25.68235
##
## $result$geometry$viewport$northeast$lng
## [1] -100.353
##
##
## $result$geometry$viewport$southwest
## $result$geometry$viewport$southwest$lat
## [1] 25.67965
##
## $result$geometry$viewport$southwest$lng
## [1] -100.3557
##
##
##
##
## $result$icon
## [1] "https://maps.gstatic.com/mapfiles/place_api/icons/v1/png_71/cafe-71.png"
##
## $result$icon_background_color
## [1] "#FF9E67"
##
## $result$icon_mask_base_uri
## [1] "https://maps.gstatic.com/mapfiles/place_api/icons/v2/cafe_pinlet"
##
## $result$name
## [1] "Starbucks Galerías Monterrey"
##
## $result$opening_hours
## $result$opening_hours$open_now
## [1] TRUE
##
## $result$opening_hours$periods
## close.day close.time open.day open.time
## 1 0 2100 0 0900
## 2 1 2100 1 0900
## 3 2 2100 2 0900
## 4 3 2100 3 0900
## 5 4 2100 4 0900
## 6 5 2100 5 0900
## 7 6 2100 6 0900
##
## $result$opening_hours$weekday_text
## [1] "Monday: 9:00 AM – 9:00 PM" "Tuesday: 9:00 AM – 9:00 PM"
## [3] "Wednesday: 9:00 AM – 9:00 PM" "Thursday: 9:00 AM – 9:00 PM"
## [5] "Friday: 9:00 AM – 9:00 PM" "Saturday: 9:00 AM – 9:00 PM"
## [7] "Sunday: 9:00 AM – 9:00 PM"
##
##
## $result$photos
## height
## 1 2414
## 2 3024
## 3 2608
## 4 3060
## 5 4080
## 6 4000
## 7 4080
## 8 4160
## 9 4000
## 10 853
## html_attributions
## 1 <a href="https://maps.google.com/maps/contrib/105505382785949444602">Gabriel Ramos</a>
## 2 <a href="https://maps.google.com/maps/contrib/114678792790642524063">Jesus Valdez</a>
## 3 <a href="https://maps.google.com/maps/contrib/105588842247045055141">César Suárez</a>
## 4 <a href="https://maps.google.com/maps/contrib/108388832764423267560">Mónica Valdez</a>
## 5 <a href="https://maps.google.com/maps/contrib/108388832764423267560">Mónica Valdez</a>
## 6 <a href="https://maps.google.com/maps/contrib/105584727928093128448">Ladivina Garza</a>
## 7 <a href="https://maps.google.com/maps/contrib/108388832764423267560">Mónica Valdez</a>
## 8 <a href="https://maps.google.com/maps/contrib/100910150610199924093">Angie Rubio</a>
## 9 <a href="https://maps.google.com/maps/contrib/110920131575389322157">Luis Villatoro</a>
## 10 <a href="https://maps.google.com/maps/contrib/105025620590204675553">Alberto