# 1/N Portfolio Construction without Monthly Rebalancing
# This script creates an equally weighted portfolio of all assets
# Initial portfolio weights are set once after the first 36 months
# No rebalancing is performed afterward
# ---- PACKAGE INSTALLATION AND LOADING ----
if (!require("pacman")) install.packages("pacman")
## Cargando paquete requerido: pacman
pacman::p_load(
tidyverse, # Data manipulation and visualization
quantmod, # Financial data retrieval and analysis
PerformanceAnalytics, # Performance and risk analysis
zoo, # Time series analysis
roll, # Rolling window calculations
xts, # Extensible time series
lubridate, # Date handling
readxl, # Excel file reading
knitr, # For tables
grid, # For graphics
gridExtra # For arranging multiple plots
)
# ---- FILE PATH CONFIGURATION ----
# Create file paths using file.path() to handle spaces and special characters better
base_dir <- getwd() # Use current working directory
# Use forward slashes instead of backslashes
stock_file_path <- file.path(base_dir, "data.xlsx")
market_file_path <- file.path(base_dir, "data2.xlsx")
# Print the paths for verification
cat("Stock file path:", stock_file_path, "\n")
## Stock file path: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/data.xlsx
cat("Market file path:", market_file_path, "\n")
## Market file path: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/data2.xlsx
# ---- DATA IMPORT FUNCTION ----
# Function to import Excel data
import_excel_data <- function(stock_file_path, market_file_path) {
tryCatch({
# Read stock price data
cat("Reading stock data from:", stock_file_path, "\n")
stock_data <- read_excel(stock_file_path)
# Read benchmark and risk-free rate data
cat("Reading market data from:", market_file_path, "\n")
market_data <- read_excel(market_file_path)
# Convert the first column to dates
dates <- as.Date(stock_data[[1]])
# Create xts objects for stock prices
stock_prices <- as.matrix(stock_data[, -1]) # Remove the date column
rownames(stock_prices) <- NULL
stock_prices_xts <- xts(stock_prices, order.by = dates)
colnames(stock_prices_xts) <- colnames(stock_data)[-1] # Preserve stock names
# Extract S&P 500 price and T-bill data
sp500_prices <- as.numeric(market_data[[2]]) # S&P 500 Price Index
tbill_rates <- as.numeric(market_data[[4]]) / 100 / 12 # Convert annual rate to monthly
market_dates <- as.Date(market_data[[1]])
sp500_prices_xts <- xts(sp500_prices, order.by = market_dates)
tbill_rates_xts <- xts(tbill_rates, order.by = market_dates)
# Calculate returns for stocks
stock_returns_xts <- ROC(stock_prices_xts, type = "discrete", n = 1)
stock_returns_xts <- stock_returns_xts[-1, ] # Remove first NA row
# Calculate returns for S&P 500
sp500_returns_xts <- ROC(sp500_prices_xts, type = "discrete", n = 1)
sp500_returns_xts <- sp500_returns_xts[-1, ] # Remove first NA row
# Remove first value from tbill rates to align with returns
tbill_rates_xts <- tbill_rates_xts[-1, ]
return(list(
stock_returns = stock_returns_xts,
sp500_returns = sp500_returns_xts,
risk_free_rate = tbill_rates_xts
))
}, error = function(e) {
stop(paste("Error reading files:", e$message))
})
}
# ---- CONSTRUCT 1/N PORTFOLIO ----
# Function to construct a 1/N portfolio without monthly rebalancing
construct_1n_portfolio <- function(asset_returns, window_size = 36) {
dates <- index(asset_returns)
n_periods <- length(dates) - window_size
portfolio_returns <- numeric(n_periods)
portfolio_weights <- NULL
cat("Starting 1/N portfolio construction with", n_periods, "investment periods\n")
# Initial investments after the first 36 months
start_idx <- 1
end_idx <- window_size
# Select all assets that have returns data
initial_returns <- asset_returns[start_idx:end_idx, ]
valid_assets <- !apply(is.na(initial_returns), 2, any)
# Create equal weights for valid assets
n_assets <- sum(valid_assets)
initial_weights <- rep(0, ncol(asset_returns))
initial_weights[valid_assets] <- 1/n_assets
cat("Initial portfolio has", n_assets, "equally weighted assets\n")
# Store the initial weights
portfolio_weights <- initial_weights
asset_names <- colnames(asset_returns)
# Create a weights data frame for reference
weights_df <- data.frame(
Asset = asset_names,
Weight = portfolio_weights
)
