library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(GGally)
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
## The following object is masked from 'package:dplyr':
##
## recode
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(corrplot)
## corrplot 0.95 loaded
library(nortest)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(readxl)
library(olsrr)
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:MASS':
##
## cement
## The following object is masked from 'package:datasets':
##
## rivers
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(readr)
library(tidyverse)
## āā Attaching core tidyverse packages āāāāāāāāāāāāāāāāāāāāāāāā tidyverse 2.0.0 āā
## ā forcats 1.0.0 ā stringr 1.5.1
## ā lubridate 1.9.4 ā tibble 3.2.1
## ā purrr 1.0.4 ā tidyr 1.3.1
## āā Conflicts āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā tidyverse_conflicts() āā
## ā psych::%+%() masks ggplot2::%+%()
## ā psych::alpha() masks ggplot2::alpha()
## ā dplyr::filter() masks stats::filter()
## ā dplyr::lag() masks stats::lag()
## ā car::recode() masks dplyr::recode()
## ā MASS::select() masks dplyr::select()
## ā purrr::some() masks car::some()
## ā¹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
library(DataExplorer)
library(Kendall)
library(vroom)
##
## Attaching package: 'vroom'
##
## The following objects are masked from 'package:readr':
##
## as.col_spec, col_character, col_date, col_datetime, col_double,
## col_factor, col_guess, col_integer, col_logical, col_number,
## col_skip, col_time, cols, cols_condense, cols_only, date_names,
## date_names_lang, date_names_langs, default_locale, fwf_cols,
## fwf_empty, fwf_positions, fwf_widths, locale, output_column,
## problems, spec
library(ggplot2)
library(readxl)
data_pmi <- read_excel("C:/Users/MUTHI'AH IFFA/Downloads/projek anreg/projectanreg1.xlsx", sheet = "Data Regresi")
str(data_pmi)
## tibble [37 Ć 12] (S3: tbl_df/tbl/data.frame)
## $ Provinsi : chr [1:37] "Aceh" "Bali" "Banten" "Bengkulu" ...
## $ Y : num [1:37] 458 8143 3567 723 1325 ...
## $ Ytransform: num [1:37] 2.66 3.91 3.55 2.86 3.12 ...
## $ X1 : num [1:37] 0.294 0.348 0.359 0.343 0.428 0.431 0.413 0.315 0.428 0.364 ...
## $ X2 : num [1:37] 13.44 3.9 5.77 13.04 10.62 ...
## $ X3 : num [1:37] 43.8 67.3 70.3 49.2 51.5 ...
## $ X4 : num [1:37] 74 77.8 74.5 73.4 81.5 ...
## $ X5 : num [1:37] 3.46 2.81 2.73 2.51 2.13 ...
## $ X6 : num [1:37] 3642 1817 3656 2096 1200 ...
## $ X7 : num [1:37] 92.6 95.1 92.5 91.7 95.1 ...
## $ X8 : num [1:37] 5.75 1.79 6.68 3.11 3.48 6.21 3.13 4.48 6.75 4.78 ...
## $ X9 : num [1:37] 9.95 9.87 9.55 9.4 10.23 ...
Statistika Deskriptif
Summary Data
summary(data.pmi)
## Ytransform X1 X2 X3
## Min. :0.000 Min. :0.2350 Min. : 3.90 Min. : 24.27
## 1st Qu.:1.763 1st Qu.:0.3060 1st Qu.: 5.85 1st Qu.: 51.47
## Median :2.661 Median :0.3430 Median : 9.68 Median : 69.35
## Mean :2.626 Mean :0.3405 Mean :10.07 Mean : 86.13
## 3rd Qu.:3.306 3rd Qu.:0.3640 3rd Qu.:13.04 3rd Qu.: 81.01
## Max. :4.899 Max. :0.4310 Max. :21.38 Max. :344.35
## X4 X5 X6 X7
## Min. :59.75 Min. :2.037 Min. : 48 Min. :81.41
## 1st Qu.:71.23 1st Qu.:2.728 1st Qu.: 715 1st Qu.:89.50
## Median :73.33 Median :3.037 Median : 1645 Median :91.50
## Mean :72.90 Mean :3.089 Mean : 3410 Mean :90.83
## 3rd Qu.:74.43 3rd Qu.:3.402 3rd Qu.: 3616 3rd Qu.:93.22
## Max. :83.08 Max. :5.067 Max. :19991 Max. :95.56
## X8 X9
## Min. :1.790 Min. : 6.170
## 1st Qu.:3.480 1st Qu.: 8.800
## Median :4.190 Median : 9.400
## Mean :4.462 Mean : 9.406
## 3rd Qu.:5.750 3rd Qu.: 9.950
## Max. :6.750 Max. :11.490
Eksplorasi Data
Histogram
hist(data.pmi$Ytransform)