Martinez Ramos</a>
## photo_reference
## 1 AeeoHcIJS8uHIkkhxoXFuk0vPfAzAEnqoLvq6wbOYGXp_hbES3mO_LdRLIetWn6BcCSypZ_05bOKhxQHq5MH6QzI36HIsorXKwbWpP5x1jKdER6K7b_Vb0xI-nk28b-RYkgKma5-3nce5UiYveBs-L1ri1IuUsPkNjnYyjV8KbowDD9S-QmN91p0qvYQojj1n8dtnVSqjbri8_jQGjGf5LjNhZY-lhBBKXFNnsvDFFhKUgj5IBoWvIr3Kbqg38S2-gbDzq2R3SYleRBYKQp2NSpw6ol8lXDnByYXbcbNfw93z5jwXoTj_-7JBljilyFYZ_Ag7YXKIKrBnPefGgtDLbOXYcRtZSaxu1Wpg8TZFAf93ReSNgkvUCcp-478EVBUCnyCNQqDwikOuTGfzHmkSCOiJFTnBzTb1uNqfYkv_59vBq7z6A7qePF2_l7rnfRcfv440gXeGX7ciavnzHRbEAPKkU852GF7hAYPm8wFlYJxPEeGUHl3nHs9i7tviglsWu14C9N5bQsi5ZsUfbpipIzBNm0TcUM_qzEck4-qpnHHnsBtUAmvgngXmHVsavSjZyLvU6JW-KswE95xwYBfDQvSt94cMLGhQkYSfLkd7O3jQf0WgvSLyS7O4Ey1nxLIA8bh_zbhBw
## 2 AeeoHcLerPZ1WxnBuDKtF8zOthK4A8PN0N_gczo9Bez7EnuyMFSnsEZEZVehdTu9uIKUh7S1BDVzjsLNwpixGp4DPVNm_9AGgGuNeVz1SoCzgBTq2iLmiK0mQI0tlh6_B4m92q-_yX0uyP5K_6rZJQ56OJHFGBb_7S_RZ3p3GeXhRy2S0PzRnqB1VvlEMUpRW28f4OKe8OTCeqN9j50H-xbe5BewL2eqFGKp2SAaR0qsN6OF-xb5svckD-8_WnHVFlPegvBChSb6aaycb8AoWSSsoLbH1YbtDvHmdfaSw92Eo8-Bwznwt4McwPcv724FJIWUfppbOK27M0l2rp7UP7uISkmD7seCCh2xsF5NCpfJ24FJQeTOXGVTXdfUI4ZAa6UuESkR_6ee11qkqQ5HmziZn1CmPw5Ey_SHjPRJs2jaKqACaxLLJPwk9ONkOFiay0PcS61R9miq29l2m6d_C7oJppqgqz-G_g0eRuNxrmH6GVzFqXED3gBen62qkx-tkLMuJOgJDF-upkovshXZIDIx6p-ydn5cV3AZCgqhYE793shwAoqHM3cx5YBTLmxtZuxD5lXQ9pcZdLG0MNIs8IEPncQm_y9hQIoxPXgmBMISbV23SXzpxKTVKecmoP8Zysxt
## 3 AeeoHcLFefnFBmKACG1i6dgH6I_y9qjFTC4i0Uhc_T0FChRI4XH2Qq497rL2cApeofNIPk9amec6CNL5_7J0QfR0SsrcDgP3yRF02GS5CcjIdPfcHOBK5wOECLdTY_sdn3pTNTTYj25gXrtmnAfBs33bgI7vOv8nzH0ySgMfvHQUfei88UNODs2tdHtZZM3cK6728z1u6_zpKLQf1N--tn15ml7mPLnhlNmCZUf0T79pdZpbzioXdU17uN1CKufua5ibT0hRil6TzAe0LRW-qy5hoM-kfmjHjvYqa23VHZsQGEyr_g4Jtqilk-EkP5SS7Iq-X5nBKQja3fQ_DglLrtg1_CgdaHOZOjF9S4eMTW8NNU1Euem-zl6CbXziRBV8cwaO1LkkFhQqZJwM4mU6ZQ_i0gQ460Pj_ZwKnMnWnJxbCVdEuxPGGcom0LzEw60UbWDII3eKOy--ul-jzGZQe4wYw4colDWJHcd5zeEE83mhEWmrDuWTf1TlECqUiTHPSbUlCNZ0Oz0iiSaPRPY_mqz96jQQWIRD-6pY1x3hihywNvhoW6_LY_7b-cYPCzG4Z9hMCNwyq5dgn70G5qkTcQCBdk3D_WCJ81SqBc4cE6aNigk4zACZ1xhQSmW-YJk9kZ3pFhExfw
## 4 