# Calculate portfolio returns for each period
# No rebalancing - simulate holding the initial investments
for (i in 1:n_periods) {
# Get returns for the period
period_returns <- as.numeric(asset_returns[end_idx + i, ])
# Calculate portfolio return
portfolio_returns[i] <- sum(portfolio_weights * period_returns, na.rm = TRUE)
# Print progress
if (i %% 20 == 0 || i == 1 || i == n_periods) {
cat("Processing period", i, "of", n_periods,
"- Date:", as.character(dates[end_idx + i]), "\n")
}
}
# Create a time series of portfolio returns
portfolio_returns_ts <- xts(portfolio_returns, order.by = dates[(window_size + 1):length(dates)])
# Save weights to a file for analysis
output_file <- file.path(base_dir, "1n_portfolio_weights.csv")
write.csv(weights_df, output_file, row.names = FALSE)
cat("Saved portfolio weights to:", output_file, "\n")
return(list(
returns = portfolio_returns_ts,
weights = weights_df
))
}
# ---- PERFORMANCE ANALYSIS FUNCTION ----
# Function to analyze portfolio performance
analyze_portfolio <- function(portfolio_result, risk_free_rate, sp500_returns) {
portfolio_returns <- portfolio_result$returns
# Calculate cumulative returns
cumulative_returns <- cumprod(1 + portfolio_returns) - 1
# Plot results
plot(cumulative_returns, main = "Cumulative Portfolio Returns (1/N Strategy)",
ylab = "Return", xlab = "Date")
# Calculate performance metrics
portfolio_avg_return <- mean(portfolio_returns) * 12 * 100 # Annualized and as percentage
portfolio_sd <- sd(portfolio_returns) * sqrt(12) * 100 # Annualized and as percentage
portfolio_sharpe <- mean(portfolio_returns - risk_free_rate) / sd(portfolio_returns)
# Calculate benchmark metrics for the same period
benchmark_returns <- sp500_returns[(36+1):length(sp500_returns)]
benchmark_avg_return <- mean(benchmark_returns) * 12 * 100 # Annualized and as percentage
benchmark_sd <- sd(benchmark_returns) * sqrt(12) * 100 # Annualized and as percentage
benchmark_sharpe <- mean(benchmark_returns - risk_free_rate) / sd(benchmark_returns)
# Calculate Upside-Potential Ratio for both
target_return <- mean(risk_free_rate)
portfolio_upside <- mean(pmax(portfolio_returns - target_return, 0)) /
sqrt(mean((portfolio_returns - mean(portfolio_returns))^2))
benchmark_upside <- mean(pmax(benchmark_returns - target_return, 0)) /
sqrt(mean((benchmark_returns - mean(benchmark_returns))^2))
# Create performance comparison table
performance_table <- data.frame(
Metric = c("Average Return", "Standard Deviation", "Sharpe Ratio", "Upside-Potential Ratio"),
Portfolio = c(sprintf("%.2f%%", portfolio_avg_return),
sprintf("%.2f%%", portfolio_sd),
sprintf("%.3f", portfolio_sharpe),
sprintf("%.3f", portfolio_upside)),
Benchmark = c(sprintf("%.2f%%", benchmark_avg_return),
sprintf("%.2f%%", benchmark_sd),
sprintf("%.3f", benchmark_sharpe),
sprintf("%.3f", benchmark_upside))
)
cat("\n----- Portfolio Performance Metrics -----\n")
print(performance_table)
# Save the performance table
output_file <- file.path(base_dir, "1n_performance_comparison.csv")
write.csv(performance_table, output_file, row.names = FALSE)
cat("Saved performance comparison to:", output_file, "\n")
# Save portfolio returns to CSV
returns_df <- data.frame(
Date = index(portfolio_returns),
Return = as.numeric(portfolio_returns)
)
output_file <- file.path(base_dir, "1n_portfolio_returns.csv")
write.csv(returns_df, output_file, row.names = FALSE)
cat("Saved portfolio returns to:", output_file, "\n")
# Create a nice performance comparison table for display
create_performance_table <- function() {
# Use actually calculated metrics
metrics_table <- data.frame(
Metric = c("Average Return", "Standard Deviation", "Sharpe Ratio", "Upside-Potential Ratio"),
Portfolio = c(sprintf("%.2f%%", portfolio_avg_return),
sprintf("%.2f%%", portfolio_sd),
sprintf("%.3f", portfolio_sharpe),
sprintf("%.3f", portfolio_upside)),
Benchmark = c(sprintf("%.2f%%", benchmark_avg_return),
sprintf("%.2f%%", benchmark_sd),
sprintf("%.3f", benchmark_sharpe),
sprintf("%.3f", benchmark_upside))
)
colnames(metrics_table) <- c("Metric", "1/N\nPortfolio", "S&P 500\nBenchmark")
# Create a nice table with the metrics - improved visibility
grid.newpage()
tt <- ttheme_default(
core = list(fg_params=list(fontface=1, fontsize=14, col="black"),
bg_params=list(fill=c("whitesmoke", "white"))),
colhead = list(fg_params=list(fontface=2, fontsize=16, col="black"),
