Extra Credit:

Imagine 10000 receipts sitting on your table. Each receipt represents a transaction with items that were purchased. The receipt is a representation of stuff that went into a customer’s basket - and therefore ‘Market Basket Analysis’. That is exactly what the Groceries Data Set contains: a collection of receipts with each line representing 1 receipt and the items purchased. Each line is called a transaction and each column in a row represents an item. The data set is attached. Your assignment is to use R to mine the data for association rules. You should report support, confidence and lift and your top 10 rules by lift. Extra credit: do a simple cluster analysis on the data as well. Use whichever packages you like.

# Read in dataset
grocery <- read.csv("C:/Users/Kesha/Desktop/Spring 2025/DATA 624/GroceryDataSet.csv")

I loaded the CSV file in as a transaction for the arules package.

# Load the file as transactions
grocery_trans <- read.transactions("C:/Users/Kesha/Desktop/Spring 2025/DATA 624/GroceryDataSet.csv",
                                   format = "basket", sep = ",")

Here I took a quick look at the data with summary and inspect. We can see that there are 9,835 transactions and 169 unique items. The density was 2.6% which means most transactions contained only a few items. We can also see that the most frequent items were whole milk, other vegetables, rolls/buns, soda, and yogurt.

# View data
summary(grocery_trans)
## transactions as itemMatrix in sparse format with
##  9835 rows (elements/itemsets/transactions) and
##  169 columns (items) and a density of 0.02609146 
## 
## most frequent items:
##       whole milk other vegetables       rolls/buns             soda 
##             2513             1903             1809             1715 
##           yogurt          (Other) 
##             1372            34055 
## 
## element (itemset/transaction) length distribution:
## sizes
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
## 2159 1643 1299 1005  855  645  545  438  350  246  182  117   78   77   55   46 
##   17   18   19   20   21   22   23   24   26   27   28   29   32 
##   29   14   14    9   11    4    6    1    1    1    1    3    1 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   4.409   6.000  32.000 
## 
## includes extended item information - examples:
##             labels
## 1 abrasive cleaner
## 2 artif. sweetener
## 3   baby cosmetics
inspect(grocery_trans[1:15])
##      items                      
## [1]  {citrus fruit,             
##       margarine,                
##       ready soups,              
##       semi-finished bread}      
## [2]  {coffee,                   
##       tropical fruit,           
##       yogurt}                   
## [3]  {whole milk}               
## [4]  {cream cheese,             
##       meat spreads,             
##       pip fruit,                
##       yogurt}                   
## [5]  {condensed milk,           
##       long life bakery product, 
##       other vegetables,         
##       whole milk}               
## [6]  {abrasive cleaner,         
##       butter,                   
##       rice,                     
##       whole milk,               
##       yogurt}                   
## [7]  {rolls/buns}               
## [8]  {bottled beer,             
##       liquor (appetizer),       
##       other vegetables,         
##       rolls/buns,               
##       UHT-milk}                 
## [9]  {pot plants}               
## [10] {cereals,                  
##       whole milk}               
## [11] {bottled water,            
##       chocolate,                
##       other vegetables,         
##       tropical fruit,           
##       white bread}              
## [12] {bottled water,            
##       butter,                   
##       citrus fruit,             
##       curd,                     
##       dishes,                   
##       flour,                    
##       tropical fruit,           
##       whole milk,               
##       yogurt}                   
## [13] {beef}                     
## [14] {frankfurter,              
##       rolls/buns,               
##       soda}                     
## [15] {chicken,                  
##       tropical fruit}

Next, I generated the association rules using the apriori() function with a minimum support of 0.01 and a minimum confidence of 0.5. This resulted in 15 strong association rules, each involving three items. The support values ranged from 1.01% to 2.23%, confidence from 0.50 to 0.59, and lift values from 1.98 to 3.03, indicating positive associations and varying strength of association between items. The rule with the highest lift involved citrus fruit and root vegetables leading to the purchase of other vegetables, suggesting that customers who buy citrus fruit and root vegetables are about three times more likely to also buy other vegetables. Additionally, the rules revealed strong links between root vegetables, tropical fruit and other vegetables.

rules <- apriori(grocery_trans, parameter = list(supp = 0.01, conf = 0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5    0.01      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 98 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [88 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [15 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
inspect(rules)
##      lhs                                       rhs                support   
## [1]  {curd, yogurt}                         => {whole milk}       0.01006609
## [2]  {butter, other vegetables}             => {whole milk}       0.01148958
## [3]  {domestic eggs, other vegetables}      => {whole milk}       0.01230300
## [4]  {whipped/sour cream, yogurt}           => {whole milk}       0.01087951
## [5]  {other vegetables, whipped/sour cream} => {whole milk}       0.01464159
## [6]  {other vegetables, pip fruit}          => {whole milk}       0.01352313
## [7]  {citrus fruit, root vegetables}        => {other vegetables} 0.01037112
## [8]  {root vegetables, tropical fruit}      => {other vegetables} 0.01230300
## [9]  {root vegetables, tropical fruit}      => {whole milk}       0.01199797
## [10] {tropical fruit, yogurt}               => {whole milk}       0.01514997
## [11] {root vegetables, yogurt}              => {other vegetables} 0.01291307
## [12] {root vegetables, yogurt}              => {whole milk}       0.01453991
## [13] {rolls/buns, root vegetables}          => {other vegetables} 0.01220132
## [14] {rolls/buns, root vegetables}          => {whole milk}       0.01270971
## [15] {other vegetables, yogurt}             => {whole milk}       0.02226741
##      confidence coverage   lift     count
## [1]  0.5823529  0.01728521 2.279125  99  
## [2]  0.5736041  0.02003050 2.244885 113  
## [3]  0.5525114  0.02226741 2.162336 121  
## [4]  0.5245098  0.02074225 2.052747 107  
## [5]  0.5070423  0.02887646 1.984385 144  
## [6]  0.5175097  0.02613116 2.025351 133  
## [7]  0.5862069  0.01769192 3.029608 102  
## [8]  0.5845411  0.02104728 3.020999 121  
## [9]  0.5700483  0.02104728 2.230969 118  
## [10] 0.5173611  0.02928317 2.024770 149  
## [11] 0.5000000  0.02582613 2.584078 127  
## [12] 0.5629921  0.02582613 2.203354 143  
## [13] 0.5020921  0.02430097 2.594890 120  
## [14] 0.5230126  0.02430097 2.046888 125  
## [15] 0.5128806  0.04341637 2.007235 219
summary(rules)
## set of 15 rules
## 
## rule length distribution (lhs + rhs):sizes
##  3 
## 15 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       3       3       3       3       3       3 
## 
## summary of quality measures:
##     support          confidence        coverage            lift      
##  Min.   :0.01007   Min.   :0.5000   Min.   :0.01729   Min.   :1.984  
##  1st Qu.:0.01174   1st Qu.:0.5151   1st Qu.:0.02089   1st Qu.:2.036  
##  Median :0.01230   Median :0.5245   Median :0.02430   Median :2.203  
##  Mean   :0.01316   Mean   :0.5411   Mean   :0.02454   Mean   :2.299  
##  3rd Qu.:0.01403   3rd Qu.:0.5718   3rd Qu.:0.02598   3rd Qu.:2.432  
##  Max.   :0.02227   Max.   :0.5862   Max.   :0.04342   Max.   :3.030  
##      count      
##  Min.   : 99.0  
##  1st Qu.:115.5  
##  Median :121.0  
##  Mean   :129.4  
##  3rd Qu.:138.0  
##  Max.   :219.0  
## 
## mining info:
##           data ntransactions support confidence
##  grocery_trans          9835    0.01        0.5
##                                                                      call
##  apriori(data = grocery_trans, parameter = list(supp = 0.01, conf = 0.5))

Theses are the top 10 association rules, sorted by lift. The output showed somewhat strong co-purchasing patterns. The highest lift value of 3.0 appeared in two rules: {citrus fruit, root vegetables} => {other vegetables} and {root vegetables, tropical fruit} => {other vegetables}, indicating that customers who purchase these combinations are three times more likely to also buy other vegetables. These rules suggest strong associations within fruits and vegetables. Other notable rules include {rolls/buns, root vegetables} => {other vegetables} with a lift of 2.6 and {curd, yogurt} => {whole milk} with a lift of 2.3, confidence of 58%, and support of 1.0%. Furthermore, rules predicting the purchase of whole milk were also commonly paired with items like butter, yogurt, and root vegetables, with lift values ranging from 2.1 to 2.3.