AeeoHcKJLSPe7yAnKu6wJUsS-0xoizHEEiWQ6gbHoIb3cW6JXKtbe4dquauMet6PY49czKkEiGB9J_j5GDxpc6HCYvyubQZMPZ9uDSvkO2rYrIenWl85TkbRsqFiDt0BQAKg2s8DVGyKTr9a_aSSMSL5PwRQY-eMS2NMMR__mVoAtbPI1s0T6wbXMGYpcVJvbu-zgIYXjtdMEH-U85XhFv2uKXwKLlPZoixMXbNtXNCCnGicMIlEmsxoRynerklh_T0wVgWw42v2CHSiuIq94yJbGfluHnnzXdy8VYFyiYN5C03wszZpk03Dz7DhVcpeSLIpkaa3BwZWfUVr1TQ3OqmyWcQr0LmaTnkoalT56MbTQmcFvyZmirYZEcRbvUuSyMI2QAWuYx3qv_lv9OMORKknu3PqiHvAU4DeZcL8HyP3606xwHuQ0_PqZLZ3uhiIlV4ZqF8opV-CIPrFieE0zdqGtOACqd6dikvyO4idUyYK5xnqywDSnvS6yvCmzeblHguxkNWg1BkIM2VqlFSZmEchHCLf3sW1AT0Uv4VvDtrVoQ2-aDucWZGK4uPA1nZaiqL8_PtWszCvBdNy0HXeFCK1UvmyAvpoRuVMPuGYF-3lRoKMbzRvMVBggfwiCeBbHP4eORbQmklsSIj9qjPq1Eesj6BU_EA
## 5 AeeoHcJcndUITDkn7GHzkXj195yQG6_T3nRCvObIujyVbCPTF2tmG6Dh-gHGkq0s20plkxLYUGBO8rQrWepSsq71SMM0EA-bMguVl_eUsoppiv20O4OxY8w6_4t1AW3i0Ykb-s16ITNP5zy8ghYx_xMQFVUeRJJQBQTTBTd1jl_TKmd3nZh3oGfhMFkN_LVcTHscZVxhIbcxgWXom1yQsoZHx9cVfRiFV_NtTBwonxfqgmU7mKsUjbmnTszpVVvhp5zeP95Mjy8-JNrO2OjEkKGeggv3HPUWSqgcE3uvZPduwg8Ea0Q1fEPXUAU5n9OU8T0lH8ZSQxRpX8FAUh1lMa81BXSrhg8SkD3EjgC2oAkA-EZt5EOOURtasoAraKOavNEbJECGjbk1MukyZp0qkfbRFwSDzBEIFxy82UeK8eImRf8s_ib5Bsf92x1wuCUy9nYTkFH_3PXms8qCO6zpsnAA4M64s0t9S4VUmAu9Yivpk8HKQy-T4i7ywNsAolBlY1HCfTLImytrrHzt6KVp1SBaz7qz67uHVHj43csz7boAQOgXuSJKCSRs7Judl5zl-khQLHZa2wevN-0II35Gy9k5Pnd9sru5WmKSewmHfUFA15Yc2jqVMz0mAfwN1-GaNUhyf_YSs1a-yuj7k3esCQTxfn4SQoo
## 6 AeeoHcL-Xx6_ATD2ZiWvD0X3VYy3bI6yuA2xebA52iYkzPwQWapy6GK0Vvw31yMCIpue-PbRGw-iU1orc1ZFO4cUSFFEbdpgFhdrlUnGUDaaI_JK6y-wGZvnALGDz-dB-c5jllsDnCmGQWXm75GR4dWceS5In7vWvGpzxrWbYpPRsB3HhpbIYu4Iqk_LFmxG4ru7dosPSJlzzCq92h2HorVSbblAwu0R8Xikv-zOqMmdRX-PuAKt5WfjMmPOgHiIEZCTAY6o7HqvKzAmfi3hyW4SunWiGt7eFFRvpEGBY92DvFWpIClhqc4kUaf3zF0l-XpystV_esb-hSfVcP44EqPTLpFU8VflBb7VSkFRL44vT49GQj6qkUITmeqJ5Uc5AZ_y1ITfBe_8YyYHmzEWuqzmejzZGkcAeFZ17NOQ9uhpiQDRFt2Kmhts0FNzrw5S4y5G15IXugqLHFowIEJOVJGeVTMFb8ktdY1bvdxbi2ocZfiUB8STeisshwiQ3HCHXkBUwXUNt7QuUMWGYruCDyFoh4HQbXib7M6yhO912VCJili4HYJHnlc-vEgzpibai3wBe3UPbKwGhGsa0wAeZI_R_q8ux6cTsvh2euOuCm95E5_PMRwUCImJJBVUiTsZaMgMx8lE2w
## 7 AeeoHcJYEPsG70Kf0XFCM2pKIbO1JcOEfjEHD98pA7dO97UPEmLP2mG3_If0Dst7-5MpxDlYHqjqZyJLBhDyunaOk-s8VjDDxyd8VX5QDQKfuHA746dEFh2XnLthE-un-CFFdWh8dNztNDqbSKefwWokJIWEE-gh71VrLP-UD_eEHZNF68SnXG8Cnm_XuKzwn1BnWwDsiG4QnJs5b8pegdk91iU6megyqMjnKMc1d3pRuqm8qn93-yeNRWrcKq1wn8zUUy9DUfYpeFkDocY1Q1UT01vDKgE7Sd8_E_4Wa2RIIi89tmTBCacnBkohXRFZ0L5ICvtGPPfiLjrSa3R0Wl3YNNBqCD89AYRwPhh5eg8VW47adfe4lmDvNbTWG61F3e4VJgLPoQ_8E6BMkV8eyCG7hUfUCD6G6Jbcq52FdssKNMKVwqKeTeqQrd8Fq3Cb09P1X0SyeQlRtpJlFHk1eehxrMUkJzJDR3Wf-JYuW9ABMk0tToBP7ePdX6HMNpp3kPP6fhfJ0FvbL3jPSmaJHrytuC7VFvRNrJv2aavn89aPjeV-kTrTxHOQ3b_gTuAG15bAMgAdblVGL4JMSq05BDkQ9ir1TLwZf7JcKlsgUeo5ruVttQxKKVnPtxhCB2H7cHOU4m2S0ERa