bg_params=list(fill="lightblue")),
rowhead = list(fg_params=list(fontface=1, fontsize=14, col="black"))
)
grid.table(metrics_table, rows = NULL, theme = tt)
# Save the table as an image with improved settings
output_file <- file.path(base_dir, "1n_performance_table.png")
png(output_file, width = 1000, height = 500, res = 120)
grid.newpage()
grid.table(metrics_table, rows = NULL, theme = tt)
dev.off()
cat("Saved performance table image to:", output_file, "\n")
# Also save as CSV for backup
write.csv(metrics_table, file.path(base_dir, "1n_performance_metrics.csv"), row.names = FALSE)
}
# Create the table
create_performance_table()
return(list(
cumulative_returns = cumulative_returns,
performance_table = performance_table
))
}
# ---- MAIN EXECUTION ----
# Run the complete analysis
run_analysis <- function() {
# Start timer
start_time <- Sys.time()
cat("Starting 1/N portfolio analysis at", as.character(start_time), "\n")
# Import data - with error handling
cat("Importing data from Excel files...\n")
tryCatch({
data <- import_excel_data(stock_file_path, market_file_path)
}, error = function(e) {
cat("ERROR: Could not read data files. Please check the paths and file contents.\n")
cat("Error details:", e$message, "\n")
cat("Current working directory:", getwd(), "\n")
cat("Looking for files at:\n")
cat(" ", stock_file_path, "\n")
cat(" ", market_file_path, "\n")
cat("Files exist check:\n")
cat(" Stock file exists:", file.exists(stock_file_path), "\n")
cat(" Market file exists:", file.exists(market_file_path), "\n")
stop("Data import failed - see details above")
})
# Basic data exploration with validation
cat("\nData summary:\n")
cat("- Number of stocks:", ncol(data$stock_returns), "\n")
cat("- Date range:", as.character(first(index(data$stock_returns))),
"to", as.character(last(index(data$stock_returns))), "\n")
cat("- Number of observations:", nrow(data$stock_returns), "\n")
# Check for NA values
na_count <- sum(is.na(data$stock_returns))
if(na_count > 0) {
cat("- WARNING: Found", na_count, "NA values in the returns data\n")
}
cat("\n")
# Run the portfolio construction with progress tracking
cat("Constructing 1/N portfolio...\n")
portfolio_result <- construct_1n_portfolio(
asset_returns = data$stock_returns,
window_size = 36 # 3 years of monthly data
)
# Analyze performance
cat("\nAnalyzing portfolio performance...\n")
analysis <- analyze_portfolio(
portfolio_result = portfolio_result,
risk_free_rate = data$risk_free_rate[(36+1):length(data$risk_free_rate)],
sp500_returns = data$sp500_returns
)
# Plot the portfolio returns alongside the benchmark
portfolio_vs_benchmark <- merge(
Portfolio = cumprod(1 + portfolio_result$returns) - 1,
Benchmark = cumprod(1 + data$sp500_returns[(36+1):length(data$sp500_returns)]) - 1
)
# Create a plot using base R graphics only to avoid PerformanceAnalytics issues
plot.zoo(portfolio_vs_benchmark,
main = "1/N Portfolio vs. S&P 500",
col = c("blue", "red"),
lwd = c(2, 2),
plot.type = "single",
xlab = "Date",
ylab = "Cumulative Return")
# Add a legend manually
legend("topleft",
legend = c("1/N Portfolio", "S&P 500"),
col = c("blue", "red"),
lwd = c(2, 2),
bg = "white")
# Save the plot using only base R functions to avoid PerformanceAnalytics compatibility issues
output_file <- file.path(base_dir, "1n_portfolio_vs_benchmark.png")
png(output_file, width = 1200, height = 800, res = 120)
par(mar = c(5, 4, 4, 4) + 0.1) # Increase margins for better visibility
# Use plot.zoo instead of PerformanceAnalytics functions
plot.zoo(portfolio_vs_benchmark,
main = "1/N Portfolio vs. S&P 500",
col = c("blue", "red"),
lwd = c(2, 2),
plot.type = "single",
xlab = "Date",
ylab = "Cumulative Return")
# Add grid lines manually
grid(lty = "dotted", col = "lightgray")
# Add legend manually
legend("topleft",
legend = c("1/N Portfolio", "S&P 500"),
col = c("blue", "red"),
lwd = c(2, 2),
bg = "white")
dev.off()
cat("Saved portfolio vs benchmark plot to:", output_file, "\n")
# End timer
end_time <- Sys.time()
cat("\nAnalysis completed in", round(difftime(end_time, start_time, units = "mins"), 2), "minutes\n")
# Return results
return(list(
portfolio = portfolio_result,
analysis = analysis,
data = data
))
}
# Execute the analysis and store the results
result <- run_analysis()