rules_sorted <- sort(rules, by = "lift", decreasing = TRUE)

top10_rules <- head(rules_sorted, 10)
inspect(top10_rules)
##      lhs                                  rhs                support   
## [1]  {citrus fruit, root vegetables}   => {other vegetables} 0.01037112
## [2]  {root vegetables, tropical fruit} => {other vegetables} 0.01230300
## [3]  {rolls/buns, root vegetables}     => {other vegetables} 0.01220132
## [4]  {root vegetables, yogurt}         => {other vegetables} 0.01291307
## [5]  {curd, yogurt}                    => {whole milk}       0.01006609
## [6]  {butter, other vegetables}        => {whole milk}       0.01148958
## [7]  {root vegetables, tropical fruit} => {whole milk}       0.01199797
## [8]  {root vegetables, yogurt}         => {whole milk}       0.01453991
## [9]  {domestic eggs, other vegetables} => {whole milk}       0.01230300
## [10] {whipped/sour cream, yogurt}      => {whole milk}       0.01087951
##      confidence coverage   lift     count
## [1]  0.5862069  0.01769192 3.029608 102  
## [2]  0.5845411  0.02104728 3.020999 121  
## [3]  0.5020921  0.02430097 2.594890 120  
## [4]  0.5000000  0.02582613 2.584078 127  
## [5]  0.5823529  0.01728521 2.279125  99  
## [6]  0.5736041  0.02003050 2.244885 113  
## [7]  0.5700483  0.02104728 2.230969 118  
## [8]  0.5629921  0.02582613 2.203354 143  
## [9]  0.5525114  0.02226741 2.162336 121  
## [10] 0.5245098  0.02074225 2.052747 107

The plot shows that whole milk is the most frequently purchased item, being in approximately 25% of customer transactions, followed by other vegetables (~19%), rolls/buns (~18%), and soda (~17.5%). These stand out due to their higher purchase frequencies compared to the rest of the items which suggest that they are commonly found in customer baskets.

itemFrequencyPlot(grocery_trans, topN = 20)

For the simple cluster analysis, I performed k-means clustering on the grocery data. First, I converted the grocery_trans transaction data into a binary matrix, where a value of 1 indicates a purchased item and 0 indicates a non-purchased item. Then, I performed k-means clustering with 3 centers, grouping the transactions into 3 distinct clusters.

The cluster plot showed three groups, all of which overlap. The blue cluster, which is similar in size to the green cluster, contains the majority of data points from all three clusters (red, blue, and green). The green cluster overlaps about half of its area with the blue cluster and the other half with the red cluster. Most of its data points are concentrated in the overlap between the green, blue, and red clusters, with fewer data points in the green/red-only overlap. Lastly, the red cluster, the largest in size, overlaps with both the green and blue clusters, with about one-third of its area in each. The majority of its data points are found in the green/blue overlap, and far fewer are located in the red-only section.

The overlapping suggests that there are no clearly distinct groups, which aligns with earlier findings from the association rules, further confirming the relationships between purchased items. The blue cluster, which contains the majority of the data points, likely captures many commonly purchased patterns shared across transactions. The red and green clusters, while somewhat distinct, still overlap heavily with the blue cluster, indicating that these clusters represent a mix of both common and less common purchasing patterns across transactions.

groceries_matrix <- as(grocery_trans, "matrix")