## 8 AeeoHcLFYrthi8JeZ6_FdjXUkNZKOnPjb27U8y6yay9vL46sajrYgKKP-aEX-_b5xNnpLqnHTG1Z8FmkCIBTDKnrfHIOjsnKHFZx1za3VTp8gypGn1f4rQiAo7eeRH3hjCq5JlJaZ8aw3cRy4kQzzKjbrnqajAiCIufnFXCEYeF4tU0btqjWagfmNHFA_phEG_90p0Am0qdmJe7KWTls5xqcysRxL2EC5EEjpiB9Np8uPss8clZHDantNAoPHSSzWPq44wlgUpZBJFYFqkbqfV-PE51U5xfT3ERDQ2sO_LuFqrmTzPs60KTOvxjLCsjA7KFV5tkPv0ZIa4Bih2fFUM_Vw0AQre6PBrGI38-rtqR_e9rHQIU1WhlwgWE8t6JsDnd-zR4POM1hcQjAoCQmwR0vpZ6wlwChhbQ49-itW8002WDMPzfCbkzLnLFy7tdwmb-Ox1UcUlMcRzxwC6t-6VkT0jZczoh5AQDewOLWyD_zSf4Sh3V16yhCpy4uCEShhdbDdVPxq0TD__QmyhQVZkFBl-4aQD1kV2HUBWzSRYDQKGGG0RQhwklz5RVdwFY37ZfqhVJyKQWFJ5XM6ZZ1J_ulQE5349853h8yaBF41lxtZ2iSI0HwkKGtQJrbvNLMe3NqJbO-gM7J
## 9 AeeoHcLYypn2YmXgrV9m5xnSDztU1KZ_RRXVR39pGaiEWEZZDt-9DnYXVXIXROSO-yTBCqCDTJ0eIbz3EX6NZcDyMs3JctGe66yRoEe81LDGR0RiTQNtEN91uIE-TzE21lY0GPye2657Ua3gytoux1Wh1ri8RSddccIdj3YdRHtSD1XSUbng0GeYT2FMQ-LuL8NJJC1SvFbpAzGkUp4X0l-g-5mT2k0m0EsqaqwB3bK98eKmSGtd8tTKdrQg9o7QTEuY-W7dFv24TQveQZoYwrR4SBRr4c0DV_7w58uu6ASOWDRfsyEFCGhMEuXWsNwca9AJo_QsO-h6KGnfXynY2hwq1JWaLqelGGgixO7WBQiVIO8YQ9Zgy0ED3X8GGTFksJ8FQbmQ_4eJcgEDcPQhMYTKsg00zY9IS4uP7DkOr548wUbi4tPosrZ0KYDTIcH1fehzG6uVSqQeTeHzGsbRLBCIWvy19LpUFVhwggqMerHt0mGdglUApkRNMGAjVOYyqPDz4ls3G5dlj3yE3tWJET5dVPpShIkwS7HXdN6KGC-m5LH7x38VCIxgjj7t6CSMrAMonc4Xmk07HzOSMo0N-16w5hvcdHIPD-9WhWCfVRDT2uNNsDFbJQSIwXEZJFFy522PimIBwQ
## 10 AeeoHcIW7SJBNOlPkjenteVVjPhlVfOTNLG-dD5hkWRTefudXf9MkYk4-Wd25KnFNvIPYbzq33eeG4xqWZlC62qDinQzpXAmmiLTxjBGMvfahsOtAQ3lItjwWi2-JlwG2HSMauUhhevNBHVsKRqdSMovUWG9FrNTgTGVDPZMaeRpyxon1vkawjitn22cZvQSGR9wg1jLlyaaYkRpvzs1g2Sh6nWKCCcOoS7Yd6LH7FNIpdrGyQ_FD1UuWG5nLMTh-T-Xkk072a5VPJqL8Mz75ZGSpcA68g7Lbnj2r-5WWg5cRLOTkobf27d0eI3PjmvJrOJqXJn7RWsCuxNTcPcxJZPrzo7kTdaXJGMkSffnueZoO8imSasmoZkZEU_8kiL2cEGoEtwH-2wIbk6RkdyWV-qFfJPXJv37JgrMM4c0vcHXMM4Dw-IT7ul4aBont_o5yjtbHCSntsvQpsmZHL7hrQbzvm4KvhGG1crxNMsqTotGrA2Mv9wKk4c59phgUxEvl3NhpuK-GotBUUp7SZjEg5xJBvu9zZqGEg8fFObS_eeP43c7gRgLcM0JyPG-b-CZHSahJbXfTrTxehDZOcBOfVt7D1JfkXK7tmGEtWMjmtP5LyHDS6GNhREIr5SNGy0gfi7y3GBuhg