hist(data.pmi$X1)

hist(data.pmi$X2)

hist(data.pmi$X3)

hist(data.pmi$X4)

hist(data.pmi$X5)

hist(data.pmi$X6)

hist(data.pmi$X7)

hist(data.pmi$X8)

hist(data.pmi$X9)

Boxplot
boxplot(data.pmi$Ytransform)

par(mfrow = c(3, 3)) # Membagi plotting area menjadi 3 baris x 3 kolom
boxplot(data.pmi$X1, main = "Boxplot Variabel X1", ylab = "Nilai", names = "X1")
boxplot(data.pmi$X2, main = "Boxplot Variabel X2", ylab = "Nilai", names = "X2")
boxplot(data.pmi$X3, main = "Boxplot Variabel X3", ylab = "Nilai", names = "X3")
boxplot(data.pmi$X4, main = "Boxplot Variabel X4", ylab = "Nilai", names = "X4")
boxplot(data.pmi$X5, main = "Boxplot Variabel X5", ylab = "Nilai", names = "X5")
boxplot(data.pmi$X6, main = "Boxplot Variabel X6", ylab = "Nilai", names = "X6")
boxplot(data.pmi$X7, main = "Boxplot Variabel X7", ylab = "Nilai", names = "X7")
boxplot(data.pmi$X8, main = "Boxplot Variabel X8", ylab = "Nilai", names = "X8")
boxplot(data.pmi$X9, main = "Boxplot Variabel X9", ylab = "Nilai", names = "X9")

boxplot(data.pmi$X1,
main = "Gini Rasio (X1)",
ylab = "Indeks",
names = "X1")

boxplot(data.pmi$X2,
main = "Rata-rata Penduduk Miskin (X2)",
ylab = "Persen",
names = "X2")

boxplot(data.pmi$X3,
main = "PDRB (X3)",
ylab = "Juta",
names = "X3")

boxplot(data.pmi$X4,
main = "IPM (X4)",
ylab = "Indeks",
names = "X4")

boxplot(data.pmi$X5,
main = "UMP (X5)",
ylab = "Juta",
names = "X5")

boxplot(data.pmi$X6,
main = "Pelatihan Berbasis Kompetensi (X6)",
ylab = "Orang",
names = "X6")

boxplot(data.pmi$X7,
main = "Indeks Pembangunan Gender (X7)",
ylab = "Indeks",
names = "X7")

boxplot(data.pmi$X8,
main = "Tingkat Pengangguran terbuka (X8)",
ylab = "Persen",
names = "X8")

boxplot(data.pmi$X9,
main = "Rata-rata Lama Sekolah (X9)",
ylab = "Tahun",
names = "X9")

Plot Y vs X
plot(data.pmi$X1, data.pmi$Ytransform)

plot(data.pmi$X2, data.pmi$Ytransform)

plot(data.pmi$X3, data.pmi$Ytransform)

plot(data.pmi$X4, data.pmi$Ytransform)

plot(data.pmi$X5, data.pmi$Ytransform)

plot(data.pmi$X6, data.pmi$Ytransform)

plot(data.pmi$X7, data.pmi$Ytransform)

plot(data.pmi$X8, data.pmi$Ytransform)

plot(data.pmi$X9, data.pmi$Ytransform)