set.seed(11233)  
kmeans <- kmeans(groceries_matrix, centers = 3, nstart = 10)
kmeans$cluster
##    [1] 3 3 2 3 1 2 3 1 3 2 1 2 3 3 3 3 3 3 3 3 1 3 2 3 1 3 3 3 1 3 3 1 1 1 3 3 3
##   [38] 3 1 3 3 2 3 3 3 3 3 3 3 1 3 3 1 1 2 2 3 3 3 3 1 3 2 3 3 2 3 3 2 2 3 2 2 2
##   [75] 3 1 2 3 3 3 3 2 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 2 3 3 2 3 2 3 3 3 2 3 3 1
##  [112] 3 2 3 3 2 2 1 2 1 3 3 3 1 3 2 3 3 3 3 3 2 3 3 3 1 3 3 3 3 2 1 2 2 3 3 1 3
##  [149] 3 3 1 3 3 1 1 3 3 2 1 3 2 3 3 3 1 3 2 2 3 1 1 1 3 3 3 2 2 3 3 1 2 1 1 3 3
##  [186] 1 3 3 2 1 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 3 1 3 3 3 3 3 1 2 2 3 3 3 3 3 3 3
##  [223] 1 3 3 3 3 3 3 3 1 1 2 3 3 1 3 1 2 2 3 1 2 3 2 3 3 3 1 2 3 2 3 3 1 1 3 3 1
##  [260] 2 1 3 3 3 3 3 3 1 3 3 2 3 3 2 1 1 1 2 1 3 3 2 3 3 2 2 3 3 3 1 3 1 1 1 2 3
##  [297] 3 3 3 1 3 3 3 3 3 3 3 3 2 3 2 3 3 3 1 3 3 3 3 3 3 3 2 3 1 1 3 3 1 3 3 3 3
##  [334] 3 3 3 3 3 3 1 2 3 3 3 3 1 3 2 2 2 3 3 3 3 3 2 3 3 3 2 2 2 3 3 2 3 1 3 3 3
##  [371] 1 3 3 1 3 2 2 3 3 3 3 3 3 3 3 1 3 3 3 2 3 3 3 3 3 2 3 3 2 1 3 1 2 1 1 3 3
##  [408] 3 3 3 3 1 1 2 3 1 3 3 3 1 3 3 2 3 3 3 3 3 3 2 3 3 1 3 3 3 3 3 1 3 1 3 1 3
##  [445] 3 3 1 3 1 1 2 3 2 1 3 1 3 3 3 3 3 3 3 2 3 3 1 3 2 3 1 3 2 3 1 2 1 3 2 3 3
##  [482] 2 3 3 3 3 1 3 1 3 3 3 3 2 3 3 3 1 1 1 3 2 3 3 3 3 3 2 1 3 3 3 3 3 3 2 3 2
##  [519] 1 3 3 3 1 1 3 1 3 2 3 3 3 3 3 2 3 3 3 2 2 3 3 3 3 1 3 2 2 2 2 1 3 3 3 3 3
##  [556] 3 3 1 3 3 3 1 2 2 3 3 3 3 2 3 3 1 1 3 3 3 3 3 3 2 3 3 3 3 3 2 2 2 3 3 3 3
##  [593] 3 3 1 1 2 2 3 3 3 3 3 2 1 3 3 2 1 3 3 3 1 3 1 2 3 3 3 2 3 3 3 3 2 2 3 1 2
##  [630] 2 1 2 2 1 3 1 3 1 3 3 3 1 1 3 3 3 3 3 1 3 3 2 3 1 1 3 3 3 1 2 3 1 3 3 3 2
##  [667] 3 2 1 3 3 3 2 3 3 2 3 2 2 2 1 2 3 3 1 2 3 3 3 3 3 3 3 3 2 3 1 3 2 3 2 3 3
##  [704] 3 2 3 1 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 2 1 3 3 3 3 3 1
##  [741] 2 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 1 2 1 3 1 3 3 2 2 3 1 3 3 1 2 1 1
##  [778] 1 3 1 3 2 2 3 2 3 3 3 3 1 3 2 2 3 3 2 1 2 3 3 2 1 3 2 3 3 3 3 2 2 2 2 3 3
##  [815] 3 3 2 1 3 3 1 2 2 1 3 2 3 1 3 2 2 1 2 3 3 2 3 3 3 2 2 3 2 1 3 2 1 1 1 1 2
##  [852] 3 1 3 1 2 3 3 3 1 1 1 3 3 2 3 3 3 2 3 3 2 3 2 2 3 3 3 3 3 3 3 3 3 3 2 3 3
##  [889] 3 1 3 3 1 2 1 2 2 3 3 2 3 1 2 3 1 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 2 2 2 1 3
##  [926] 3 3 2 3 3 2 2 3 3 3 3 2 3 3 3 3 3 2 3 3 1 2 3 1 1 1 3 2 3 3 3 3 2 2 3 3 1
##  [963] 1 3 3 3 2 3 1 3 3 3 3 3 1 3 3 3 1 1 1 3 3 3 2 2 3 3 1 2 1 3 3 3 3 1 1 3 3
## [1000] 1 3 3 3 1 3 3 3 3 2 2 3 1 2 1 3 3 1 3 2 2 3 3 2 3 3 3 1 3 3 3 2 3 3 3 3 2
## [1037] 3 3 3 2 3 1 1 3 1 1 1 3 3 2 3 2 2 3 3 3 2 3 2 3 3 3 2 1 3 3 1 3 3 3 3 3 3
## [1074] 1 1 3 1 3 3 3 3 2 3 1 2 3 3 3 3 1 1 1 2 3 3 3 3 3 3 3 3 1 1 3 2 1 3 3 1 3
## [1111] 3 3 3 3 1 3 3 3 3 2 3 1 1 1 3 3 1 3 3 3 3 3 3 1 1 3 3 1 3 1 3 3 3 3 1 3 3
## [1148] 1 1 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 2 1 1 1 1 3 3 3 1 3 3 3 3 3 3 3 1 3
## [1185] 1 3 3 2 2 2 3 3 3 3 3 3 2 1 2 3 1 3 3 3 1 2 2 3 2 1 2 1 2 3 3 2 1 1 1 1 3
## [1222] 1 3 3 3 3 1 1 1 2 3 3 3 3 1 2 2 3 3 3 3 3 1 1 1 3 3 2 3 3 3 3 2 3 2 1 3 3
## [1259] 3 3 2 3 1 3 3 3 1 2 3 2 3 1 3 3 1 3 3 3 2 3 3 1 3 1 1 3 3 3 3 2 2 3 3 1 3
## [1296] 3 3 3 3 3 1 1 2 3 1 3 2 1 1 3 1 3 1 3 1 3 3 3 1 3 3 3 1 1 2 3 3 3 3 3 2 1
## [1333] 2 3 2 3 3 2 1 1 3 3 3 2 3 1 2 2 3 3 3 1 3 1 3 3 3 1 2 3 1 3 3 2 3 1 3 3 3
## [1370] 3 3 1 3 2 1 3 3 3 3 3 3 2 3 3 2 1 3 1 3 3 3 2 1 3 3 3 3 3 3 2 3 3 3 3 3 1
## [1407] 2 3 3 2 2 3 3 1 3 3 3 1 3 2 3 3 3 3 3 2 2 3 3 3 2 2 3 2 3 2 3 3 3 3 3 3 2
## [1444] 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 1 3 3 2 3 1 3 3 2 3 1 3
## [1481] 2 3 2 3 3 3 1 3 1 1 3 3 2 3 2 3 1 3 3 3 2 3 3 3 3 3 1 1 2 3 3 1 3 1 2 3 1
## [1518] 3 2 3 3 3 2 3 3 1 3 3 3 3 3 3 3 1 2 2 3 2 1 3 1 1 1 1 3 3 3 3 2 3 1 2 3 3
## [1555] 1 3 3 1 1 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 3 3 3 1 3
## [1592] 1 3 1 3 3 3 3 3 1 3 3 1 3 3 3 1 2 3 3 3 3 2 3 3 3 2 3 3 3 1 1 1 3 3 3 3 3
## [1629] 2 3 3 3 3 3 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 2 1 2 3 1 3 3 3 1 2 3 1 1 2 2 2
## [1666] 1 2 3 3 3 2 2 3 3 3 1 3 1 3 1 3 1 3 3 3 3 2 2 3 3 3 3 2 3 1 1 3 1 3 3 3 3
## [1703] 3 1 2 1 1 3 3 2 1 3 2 3 3 3 1 3 1 3 2 1 3 3 2 2 2 3 3 3 3 3 3 3 3 1 3 3 2
## [1740] 2 3 3 1 3 3 3 3 3 3 3 2 3 3 1 3 1 3 1 3 3 3 3 2 3 2 2 1 3 3 1 3 3 2 1 1 3
## [1777] 3 3 3 1 2 3 3 3 3 2 2 3 3 2 2 3 3 2 2 3 2 2 3 3 3 3 1 3 3 1 3 3 3 1 3 3 3
## [1814] 3 2 3 3 3 2 3 3 3 3 2 3 2 1 3 3 2 2 3 3 3 3 2 1 3 3 3 1 3 1 3 3 1 2 3 3 2
## [1851] 3 3 2 1 3 3 2 3 3 3 3 3 3 1 3 3 3 2 2 3 2 3 2 2 1 3 3 3 1 3 3 1 1 3 1 3 2
## [1888] 3 1 3 3 2 1 3 3 1 3 2 2 3 3 3 1 2 2 1 3 3 3 3 3 3 1 1 3 2 3 1 2 2 1 1 1 1
## [1925] 3 3 2 3 3 3 3 3 1 2 3 2 2 1 2 3 1 2 3 2 3 1 3 2 1 2 3 2 2 3 3 3 3 3 3 3 3
## [1962] 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 3 1 3 3 3 2 3 2 3
## [1999] 3 3 3 1 1 3 1 3 1 1 2 3 1 2 3 1 1 1 3 1 3 3 1 2 3 3 2 3 1 3 3 3 3 3 3 3 1
## [2036] 2 3 3 3 2 2 3 2 3 3 3 2 2 3 3 3 1 3 1 1 1 3 3 3 1 2 3 3 1 3 3 3 2 3 3 2 2
## [2073] 3 3 3 3 2 3 3 3 2 3 2 3 3 2 3 2 1 1 3 3 3 2 1 2 3 3 1 2 2 3 3 3 3 1 3 1 3
## [2110] 3 3 3 3 3 3 3 3 2 3 3 1 1 3 1 3 3 3 3 3 3 2 3 1 2 1 1 3 1 1 3 3 3 3 2 3 3
## [2147] 3 2 2 3 3 3 3 3 3 3 2 2 3 3 1 1 3 3 3 1 3 3 1 1 1 2 2 3 3 3 1 1 3 3 3 3 3
## [2184] 1 3 1 3 1 2 3 3 1 3 3 2 3 2 3 1 3 3 3 3 3 3 3 2 3 2 3 3 1 1 1 3 2 2 1 3 3
## [2221] 3 3 1 2 3 2 2 2 1 3 2 3 1 2 3 3 3 3 3 3 2 3 1 3 3 2 3 3 3 3 3 3 2 1 3 1 2
## [2258] 3 2 3 3 1 3 2 3 3 3 3 3 3 1 3 3 1 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 2 3 1 3 3
## [2295] 3 3 3 3 3 2 1 3 2 3 3 2 2 2 3 1 3 3 2 1 2 1 3 3 3 1 1 3 1 2 3 3 3 3 2 2 2
## [2332] 3 2 3 1 2 1 3 3 3 3 3 3 2 