## width
## 1 2714
## 2 4032
## 3 4640
## 4 4080
## 5 3060
## 6 3000
## 7 3060
## 8 3120
## 9 3000
## 10 1257
##
## $result$place_id
## [1] "ChIJyUEvbAaWYoYR3ADMfxsUGz4"
##
## $result$plus_code
## $result$plus_code$compound_code
## [1] "MJJW+F5 Monterrey, Nuevo Leon, Mexico"
##
## $result$plus_code$global_code
## [1] "75QXMJJW+F5"
##
##
## $result$price_level
## [1] 2
##
## $result$rating
## [1] 4.5
##
## $result$reference
## [1] "ChIJyUEvbAaWYoYR3ADMfxsUGz4"
##
## $result$reservable
## [1] FALSE
##
## $result$reviews
## author_name
## 1 María Rodriguez
## 2 Olivia Messner
## 3 Christel
## 4 Jessie Jimenez
## 5 Mizaelle
## author_url language
## 1 https://www.google.com/maps/contrib/118258255011768523853/reviews en
## 2 https://www.google.com/maps/contrib/113959978482373355386/reviews en
## 3 https://www.google.com/maps/contrib/107504050885145897732/reviews en
## 4 https://www.google.com/maps/contrib/110947386959167036234/reviews en
## 5 https://www.google.com/maps/contrib/111562420977846102679/reviews en
## original_language
## 1 en
## 2 en
## 3 en
## 4 en
## 5 en
## profile_photo_url
## 1 https://lh3.googleusercontent.com/a-/ALV-UjXug8VSz96u71VLnzs5KTtTt7t18xmULHcCoO4ruPJvcuSt-Xp9Iw=s128-c0x00000000-cc-rp-mo-ba5
## 2 https://lh3.googleusercontent.com/a-/ALV-UjXyTFdXWSaPE76z5CRZWmBfGpsYIFgAhXnCIas_-yJabWBKmRBVfQ=s128-c0x00000000-cc-rp-mo-ba5
## 3 https://lh3.googleusercontent.com/a-/ALV-UjV0E1EuhOaH5VBpK8Nan5196vxErBeDy-FkJ_fRMcgD8XJTWXa9=s128-c0x00000000-cc-rp-mo-ba4
## 4 https://lh3.googleusercontent.com/a-/ALV-UjUUJhWsigRWtB67Wduuju2SGKo46xRGkE5AXdOe3kxGDA3BfUfgOQ=s128-c0x00000000-cc-rp-mo-ba5
## 5 https://lh3.googleusercontent.com/a-/ALV-UjUUvxer83oyodEBnr00plIXArUL-iFctMQTTXXmeJEd1NVM3bru6g=s128-c0x00000000-cc-rp-mo-ba3
## rating relative_time_description
## 1 4 3 years ago
## 2 5 9 months ago
## 3 1 a year ago
## 4 5 3 years ago
## 5 5 5 years ago
## text
## 1 It’s user experience has decreased a bit, the place is usually bit messy and sometimes the coffee causes diarrhea 😨 somehow we have to wait almost all the time…it’s crowded always!!!