## Starting 1/N portfolio analysis at 2025-05-04 11:58:10.571428
## Importing data from Excel files...
## Reading stock data from: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/data.xlsx
## New names:
## • `` -> `...1`
## Reading market data from: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/data2.xlsx
## New names:
## • `` -> `...1`
##
## Data summary:
## - Number of stocks: 50
## - Date range: 2005-01-31 to 2024-02-29
## - Number of observations: 230
##
## Constructing 1/N portfolio...
## Starting 1/N portfolio construction with 194 investment periods
## Initial portfolio has 50 equally weighted assets
## Processing period 1 of 194 - Date: 2008-01-31
## Processing period 20 of 194 - Date: 2009-08-31
## Processing period 40 of 194 - Date: 2011-04-29
## Processing period 60 of 194 - Date: 2012-12-31
## Processing period 80 of 194 - Date: 2014-08-29
## Processing period 100 of 194 - Date: 2016-04-29
## Processing period 120 of 194 - Date: 2017-12-29
## Processing period 140 of 194 - Date: 2019-08-30
## Processing period 160 of 194 - Date: 2021-04-30
## Processing period 180 of 194 - Date: 2022-12-30
## Processing period 194 of 194 - Date: 2024-02-29
## Saved portfolio weights to: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/1n_portfolio_weights.csv
##
## Analyzing portfolio performance...
##
## ----- Portfolio Performance Metrics -----
## Metric Portfolio Benchmark
## 1 Average Return 13.03% 9.04%
## 2 Standard Deviation 14.92% 16.18%
## 3 Sharpe Ratio 0.233 0.144
## 4 Upside-Potential Ratio 0.530 0.465
## Saved performance comparison to: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/1n_performance_comparison.csv
## Saved portfolio returns to: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/1n_portfolio_returns.csv

## Saved performance table image to: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/1n_performance_table.png

## Saved portfolio vs benchmark plot to: C:/Users/lcyep/OneDrive - Instituto Tecnologico y de Estudios Superiores de Monterrey/Tec/Semestre 6/Risk/R, project/1n_portfolio_vs_benchmark.png
##
## Analysis completed in 0.01 minutes
# Display a final message with key findings
cat("\n===== 1/N PORTFOLIO ANALYSIS SUMMARY =====\n")
##
## ===== 1/N PORTFOLIO ANALYSIS SUMMARY =====
cat("Portfolio Strategy: 1/N equally weighted portfolio of all assets\n")
## Portfolio Strategy: 1/N equally weighted portfolio of all assets
cat("Initial weighing after 36 months, No rebalancing afterward\n\n")
## Initial weighing after 36 months, No rebalancing afterward
cat("Key Performance Metrics:\n")
## Key Performance Metrics:
cat("- Portfolio Average Return: ", sprintf("%.2f%%", mean(result$portfolio$returns) * 12 * 100),
" vs. S&P 500: ", sprintf("%.2f%%", mean(result$data$sp500_returns[(36+1):length(result$data$sp500_returns)]) * 12 * 100), "\n", sep="")
## - Portfolio Average Return: 13.03% vs. S&P 500: 9.04%
cat("- Portfolio Standard Deviation: ", sprintf("%.2f%%", sd(result$portfolio$returns) * sqrt(12) * 100),
" vs. S&P 500: ", sprintf("%.2f%%", sd(result$data$sp500_returns[(36+1):length(result$data$sp500_returns)]) * sqrt(12) * 100), "\n", sep="")
## - Portfolio Standard Deviation: 14.92% vs. S&P 500: 16.18%
cat("- Portfolio Sharpe Ratio: ", sprintf("%.3f", mean(result$portfolio$returns - result$data$risk_free_rate[(36+1):length(result$data$risk_free_rate)]) / sd(result$portfolio$returns)),
" vs. S&P 500: ", sprintf("%.3f", mean(result$data$sp500_returns[(36+1):length(result$data$sp500_returns)] - result$data$risk_free_rate[(36+1):length(result$data$risk_free_rate)]) / sd(result$data$sp500_returns[(36+1):length(result$data$sp500_returns)])), "\n", sep="")
## - Portfolio Sharpe Ratio: 0.233 vs. S&P 500: 0.144