2 1 3 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 1 2 3 3
## [2369] 3 3 2 2 1 3 3 3 1 3 3 3 3 3 3 3 3 2 3 1 3 2 1 3 3 2 3 3 3 3 3 3 3 2 1 3 3
## [2406] 3 3 3 1 2 3 2 3 3 1 3 2 1 3 3 3 3 3 3 3 3 3 1 3 3 2 1 2 3 1 1 3 3 3 3 3 3
## [2443] 2 3 1 3 3 3 3 2 3 3 2 3 1 2 3 3 3 3 3 2 2 3 3 3 2 1 3 1 3 3 1 2 3 3 3 2 1
## [2480] 2 3 3 3 3 3 3 1 3 3 2 3 3 1 3 3 3 1 3 1 3 3 3 3 3 2 3 3 1 3 3 3 3 3 2 3 3
## [2517] 1 3 3 1 3 2 3 3 3 2 1 2 1 3 2 3 1 3 3 1 3 1 3 2 3 3 1 1 2 1 3 3 3 1 2 3 3
## [2554] 1 2 2 3 3 3 1 2 3 2 3 3 2 3 2 3 3 3 3 3 1 3 3 2 2 3 3 1 3 2 3 1 3 3 1 1 1
## [2591] 3 3 3 3 2 3 1 3 1 2 3 3 3 2 3 3 3 3 2 3 2 1 3 3 2 3 3 3 3 2 3 2 3 1 2 3 3
## [2628] 3 1 1 3 1 2 3 2 2 1 2 3 3 3 1 3 3 2 3 2 3 3 3 3 1 3 3 3 3 3 1 3 3 3 2 1 3
## [2665] 2 2 3 1 3 3 2 3 3 1 2 3 3 3 3 2 3 1 3 1 3 3 3 3 1 3 1 3 3 3 1 3 3 3 3 1 3
## [2702] 3 1 3 1 3 3 1 3 1 3 3 3 3 2 2 2 3 3 3 3 3 2 2 3 2 3 1 3 3 1 3 1 1 3 3 1 3
## [2739] 2 3 2 2 3 1 1 3 3 3 3 1 3 3 1 3 3 1 3 3 3 3 3 2 1 1 3 3 3 3 3 3 3 3 2 3 3
## [2776] 1 3 1 2 3 2 1 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3
## [2813] 3 3 2 1 3 3 3 2 3 3 3 3 3 1 3 3 3 3 2 3 3 3 3 2 2 3 2 3 3 3 1 3 3 3 3 2 2
## [2850] 3 2 3 3 3 3 3 1 3 3 3 3 3 1 2 3 2 3 3 2 3 3 3 3 3 2 3 3 3 3 3 1 2 2 3 2 2
## [2887] 2 2 3 3 3 3 1 3 3 3 3 3 1 1 3 3 3 2 3 3 3 3 2 1 1 3 3 3 3 3 3 2 3 3 3 3 3
## [2924] 3 3 3 3 1 3 3 2 3 3 3 3 3 3 2 1 3 3 3 1 2 3 3 3 1 3 3 1 3 2 1 1 3 2 3 3 3
## [2961] 1 2 1 3 2 3 3 2 1 3 1 1 2 1 2 3 3 3 3 3 3 1 1 3 3 3 3 1 3 1 3 1 3 3 3 1 2
## [2998] 3 2 2 3 3 1 3 1 2 3 3 1 1 2 3 1 3 3 1 1 1 1 3 2 2 1 3 3 3 1 1 3 3 2 1 1 3
## [3035] 3 1 3 3 2 3 1 1 3 2 3 1 3 3 1 3 3 1 2 1 2 1 1 3 1 3 3 3 3 2 3 2 1 3 3 2 3
## [3072] 2 3 2 3 3 3 3 2 1 3 1 3 1 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3
## [3109] 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 1 3 3 3 3 3 3 3 3 1 1 2 1 3 3 3 3 3 3 3 3 3
## [3146] 2 1 2 2 1 1 3 1 1 3 3 1 3 2 3 3 1 3 3 3 3 3 1 2 1 3 3 1 2 3 2 3 1 2 3 3 3
## [3183] 2 3 3 2 3 3 3 1 3 3 1 3 1 2 1 2 1 3 3 3 3 1 1 3 1 3 1 1 3 3 3 1 1 1 2 1 3
## [3220] 1 1 1 2 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 2 1 2 1 3 2 3 3 1 3 3 3 3 3 3 2
## [3257] 2 3 3 1 1 3 1 3 3 1 3 3 1 3 2 3 3 3 1 3 3 3 3 3 3 2 2 3 1 1 3 3 2 3 3 1 3
## [3294] 3 2 1 3 1 3 2 2 3 2 3 3 1 3 2 3 3 3 3 3 3 3 2 3 1 1 3 3 3 3 3 3 3 3 3 3 1
## [3331] 1 2 3 3 1 1 3 1 1 2 3 3 2 3 1 3 3 3 3 1 3 3 3 3 2 3 3 1 3 3 3 3 3 2 3 3 3
## [3368] 3 3 3 3 2 3 3 2 3 3 3 3 3 1 2 1 1 3 3 3 3 3 1 2 2 3 3 3 1 3 3 3 3 3 3 3 2
## [3405] 2 2 3 3 3 2 2 3 3 3 2 3 3 1 3 1 3 2 3 1 3 3 3 1 2 3 3 3 3 3 2 3 2 3 3 2 3
## [3442] 3 2 3 3 3 3 3 2 3 1 3 3 2 3 3 3 3 3 1 3 3 3 3 3 1 3 2 2 2 3 3 3 3 1 2 3 3
## [3479] 3 3 3 3 3 3 3 3 2 3 3 2 2 3 1 3 2 2 3 3 3 3 1 3 1 3 3 2 3 2 2 3 3 3 3 3 1
## [3516] 3 3 3 2 3 3 3 3 3 3 3 1 3 3 3 3 2 3 3 3 3 3 1 3 3 2 3 3 2 3 2 2 2 3 3 1 3
## [3553] 3 3 3 1 2 2 3 1 3 1 3 3 3 2 3 2 3 3 3 3 3 3 3 2 1 3 3 3 3 3 3 3 3 2 3 3 3
## [3590] 2 3 3 2 1 3 2 3 3 3 3 2 3 3 3 3 3 3 1 1 3 2 3 3 2 2 3 3 3 3 3 3 1 3 3 1 3
## [3627] 3 1 3 1 1 1 3 2 3 3 3 3 3 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 1 3
## [3664] 3 3 1 3 3 1 3 3 2 1 1 3 1 3 1 1 3 3 3 3 3 2 3 1 1 3 3 1 2 2 2 3 1 3 3 3 3
## [3701] 3 1 3 3 3 2 3 1 3 2 3 3 3 3 3 1 3 1 3 1 3 3 3 3 1 3 2 3 3 2 3 3 3 3 2 3 3
## [3738] 2 2 3 2 3 3 2 3 3 3 3 3 3 2 1 3 3 1 3 3 3 1 3 2 1 3 3 3 3 3 2 3 3 3 3 3 3
## [3775] 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 2 1 3 3 3 3 3 2 3 3 2 1 3 3 3 3 3 3 3 3 3 2
## [3812] 3 3 1 1 3 3 1 3 3 1 2 3 3 3 3 3 1 3 3 3 3 1 2 3 3 3 2 2 2 1 1 3 3 2 1 3 3
## [3849] 1 1 3 1 3 1 1 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 2 3 3 3 1 3 2 1
## [3886] 3 2 2 3 3 1 1 3 3 1 2 3 3 2 3 3 3 1 2 1 3 1 1 3 3 1 2 3 2 2 2 3 2 3 3 3 3
## [3923] 3 1 3 3 3 3 3 1 3 3 3 1 2 2 3 1 3 2 3 3 3 3 3 3 3 1 2 1 2 1 1 1 1 1 3 3 3
## [3960] 3 3 3 2 2 3 3 3 3 3 1 1 1 2 1 3 3 1 1 2 3 3 3 3 2 1 3 3 3 2 3 3 1 3 1 3 3
## [3997] 1 3 3 3 1 3 3 3 2 3 3 3 3 2 2 2 3 2 1 2 2 3 3 1 3 3 3 3 3 3 3 3 2 3 3 1 1
## [4034] 2 3 1 2 1 3 3 3 1 3 3 1 3 2 2 1 2 3 1 1 3 3 2 3 2 3 1 2 3 3 1 3 1 3 1 3 3
## [4071] 3 2 2 1 3 3 2 3 2 1 1 3 3 2 3 3 3 1 2 1 2 3 3 3 3 2 2 3 2 3 2 2 2 2 1 3 1
## [4108] 1 3 3 3 2 2 3 3 3 3 3 3 2 3 2 3 2 3 1 1 2 3 1 3 2 2 3 1 3 1 3 3 2 3 3 3 3
## [4145] 1 3 3 3 3 3 1 3 3 3 3 3 1 3 1 1 2 3 1 1 2 1 2 1 3 3 3 3 3 2 2 3 3 3 3 1 3
## [4182] 3 1 1 3 1 3 3 3 3 2 3 1 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 1 3 2 3 3 1 3 3 2 3
## [4219] 1 3 3 1 1 3 3 2 2 3 1 1 1 1 1 2 1 2 3 2 3 3 3 3 3 3 2 3 2 2 3 1 3 2 3 3 3
## [4256] 1 2 1 3 3 2 3 3 3 3 3 3 3 3 2 3 1 3 2 2 3 2 3 3 1 3 3 3 3 3 3 2 2 1 2 2 3
## [4293] 3 2 1 3 2 3 3 3 2 1 2 3 1 3 1 3 3 3 2 2 2 1 2 3 1 2 1 3 2 3 3 1 2 3 2 1 1
## [4330] 1 3 1 2 3 3 2 2 2 1 2 3 3 1 3 1 1 2 3 2 3 3 3 3 1 1 3 1 1 3 1 2 3 1 3 3 3
## [4367] 1 2 1 1 3 1 3 2 1 1 3 1 2 3 1 2 2 3 3 1 3 3 1 3 2 3 2 3 1 1 1 3 1 2 3 3 3
## [4404] 3 1 2 3 3 3 1 3 1 3 3 1 1 1 3 2 1 1 3 2 3 3 3 2 3 1 3 2 2 2 3 3 3 3 3 3 2
## [4441] 3 2 3 1 3 1 3 1 2 1 1 3 3 3 2 3 1 3 1 1 1 3 1 3 3 3 3 2 3 3 3 1 3 3 3 1 3
## [4478] 3 2 1 3 3 2 3 2 3 2 1 3 3 3 1 3 1 3 3 3 3 1 2 3 3 3 1 1 3 3 3 3 3 2 3 2 1
## [4515] 3 1 2 3 1 3 3 1 2 3 3 2 3 3 1 3 1 3 3 3 3 3 2 3 2 1 3 3 1 1 3 1 3 3 1 1 2
## [4552] 3 3 1 2 1 3 1 3 3 3 3 3 3 2 1 3 3 2 3 1 3 3 1 1 3 2 3 2 3 3 3 3 3 3 2 3 2
## [4589] 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 2 3 2 3 3 3 3 3 2 2 3 3
## [4626] 1 1 3 1 3 3 3 3 3 2 2 3 3 2 3 3 3 1 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3
## [4663] 3 2 1 1 3 3 3 3 3 3 1 2 3 3 1 2 3 1 2 1 3 3 3 3 1 3 3 3 3 3 2 3 1 2 3 3 3
## [4700] 2 3 3 3 2 3 2 1 3 3 3 3 1 3 1 3 2 3 2 2 3 1 1 3 3 1 2 3 3 2 3 1 1 3 3 3 3