## 2 Service was nice and the coffee good like always from Starbucks
## 3 0 empathy for kids besides they didn't give me my bday drink. Moody cashier
## 4 I did not know that this Starbucks is one of two. There is another less crowded Starbucks by the unfinished side of the mall. It's on the ground floor. You can enter from the outside right under the Liverpool sign.
## 5 So accessible specially when there is an emergency in work. Quite noisy because of the students 😋
## time translated
## 1 1621140532 FALSE
## 2 1722925679 FALSE
## 3 1695171550 FALSE
## 4 1637860310 FALSE
## 5 1568492358 FALSE
##
## $result$serves_beer
## [1] FALSE
##
## $result$serves_breakfast
## [1] TRUE
##
## $result$serves_brunch
## [1] TRUE
##
## $result$serves_wine
## [1] FALSE
##
## $result$takeout
## [1] TRUE
##
## $result$types
## [1] "cafe" "restaurant" "food"
## [4] "point_of_interest" "store" "establishment"
##
## $result$url
## [1] "https://maps.google.com/?cid=4475192763063468252"
##
## $result$user_ratings_total
## [1] 2046
##
## $result$utc_offset
## [1] -360
##
## $result$vicinity
## [1] "Centro Comercial Galerías, Avenida Insurgentes 2500, Vista Hermosa, Monterrey"
##
## $result$website
## [1] "https://www.starbucks.com.mx/"
##
## $result$wheelchair_accessible_entrance
## [1] TRUE
##
##
## $status
## [1] "OK"
str(reviews_top$result$reviews)
## 'data.frame': 5 obs. of 10 variables:
## $ author_name : chr "María Rodriguez" "Olivia Messner" "Christel" "Jessie Jimenez" ...
## $ author_url : chr "https://www.google.com/maps/contrib/118258255011768523853/reviews" "https://www.google.com/maps/contrib/113959978482373355386/reviews" "https://www.google.com/maps/contrib/107504050885145897732/reviews" "https://www.google.com/maps/contrib/110947386959167036234/reviews" ...
## $ language : chr "en" "en" "en" "en" ...
## $ original_language : chr "en" "en" "en" "en" ...
## $ profile_photo_url : chr "https://lh3.googleusercontent.com/a-/ALV-UjXug8VSz96u71VLnzs5KTtTt7t18xmULHcCoO4ruPJvcuSt-Xp9Iw=s128-c0x00000000-cc-rp-mo-ba5" "https://lh3.googleusercontent.com/a-/ALV-UjXyTFdXWSaPE76z5CRZWmBfGpsYIFgAhXnCIas_-yJabWBKmRBVfQ=s128-c0x00000000-cc-rp-mo-ba5" "https://lh3.googleusercontent.com/a-/ALV-UjV0E1EuhOaH5VBpK8Nan5196vxErBeDy-FkJ_fRMcgD8XJTWXa9=s128-c0x00000000-cc-rp-mo-ba4" "https://lh3.googleusercontent.com/a-/ALV-UjUUJhWsigRWtB67Wduuju2SGKo46xRGkE5AXdOe3kxGDA3BfUfgOQ=s128-c0x00000000-cc-rp-mo-ba5" ...