## [4737] 3 3 2 2 1 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 2 3 3 3 3 3 2 3 3 3 3 3 1
## [4774] 1 3 3 3 3 3 2 1 2 3 1 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3
## [4811] 3 3 3 3 3 2 3 3 3 3 1 3 3 3 3 3 3 2 2 3 3 3 3 2 3 3 2 3 1 3 1 1 2 3 3 3 1
## [4848] 1 2 3 3 3 3 3 2 2 3 3 3 3 3 3 2 3 3 1 3 1 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
## [4885] 2 3 3 2 3 3 2 3 1 3 3 3 1 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 2 3 2 2 1 3 3 3 3
## [4922] 3 2 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 1 2 3 3 1 1 3 3 2 1 2 2 3 3 3 3 3 2 3
## [4959] 2 2 3 1 3 3 3 3 3 1 3 1 3 3 3 3 3 1 3 3 2 3 3 2 3 1 3 3 3 3 3 1 2 2 3 3 3
## [4996] 1 1 3 3 3 3 1 2 3 1 3 2 3 2 3 3 2 2 3 3 3 3 3 1 3 3 3 3 3 2 1 3 1 2 3 2 3
## [5033] 3 1 3 3 3 3 3 3 3 3 3 3 2 3 3 2 1 1 2 3 3 3 3 3 3 3 3 3 2 3 2 3 3 2 1 3 2
## [5070] 1 2 2 3 2 3 3 3 1 3 3 2 3 2 3 3 3 3 2 3 1 3 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3
## [5107] 1 3 2 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 2 2 3 1 1 3 3 3 3 3 3 3 3 3
## [5144] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 1 1 1 3 1 3 1 3 3 1 1 3 1 3 3 2 3 3
## [5181] 3 3 3 3 3 3 3 3 1 3 3 2 3 2 1 1 3 3 2 1 3 3 3 3 1 1 3 3 2 3 2 3 3 3 2 1 3
## [5218] 3 3 1 3 3 3 3 3 2 3 3 1 3 3 3 3 3 3 3 1 3 1 3 2 1 3 1 1 1 3 3 3 3 3 3 3 1
## [5255] 3 3 2 2 3 3 3 2 3 1 3 3 3 3 2 1 2 3 3 2 3 3 3 3 3 3 2 3 3 2 1 3 1 3 3 3 3
## [5292] 2 3 2 1 1 2 1 3 2 3 3 3 3 3 1 3 3 2 3 2 2 1 3 3 1 3 3 3 3 3 2 2 3 2 3 1 3
## [5329] 3 2 2 3 3 3 3 1 3 1 2 2 3 3 2 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 2 1
## [5366] 2 3 3 3 3 3 3 3 1 2 3 3 3 2 3 3 3 3 1 2 2 3 3 3 3 3 1 3 3 3 3 1 2 3 3 3 2
## [5403] 3 3 3 1 3 1 3 3 3 3 3 1 3 3 3 1 2 3 3 3 1 1 1 3 1 3 3 2 3 3 3 2 2 2 3 3 3
## [5440] 1 2 3 3 2 2 3 2 3 2 3 2 2 3 3 3 1 3 3 3 2 3 1 3 1 3 3 2 2 3 1 3 2 3 1 3 3
## [5477] 1 2 1 3 3 1 1 1 3 1 3 3 2 3 1 2 3 1 3 3 3 3 2 2 1 3 3 3 1 3 3 3 2 2 2 2 2
## [5514] 3 1 3 1 1 3 2 3 3 3 3 1 3 1 1 1 1 3 3 1 3 1 3 2 1 3 2 3 1 3 3 3 3 3 1 1 1
## [5551] 1 1 1 3 2 3 3 2 1 3 3 3 3 3 3 3 3 3 2 2 3 2 2 3 3 3 1 3 2 3 3 3 1 3 1 3 3
## [5588] 3 3 3 3 2 3 2 1 1 3 2 3 3 3 2 3 3 2 3 3 3 3 3 2 2 2 1 1 3 3 3 2 2 1 1 1 1
## [5625] 1 3 2 3 3 3 2 3 3 1 1 2 2 3 2 2 1 2 2 1 1 1 1 1 3 1 1 3 3 3 3 3 1 3 3 1 1
## [5662] 3 1 3 2 3 3 1 1 1 2 1 1 3 2 3 1 2 2 3 3 3 1 1 1 2 3 2 1 3 2 1 3 1 3 3 2 2
## [5699] 1 3 3 1 3 1 1 3 2 3 1 2 2 3 3 1 3 3 3 1 2 2 1 3 1 2 1 3 2 2 3 2 3 1 2 1 2
## [5736] 1 1 3 1 2 3 3 1 3 2 2 3 2 3 1 3 1 3 1 3 3 2 3 3 3 3 3 2 1 3 1 3 1 3 3 1 3
## [5773] 3 1 1 3 3 3 3 1 2 1 3 2 1 1 1 1 1 3 3 3 3 3 2 1 3 2 1 3 3 1 1 1 2 1 1 1 2
## [5810] 1 1 3 3 3 3 2 1 1 3 3 3 1 3 3 1 3 3 3 3 3 2 2 3 1 3 3 3 3 3 3 3 3 3 3 3 3
## [5847] 3 3 2 3 3 3 3 1 3 3 1 3 3 1 3 3 2 2 3 2 3 1 3 1 3 3 3 2 3 3 3 1 3 3 3 3 3
## [5884] 3 3 1 2 1 3 3 1 1 3 3 3 1 1 1 3 2 3 1 2 1 1 3 3 2 2 3 1 1 1 3 3 1 3 3 3 3
## [5921] 1 1 1 2 3 3 2 3 3 3 2 1 3 3 2 3 3 3 2 1 3 3 3 3 3 2 3 3 3 3 1 2 2 1 3 3 1
## [5958] 2 3 3 3 1 3 3 3 2 1 2 2 1 2 1 3 3 1 2 3 2 2 1 3 2 2 3 3 3 1 3 3 3 3 3 3 3
## [5995] 2 3 1 3 3 3 2 3 3 3 2 3 2 2 3 3 3 2 3 3 2 3 1 3 2 3 3 3 3 3 3 3 1 3 3 3 3
## [6032] 3 3 3 3 1 1 2 3 3 3 3 3 2 3 3 3 3 3 1 2 2 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 1
## [6069] 3 2 1 1 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 2 3 2 3 1 3 2 3 1 3 3 1 3 3 3 2 3
## [6106] 3 1 3 3 2 2 3 3 3 3 3 3 3 3 2 1 3 2 3 3 3 3 3 3 3 3 2 3 3 1 3 3 3 2 3 3 3
## [6143] 3 3 1 3 3 3 3 2 1 3 1 3 3 3 3 2 3 3 1 1 3 3 3 3 3 2 3 2 3 3 3 3 3 1 3 1 3
## [6180] 3 3 3 3 3 3 3 3 3 3 1 2 3 3 3 3 3 2 3 2 1 1 1 3 3 3 3 3 3 1 3 2 3 1 3 2 2
## [6217] 3 3 3 3 2 3 3 3 1 3 3 1 3 3 3 3 3 2 3 1 3 3 2 3 1 3 3 2 3 3 2 3 3 3 2 3 2
## [6254] 3 2 1 3 2 2 3 1 2 1 3 1 1 3 3 3 3 2 3 3 1 3 2 3 3 3 1 3 2 3 3 2 3 3 1 2 1
## [6291] 3 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 2 3 3 2 1 1 2 3 2 3 3 3 3 1 3 3 3 1 1 3 2
## [6328] 1 1 3 3 3 3 3 1 2 1 3 1 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 3 2 3 3 3 3 1 3 3 3
## [6365] 3 3 3 3 1 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 1 2 2 3 3 3 1 3 3 1 2 1 3 1 3 3
## [6402] 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 1 2 3
## [6439] 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 1 3 3 1 1
## [6476] 3 3 3 1 3 3 2 1 3 3 3 3 3 2 1 3 2 3 3 3 1 3 3 3 1 3 3 3 3 3 1 3 3 2 2 1 2
## [6513] 3 1 3 1 3 3 3 3 3 3 3 1 3 3 3 2 3 2 2 1 3 3 3 3 3 3 3 3 2 2 3 3 3 3 1 1 3
## [6550] 3 3 2 2 3 3 3 1 1 2 3 3 3 2 1 3 3 1 3 3 3 3 2 2 2 3 3 3 3 1 2 3 3 3 3 3 3
## [6587] 2 3 3 3 1 3 3 3 2 3 3 3 2 3 2 3 1 3 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3 1 3 3 1
## [6624] 3 1 3 3 3 1 2 3 3 3 1 3 1 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 2 3 3 2 3 3 3 3 1
## [6661] 3 3 3 3 3 1 3 3 3 3 1 3 2 3 3 3 3 2 2 2 1 2 3 3 2 3 2 2 2 3 3 3 2 2 1 3 3
## [6698] 2 2 1 3 3 2 1 2 2 2 2 1 3 1 2 2 3 3 1 1 2 3 3 2 2 2 3 3 3 3 3 3 3 1 2 3 2
## [6735] 3 3 3 3 1 1 1 3 3 2 2 2 1 1 3 3 3 1 1 1 3 2 2 2 3 2 2 3 1 1 3 3 3 2 2 1 3
## [6772] 2 3 1 3 1 3 3 1 2 1 2 3 1 1 3 2 1 1 3 1 2 3 2 2 3 3 3 1 3 3 1 1 2 2 3 2 3
## [6809] 1 1 1 2 3 3 3 3 1 3 1 3 1 2 1 3 1 1 2 1 1 1 3 3 1 3 2 3 2 3 3 3 1 3 3 3 1
## [6846] 3 3 3 3 1 3 1 3 3 1 2 3 3 1 3 2 3 1 1 1 3 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 1
## [6883] 3 1 3 3 1 3 3 3 2 1 3 3 3 3 1 2 3 3 3 3 1 3 2 3 3 3 3 3 3 3 3 3 3 3 1 3 3
## [6920] 3 1 3 2 3 2 2 3 2 3 3 3 3 3 1 3 3 1 2 3 3 3 1 3 3 3 2 1 3 3 1 3 2 3 2 3 3
## [6957] 3 3 3 3 3 1 3 1 3 3 3 3 3 3 2 3 2 3 2 3 2 2 3 3 3 3 3 3 2 3 3 3 3 1 3 3 3
## [6994] 3 2 1 1 3 3 3 3 3 3 3 3 3 1 3 3 3 2 3 1 1 3 3 2 3 3 1 3 2 3 2 3 2 3 2 3 2
## [7031] 3 1 3 3 3 1 3 3 1 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 2 3 3 3 3 2 1 3 3 3 3 2 3
## [7068] 1 1 3 3 3 3 3 3 3 2 3 3 3 3 2 2 2 1 2 3 3 3 3 3 3 3 2 1 3 3 1 3 3 3 3 2 3
## [7105] 3 3 1 3 2 3 3 3 3 1 3 1 2 2 2 3 2 3 1 3 3 3 3 3 3 2 3 2 1 1 1 3 2 2 3 2 3
## [7142] 3 2 1 1 1 3 2 3 3 3 3 3 3 2 3 3 3 1 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1
## [7179] 3 3 2 2 1 2 2 3 3 2 3 1 3 3 3 2 3 2 3 3 3 3 3 2 2 3 3 2 3 3 3 1 1 3 1 3 3
## [7216] 3 2 3 1 3 2 3 3 3 3 3 3 2 3 3 3 1 3 3 3 1 3 3 3 3 3 2 3 3 3 3 3 3 3 1 3 2
## [7253] 1 3 3 2 2 1 2 2 1 1 3 3 3 3 2 3 3 1 3 3 2 3 3 3 3 3 2 3 3 3 1 2 1 3 2 2 3
## [7290] 2 2 3 3 2 3 3 1 3 1 3 1 3 1 1 3 1 3 3 3 3 3 3 2 3 3 3 3 1 1 3 3 3 3 3 3 3
## [7327] 3 3 3 3 3 3 2 3 1 3 3 2 2 3 3 2 2 3 3 3 3 3 3 3 1 3 3 2 2 3 2 3 3 3 3 2 3
## [7364] 2 3 1 1 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 3 2 3 3 3 3 1 3 3 2 3 3 1 2 3 3 3
## [7401] 3 3 3 3 3 3 3 1 3 3 3 3 3 2 3 3 3 1 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 1 3 2
## [7438] 3 2 3 3 3 2 3 3 3 3 2 2 3 3 2 1 3 1 2 2 2 3 3 3 1 2 2 2 3 3 3 1 1 2 2 1 1
## [7475] 3 3 3 3 3 3 3 2 2 1 3 3 2 3 3 3 3 1 2 3 1 3 3 3 3 1 1 3 3 3 3 3 3 2 2 2 3
## [7512] 3 3 1 3 1 1 3 2 2 3 3 3 1 3 3 2 3 3 3 3 2 3 1 3 3 2 3 2 3 1 1 1 3 1 3 3 1
## [7549] 3 1 3 2 2 1 1 3 3 1 1 3 3 3 3 3 3 1 3 1 3 3 1 2 3 1 1 2 3 3 3 3 3 1 3 3 2
## [7586] 3 3 3 3 3 3 2 1 3 1 3 2 1 1 3 3 3 3 2 3 1 1 2 3 3 2 3 1 3 3 3 3 3 3 3 3 3
## [7623] 3 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 1 1 3 2 3 3 1 3 2 3 3 3 2 2 3 3 2 3 3 3
## [7660] 1 3 1 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3 3 2 1 3 2 3 3 3 3 3 3
## [7697] 2 1 2 3 2 1 3 3 2 3 3 3 3 2 3 2 3 3 3 3 2 1 1 3 3 2 3 2 3 1 1 3 2 2 3 3 2
## [7734] 3 3 3 3 3 2 3 3 1 1 3 2 3 1 2 3 3 3 1 3 2 1 3 1 3 2 1 3 3 2 1 1 1 3 1 3 2
## [7771] 2 2 3 3 3 2 1 3 3 3 2 2 1 3 3 1 3 3 3 3 3 2 3 3 3 3 2 2 3 3 2 3 3 1 3 1 1
## [7808] 1 3 1 2 1 2 3 3 3 2 3 3 3 3 3 3 2 2 1 2 1 3 2 3 2 2 3 1 3 2 1 3 3 3 2 1 3
## [7845] 3 2 1 3 3 1 3 3 3 2 2 2 1 3 1 3 3 3 3 1 2 1 3 3 2 2 3 3 3 1 3 2 3 2 2 1 3
## [7882] 3 2 3 1 3 3 3 2 3 2 3 2 3 3 3 3 2 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 2 3 2
## [7919] 3 2 3 3 2 1 2 3 3 3 3 2 3 2 3 3 3 1 3 1 3 3 3 3 3 2 3 1 3 3 2 3 2 3 3 3 3
## [7956] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 1 3 1 3 3 3 3 3 3 1 2 1 3 3
## [7993] 3 3 3 3 1 3 3 2 3 3 3 2 3 3 3 3 1 3 3 3 3 3 2 1 3 1 1 3 2 3 3 3 3 2 2 2 3
## [8030] 3 3 3 3 3 3 3 1 3 3 3 1 3 3 1 3 3 2 2 3 3 2 2 3 3 1 1 2 3 3 3 3 3 2 3 3 1
## [8067] 2 1 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 2 3 2 3 1 3 3 3 2 2 3 3 3 2 3
## [8104] 1 3 3 3 2 3 3 3 3 3 3 1 3 1 3 1 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 1 3
## [8141] 2 3 3 1 2 3 1 3 1 3 3 3 3 3 3 3 3 1 1 3 3 1 2 3 3 3 3 3 3 2 3 3 3 1 3 1 3
## [8178] 3 3 3 3 2 3 1 2 1 2 1 3 3 3 3 3 3 3 2 2 3 3 3 3 3 2 3 3 2 3 3 3 1 3 3 3 3
## [8215] 3 3 2 3 3 3 3 3 1 3 3 3 3 3 3 2 1 2 1 1 1 2 3 3 1 3 3 3 1 3 3 3 3 2 2 3 2
## [8252] 3 3 3 2 3 2 3 3 3 3 3 3 2 2 3 3 1 3 3 3 3 1 3 3 3 3 1 3 3 1 3 3 3 2 2 1 1
## [8289] 2 2 3 3 3 3 1 3 1 3 3 3 3 3 3 3 2 1 3 3 2 2 3 3 3 1 3 3 3 2 3 2 3 3 3 2 3
## [8326] 3 1 3 3 2 3 1 3 3 3 3 3 3 3 2 3 3 3 3 1 3 3 2 2 3 3 3 1 2 3 2 3 1 3 2 3 2
## [8363] 3 3 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 1 3 1 3 3 2 3 2 1 3 3 1 3 3 3 1 3 3 1 2
## [8400] 3 3 1 3 3 2 3 2 3 2 3 3 3 1 3 1 3 3 3 3 3 3 2 3 3 2 1 3 3 2 3 3 1 3 3 3 3
## [8437] 1 3 3 3 3 3 3 1 2 3 2 3 3 3 2 3 2 2 3 3 3 3 3 1 3 3 3 3 3 1 3 2 3 3 1 3 1
## [8474] 1 3 3 3 2 2 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2 1 3 3 3 3 3 3 3 2 3 2 3 3
## [8511] 3 3 3 2 1 3 3 3 2 3 3 3 3 3 3 3 2 2 2 2 3 1 1 3 1 3 2 1 3 2 3 3 1 3 2 3 3
## [8548] 3 1 3 3 3 3 3 3 3 3 3 3 2 2 3 3 1 1 3 2 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3
## [8585] 1 2 3 3 3 2 2 2 2 3 3 3 2 2 3 1 3 3 1 1 3 3 3 3 3 1 1 3 3 3 3 1 3 3 3 3 3
## [8622] 3 3 3 3 3 2 2 1 3 3 3 3 3 3 3 3 1 3 2 3 2 1 3 1 3 3 3 2 3 3 3 3 3 3 1 3 3
## [8659] 3 1 3 3 2 3 2 1 3 2 1 3 3 3 3 3 3 1 1 2 1 3 2 2 3 3 1 3 1 2 3 3 3 1 1 1 3
## [8696] 1 3 3 3 3 3 1 3 1 3 2 3 3 2 2 2 3 2 2 1 2 3 2 2 3 1 3 3 3 3 1 3 3 3 1 3 3
## [8733] 3 3 3 3 3 3 3 3 3 2 1 3 2 3 3 1 2 3 3 2 1 3 1 3 1 3 1 3 3 3 2 3 1 2 3 3 2
## [8770] 3 3 2 3 2 3 3 1 3 3 3 3 3 3 3 1 3 2 3 1 3 3 3 1 3 3 3 3 3 3 2 3 3 3 3 3 2
## [8807] 3 3 1 3 3 3 3 2 3 1 3 2 3 3 3 3 1 3 2 3 3 2 1 1 3 2 3 1 3 1 3 3 2 3 3 3 3
## [8844] 1 2 3 1 2 3 2 2 1 2 3 2 1 3 1 3 2 1 1 1 1 2 1 3 3 3 2 3 2 3 3 1 3 3 3 3 3
## [8881] 3 3 1 1 3 2 3 1 3 3 2 1 3 3 1 1 3 1 3 1 3 2 1 3 3 3 2 3 3 3 3 3 1 2 3 3 3
## [8918] 3 2 1 3 3 3 3 1 2 3 1 3 3 1 3 1 1 3 3 3 2 1 3 2 1 2 2 1 3 3 2 3 1 1 3 3 3
## [8955] 3 1 3 1 3 1 3 3 3 3 1 2 1 3 1 3 3 1 3 1 3 1 2 1 2 3 3 2 2 3 2 3 1 3 3 3 2
## [8992] 3 3 1 3 3 1 2 1 3 2 2 3 2 3 3 3 1 3 1 3 2 1 3 1 3 3 1 3 1 1 3 3 3 2 2 2 3
## [9029] 1 1 3 1 2 2 3 3 1 3 1 1 3 3 1 1 1 3 1 3 1 3 3 3 3 3 1 1 3 3 3 3 3 3 1 3 1
## [9066] 1 1 3 3 2 2 2 1 2 1 1 3 3 3 2 3 1 3 3 1 1 1 3 1 3 1 1 1 3 2 1 3 3 1 1 3 3
## [9103] 3 3 1 1 3 3 3 1 1 3 2 1 3 2 3 1 2 3 1 3 1 1 2 1 1 3 2 3 2 3 1 3 1 3 1 3 1
## [9140] 3 1 3 3 3 3 1 1 2 3 3 3 3 3 2 3 3 1 3 3 3 3 3 3 1 3 3 3 1 1 3 1 3 2 1 2 1
## [9177] 2 3 3 1 1 1 1 1 3 2 1 1 3 1 3 1 3 3 1 3 3 3 3 1 3 2 3 3 3 1 1 1 3 3 3 1 3
## [9214] 1 3 1 1 3 3 3 1 3 2 3 3 1 3 3 3 1 3 1 3 3 1 1 3 3 3 3 3 3 3 3 1 1 3 3 3 1
## [9251] 3 1 1 3 3 3 3 3 2 1 2 2 3 1 3 3 3 3 3 3 3 2 1 3 1 3 1 1 3 3 3 3 1 3 3 2 2
## [9288] 3 1 3 3 1 3 3 3 2 3 3 3 2 3 3 1 3 3 1 3 3 1 1 3 3 3 3 2 2 3 1 1 3 3 3 3 3
## [9325] 3 2 3 2 1 3 2 1 3 1 1 3 3 2 3 3 3 1 3 3 3 3 1 1 3 3 3 3 3 2 1 3 3 3 3 3 3
## [9362] 3 2 3 3 1 1 3 3 3 1 3 2 3 2 3 2 3 2 3 3 3 3 2 3 3 3 3 1 3 2 3 3 3 3 3 3 3
## [9399] 2 3 3 1 1 3 3 3 