## $ rating : int 4 5 1 5 5
## $ relative_time_description: chr "3 years ago" "9 months ago" "a year ago" "3 years ago" ...
## $ text : chr "It’s user experience has decreased a bit, the place is usually bit messy and sometimes the coffee causes diarrh"| __truncated__ "Service was nice and the coffee good like always from Starbucks" "0 empathy for kids besides they didn't give me my bday drink. Moody cashier" "I did not know that this Starbucks is one of two. There is another less crowded Starbucks by the unfinished si"| __truncated__ ...
## $ time : int 1621140532 1722925679 1695171550 1637860310 1568492358
## $ translated : logi FALSE FALSE FALSE FALSE FALSE
Tops y Bottoms
library(dplyr)
library(ggplot2)
data$business_rating <- as.numeric(data$business_rating)
data_limpia <- data %>%
filter(!is.na(business_rating), business_rating >= 0, business_rating <= 5)
# TOP 5 MEJOR VALUADOS
top5 <- data_limpia %>%
arrange(desc(business_rating)) %>%
slice_head(n = 5)
ggplot(top5, aes(x = reorder(starbucks, business_rating), y = business_rating)) +
geom_col(fill = "darkgreen") +
coord_flip() +
labs(
title = "Top 5 Starbucks Mejor Valuados",
x = "Sucursal",
y = "Calificación (máx. 5)"
) +
ylim(0, 5) +
theme_minimal()

# BOTTOM 5 PEOR VALUADOS
bottom5 <- data_limpia %>%
arrange(business_rating) %>%
slice_head(n = 5)
ggplot(bottom5, aes(x = reorder(starbucks, business_rating), y = business_rating)) +
geom_col(fill = "brown3") +
coord_flip() +
labs(
title = "Top 5 Starbucks Peor Valuados",
x = "Sucursal",
y = "Calificación (máx. 5)"
) +
ylim(0, 5) +
theme_minimal()

8-9. Wordcloud
top_text <- reviews_top$result$reviews$text
top_corpus <- Corpus(VectorSource(top_text))
top_corpus <- tm_map(top_corpus, content_transformer(tolower))
top_corpus <- tm_map(top_corpus, removePunctuation)
top_corpus <- tm_map(top_corpus, removeWords, stopwords("spanish"))
wordcloud(top_corpus, max.words=100, random.order=FALSE, colors=brewer.pal(8, "Dark2"))

# ejemplo de arriba top_text <- reviews_top$result$reviews$text
bot_text <- reviews_bot$result$reviews$text
bot_corpus <- Corpus(VectorSource(bot_text))
bot_corpus <- tm_map(bot_corpus, content_transformer(tolower))
bot_corpus <- tm_map(bot_corpus, removePunctuation)
bot_corpus <- tm_map(bot_corpus, removeWords, stopwords("spanish"))
wordcloud(bot_corpus, max.words=100, random.order=FALSE, colors=brewer.pal(8, "Reds"))

10. Sentiment Analysis
top_sentiment <- get_nrc_sentiment(top_text)
bot_sentiment <- get_nrc_sentiment(bot_text)
barplot(colSums(top_sentiment), las=2, col="blue", main="Emociones - Negocios con mejor calificación")

barplot(colSums(bot_sentiment), las=2, col="red", main="Emociones - Negocios con peor calificación")

11. Distribución general
# Obtener vector de texto limpio
bot_vector <- sapply(bot_corpus, as.character)
# Sentiment score
bot_scores <- get_sentiment(bot_vector, method = "syuzhet")
# Mostrar distribución
hist(bot_scores,
breaks = 10,
col = "steelblue",
main = "Distribución del Sentiment Score",
xlab = "Sentiment Score")

12. Distribución Positivo, Negativo, Neutral
get_sentiment_summary <- function(text) {
sentiment_scores <- get_sentiment(text, method = "syuzhet")
summary <- table(cut(sentiment_scores, breaks=c(-Inf, -0.1, 0.1, Inf), labels=c("Negativo", "Neutral", "Positivo")))
return(summary)
}
get_sentiment_summary(top_text)
##
## Negativo Neutral Positivo
## 4 0 1
get_sentiment_summary(bot_text)
##
## Negativo Neutral Positivo
## 2 1 2