2 2 2 3 3 1 1 3 1 3 3 2 3 3 3 3 1 1 3 3 2 1 1 2 3 2 3 3 1
## [9436] 2 3 2 3 2 3 3 3 2 3 3 2 2 3 3 1 2 1 3 1 1 3 2 1 1 1 3 3 1 3 3 3 1 3 3 3 3
## [9473] 2 1 3 1 3 3 3 3 1 2 3 3 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 1 3 2 3 3 3 3 3 3 2
## [9510] 1 2 3 1 3 3 3 3 3 3 1 3 1 2 1 3 3 1 3 2 3 3 3 3 2 3 3 3 1 3 3 3 1 3 2 3 3
## [9547] 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 2 3 2 3 3 3 2 3 3 1 1 2 3 1 3 2 2 2 3 2 3
## [9584] 3 3 3 3 1 3 3 3 3 3 1 1 2 3 3 3 3 2 3 3 3 1 3 3 2 1 3 3 2 3 2 2 3 1 3 2 3
## [9621] 3 3 2 3 1 3 3 1 3 3 3 3 3 3 3 1 1 2 2 2 3 3 3 3 2 2 3 3 3 3 3 3 1 1 2 3 1
## [9658] 3 2 3 1 1 1 3 2 1 3 3 2 3 3 3 3 1 2 2 3 2 1 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3
## [9695] 3 3 3 2 2 3 2 2 3 2 1 3 3 2 3 3 3 2 3 3 2 3 3 1 2 3 3 3 3 1 3 1 2 3 3 1 3
## [9732] 3 2 3 2 3 3 3 3 3 2 3 1 1 1 3 2 3 3 3 3 3 2 2 3 3 3 2 3 2 2 3 3 3 3 2 1 1
## [9769] 3 3 3 3 3 1 3 3 1 2 2 3 2 2 3 2 2 3 3 3 2 3 3 1 1 3 2 3 3 3 3 1 1 3 2 1 3
## [9806] 3 2 3 3 1 3 1 3 2 2 3 3 1 3 2 3 1 3 3 3 1 1 1 3 1 2 3 1 3 1
kmeans$centers
##   abrasive cleaner artif. sweetener baby cosmetics    baby food         bags
## 1      0.008363826      0.005227392   0.0005227392 0.0005227392 0.0000000000
## 2      0.005064716      0.003376477   0.0011254924 0.0000000000 0.0005627462
## 3      0.001627339      0.002603743   0.0004882018 0.0000000000 0.0004882018
##   baking powder bathroom cleaner       beef    berries  beverages bottled beer
## 1   0.038159958      0.005227392 0.10297961 0.05384213 0.02665970   0.08416100
## 2   0.027011818      0.001688239 0.06640405 0.03770400 0.02870006   0.07090602
## 3   0.008624898      0.002278275 0.03270952 0.02554923 0.02506103   0.08218063
##   bottled water      brandy brown bread     butter butter milk    cake bar
## 1    0.12859383 0.003136435  0.09670674 0.10507057  0.05331939 0.019341349
## 2    0.13055712 0.002250985  0.08778841 0.08891390  0.03826674 0.019696117
## 3    0.09910496 0.005044752  0.04833198 0.03026851  0.01708706 0.009438568
##       candles      candy canned beer canned fish canned fruit canned vegetables
## 1 0.012023001 0.03659174  0.04652378  0.02665970  0.005750131       0.024568740
## 2 0.012380416 0.02926280  0.03320203  0.01631964  0.005064716       0.010129432
## 3 0.006997559 0.02799024  0.10024410  0.01106591  0.001952807       0.006672091
##     cat food     cereals chewing gum    chicken  chocolate
## 1 0.03345531 0.010454783  0.02352326 0.09357031 0.06638787
## 2 0.03207653 0.012943163  0.01913337 0.05064716 0.06190208
## 3 0.01757526 0.002115541  0.02082994 0.02489829 0.04084622
##   chocolate marshmallow citrus fruit     cleaner cling film/bags cocoa drinks
## 1           0.010977522   0.15107162 0.008363826     0.016727653  0.002613696
## 2           0.013505909   0.09679235 0.007315701     0.015756894  0.005627462
## 3           0.007160293   0.05744508 0.003417413     0.008462164  0.001139138
##       coffee condensed milk cooking chocolate     cookware        cream
## 1 0.06952431    0.013068479       0.004181913 0.0031364349 0.0036591741
## 2 0.06809229    0.009566685       0.003939223 0.0005627462 0.0005627462
## 3 0.05158666    0.009601302       0.001627339 0.0032546786 0.0008136697
##   cream cheese       curd curd cheese  decalcifier dental care    dessert
## 1   0.07056979 0.08991113 0.010977522 0.0026136958 0.010454783 0.06011500
## 2   0.05402364 0.09003939 0.006190208 0.0022509848 0.005064716 0.04839617
## 3   0.02587469 0.03124491 0.002929211 0.0009764036 0.004556550 0.02668836
##    detergent dish cleaner     dishes    dog food domestic eggs
## 1 0.03345531   0.01254574 0.03136435 0.011500261    0.11657083
## 2 0.02982555   0.01012943 0.01463140 0.010129432    0.09791784
## 3 0.01171684   0.00992677 0.01415785 0.007160293    0.03694060
##   female sanitary products finished products        fish      flour
## 1              0.007318348       0.010454783 0.003659174 0.03345531
## 2              0.006190208       0.003376477 0.003939223 0.02588633
## 3              0.005695688       0.006183889 0.002441009 0.00992677
##   flower (seeds) flower soil/fertilizer frankfurter frozen chicken
## 1    0.019341349            0.001045478  0.08572922   0.0000000000
## 2    0.012943163            0.001125492  0.07146877   0.0011254924
## 3    0.006834825            0.002441009  0.04703011   0.0006509357
##   frozen dessert frozen fish frozen fruits frozen meals frozen potato products
## 1     0.01881861 0.024046001  0.0041819132   0.03920544            0.013591218
## 2     0.01069218 0.012380416  0.0000000000   0.03432752            0.009003939
## 3     0.00829943 0.007648495  0.0006509357   0.02327095            0.006672091
##   frozen vegetables fruit/vegetable juice     grapes  hair spray        ham
## 1        0.09357031            0.11029796 0.04652378 0.001045478 0.04704652
## 2        0.05965110            0.08947665 0.01913337 0.001125492 0.03714125
## 3        0.03059398            0.05549227 0.01578519 0.001139138 0.01627339
##   hamburger meat hard cheese       herbs        honey house keeping products
## 1     0.07161526  0.04966022 0.039728176 0.0015682175            0.014113957
## 2     0.04670793  0.03151379 0.020258863 0.0050647158            0.011817670
## 3     0.01741253  0.01464605 0.007811229 0.0004882018            0.005532954
##   hygiene articles  ice cream instant coffee Instant food products         jam
## 1       0.04966022 0.02613696    0.009932044           0.014636696 0.009932044
## 2       0.04220597 0.01969612    0.006752954           0.008441193 0.009003939
## 3       0.02506103 0.02620016    0.006834825           0.005858421 0.002929211
##       ketchup kitchen towels kitchen utensil light bulbs      liqueur
## 1 0.008363826    0.011500261    0.0005227392 0.006795609 0.0005227392
## 2 0.005064716    0.009566685    0.0011254924 0.002813731 0.0011254924
## 3 0.002766477    0.003254679    0.0001627339 0.003742880 0.0009764036
##        liquor liquor (appetizer)  liver loaf long life bakery product
## 1 0.006795609        0.007318348 0.007841087               0.05488761
## 2 0.002250985        0.006190208 0.008441193               0.04333146
## 3 0.014971522        0.008624898 0.003254679               0.03026851
##   make up remover male cosmetics  margarine  mayonnaise       meat meat spreads
## 1    0.0005227392    0.004181913 0.10297961 0.019341349 0.05227392  0.004704652
## 2    0.0005627462    0.003376477 0.08272369 0.009566685 0.03207653  0.003939223
## 3    0.0009764036    0.005044752 0.03775427 0.005858421 0.01578519  0.004231082
##   misc. beverages     mustard    napkins newspapers   nut snack nuts/prunes
## 1      0.02875065 0.016727653 0.07579718 0.09932044 0.004181913 0.004704652
## 2      0.02532358 0.020258863 0.07146877 0.10523354 0.001688239 0.003939223
## 3      0.02912937 0.008136697 0.03954434 0.06639544 0.003254679 0.002766477
##          oil     onions organic products organic sausage other vegetables
## 1 0.05279665 0.07370622      0.003136435     0.002613696        0.9947726
## 2 0.03432752 0.03038829      0.001688239     0.003939223        0.0000000
## 3 0.01855167 0.01790073      0.001139138     0.001627339        0.0000000
##   packaged fruit/vegetables      pasta     pastry    pet care  photo/film
## 1                0.01725039 0.02247778 0.11709357 0.009932044 0.005750131
## 2                0.01631964 0.02194710 0.12549240 0.009566685 0.009566685
## 3                0.01074044 0.01074044 0.06965012 0.009275834 0.010252238
##   pickled vegetables  pip fruit     popcorn       pork pot plants
## 1         0.03345531 0.13695766 0.008363826 0.11395714 0.02247778
## 2         0.02813731 0.09172763 0.011254924 0.06640405 0.02476083
## 3         0.01008950 0.05191212 0.005695688 0.03759154 0.01350692
##   potato products preservation products processed cheese    prosecco
## 1     0.004181913          0.0005227392       0.02822791 0.001568217
## 2     0.004501970          0.0005627462       0.02476083 0.002250985
## 3     0.001952807          0.0000000000       0.01057771 0.002115541
##   pudding powder ready soups red/blush wine        rice roll products
## 1   0.0041819132 0.003136435     0.02561422 0.020386827   0.024568740
## 2   0.0050647158 0.002813731     0.01181767 0.011254924   0.012943163
## 3   0.0009764036 0.001139138     0.01936534 0.002603743   0.005044752
##   rolls/buns root vegetables rubbing alcohol         rum salad dressing
## 1  0.2200732      0.24725562    0.0020909566 0.007841087   0.0026136958
## 2  0.2144063      0.14237479    0.0016882386 0.006752954   0.0000000000
## 3  0.1638731      0.05630594    0.0004882018 0.002766477   0.0004882018
##          salt salty snack      sauces    sausage seasonal products
## 1 0.019341349  0.05645583 0.007841087 0.14009409        0.01881861
## 2 0.013505909  0.03489026 0.008441193 0.10917276        0.01012943
## 3 0.007323027  0.03287225 0.003905614 0.07518308        0.01399512
##   semi-finished bread shopping bags   skin care sliced cheese snack products
## 1          0.02718244    0.12023001 0.006272870    0.04652378    0.004704652
## 2          0.02476083    0.09341587 0.004501970    0.03432752    0.001688239
## 3          0.01269325    0.09324654 0.002441009    0.01480879    0.002929211
##          soap      soda soft cheese    softener sound storage medium
## 1 0.002613696 0.1693675 0.037114480 0.008363826         0.0000000000
## 2 0.004501970 0.1446258 0.022509848 0.008441193         0.0000000000
## 3 0.002115541 0.1845403 0.009275834 0.003742880         0.0001627339
##         soups sparkling wine specialty bar specialty cheese specialty chocolate
## 1 0.016204914    0.007841087    0.02875065      0.021955044          0.03136435
## 2 0.006190208    0.003376477    0.02250985      0.008441193          0.03263928
## 3 0.004068348    0.005532954    0.02831570      0.004393816          0.02945484
##   specialty fat specialty vegetables      spices spread cheese      sugar
## 1   0.006272870          0.003659174 0.010977522   0.016204914 0.05541035
## 2   0.003376477          0.001125492 0.005064716   0.010692178 0.04839617
## 3   0.002929211          0.001301871 0.003417413   0.009764036 0.02294548
##   sweet spreads       syrup         tea     tidbits toilet cleaner
## 1   0.013068479 0.005750131 0.007841087 0.002090957   0.0010454783
## 2   0.014631401 0.002813731 0.005064716 0.003376477   0.0005627462
## 3   0.006183889 0.002603743 0.002278275 0.002115541   0.0006509357
##   tropical fruit      turkey   UHT-milk     vinegar    waffles
## 1     0.18557240 0.020386827 0.04286461 0.013068479 0.05331939
## 2     0.13956106 0.008441193 0.01406866 0.007315701 0.04445695
## 3     0.06981286 0.004231082 0.03612693 0.004231082 0.03205858
##   whipped/sour cream       whisky white bread white wine whole milk     yogurt
## 1         0.15211709 0.0010454783  0.07109252 0.01150026   0.384736 0.22791427
## 2         0.09735509 0.0000000000  0.06190208 0.01069218   1.000000 0.18683174
## 3         0.03921888 0.0009764036  0.02733930 0.02375915   0.000000 0.09829129
##      zwieback
## 1 0.009409305
## 2 0.006190208
## 3 0.006346623
fviz_cluster(kmeans, data = groceries_matrix)