Dataset ini berasal dari UCI Machine Learning Repository dan berisi deskripsi 23 spesies jamur berinsang dalam keluarga Agaricus dan Lepiota. Spesies diklasifikasikan sebagai dapat dimakan, beracun, atau tidak diketahui tingkat edibilitasnya. Dataset ini menyoroti bahwa tidak ada aturan sederhana untuk menentukan keamanan konsumsi jamur.
Berikut adalah tautan ke dataset jamur dari UCI Machine Learning Repository:
🔗 https://archive.ics.uci.edu/dataset/73/mushroom
data <- read.csv("C:/Users/ASUS/Downloads/mushroom/agaricus-lepiota.data", header = TRUE,
sep = ",") colnames(data) <- c("class", "cap-shape", "cap-surface", "cap-color", "bruises",
"odor", "gill-attachment", "gill-spacing", "gill-size",
"gill-color", "stalk-shape", "stalk-root", "stalk-surface-above-ring",
"stalk-surface-below-ring", "stalk-color-above-ring",
"stalk-color-below-ring", "veil-type", "veil-color", "ring-number",
"ring-type", "spore-print-color", "population", "habitat")## Warning: package 'ggplot2' was built under R version 4.4.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data$odor <- as.factor(data$odor)
model_data <- data %>%
select(odor, `cap-shape`, `cap-surface`, `cap-color`) %>%
na.omit()
model_data <- model_data %>% mutate_all(as.factor)## Warning: package 'nnet' was built under R version 4.4.3
## # weights: 171 (144 variable)
## initial value 17848.055242
## iter 10 value 10708.530715
## iter 20 value 9889.269092
## iter 30 value 9169.733824
## iter 40 value 8911.648106
## iter 50 value 8546.516912
## iter 60 value 8419.093881
## iter 70 value 8376.080861
## iter 80 value 8371.512117
## iter 90 value 8371.422031
## final value 8371.421393
## converged
## Warning in sqrt(diag(vc)): NaNs produced
## Call:
## multinom(formula = odor ~ `cap-shape` + `cap-surface` + `cap-color`,
## data = model_data)
##
## Coefficients:
## (Intercept) `cap-shape`c `cap-shape`f `cap-shape`k `cap-shape`s
## c -22.264172 5.133819 -2.162393e+00 42.08561 -6.245334
## f 2.534673 2.548992 3.852347e+01 88.69149 8.186890
## l -10.263996 -35.965182 -2.241372e-06 10.37403 -37.850033
## m -31.659626 1.883149 8.497227e+00 59.04753 -9.502068
## n 40.586042 99.750680 1.274127e+00 50.72935 25.878557
## p -72.746357 4.244037 3.506034e+01 24.10233 22.178301
## s -66.552764 4.520252 3.055688e+01 81.07628 15.092311
## y -67.466150 4.568008 3.052488e+01 81.04429 14.756997
## `cap-shape`x `cap-surface`g `cap-surface`s `cap-surface`y `cap-color`c
## c 3.020533e+01 -3.9982395 -1.970473e+00 -3.352233e+01 19.97655
## f 3.754950e+01 -15.0219401 -1.347601e+00 -2.036911e+00 -82.02257
## l -4.339513e-06 -5.7113031 -1.471941e-05 -1.824569e-05 10.42152
## m 7.604037e+00 2.0860159 -1.191320e+01 2.913775e+01 43.50421
## n 3.671250e-01 17.9708112 -2.613020e+00 -3.135542e+00 11.36867
## p 3.402681e+01 0.2608386 3.840196e+01 3.836357e+01 -15.24580
## s 2.966333e+01 6.2257831 3.763658e+01 3.662904e+01 11.20643
## y 2.963134e+01 6.2088028 3.824064e+01 3.723309e+01 11.20509
## `cap-color`e `cap-color`g `cap-color`n `cap-color`p `cap-color`r `cap-color`u
## c -5.043554 30.3250772 -34.639748 37.429533 15.3076954 15.3076954
## f -5.502023 -0.9164937 -37.229925 -77.490778 -37.6826784 -37.6826784
## l -7.461485 2.8728708 10.264035 -3.496708 5.5779748 5.5779748
## m 24.843362 -7.7796848 -6.699012 -7.741191 0.2008761 0.2008761
## n -4.602638 -0.8364253 -35.702561 2.888469 -6.0783141 -6.0783141
## p -3.956429 -4.1649217 1.030422 14.949021 5.4362104 5.4362104
## s 32.791340 1.3202271 1.011280 7.561032 11.7252098 11.7252098
## y 33.132665 0.9988886 1.352605 7.945336 11.8603833 11.8603833
## `cap-color`w `cap-color`y
## c -6.094318 -44.18032
## f -39.224382 -37.47371
## l 10.264016 10.26402
## m -47.609966 -41.84770
## n -37.811094 -41.35342
## p 0.331792 -35.34682
## s -38.815816 -38.20134
## y -40.959612 -38.31784
##
## Std. Errors:
## (Intercept) `cap-shape`c `cap-shape`f `cap-shape`k `cap-shape`s `cap-shape`x
## c 0.10093973 NaN NaN 1.527756e-14 3.965104e-14 0.10093973
## f 0.15231570 NaN 0.1082259 9.240591e-02 NaN 0.09236499
## l 0.25038891 1.890523e-16 0.2141278 4.064634e-16 NaN 0.16501633
## m 0.07742256 1.689410e-29 0.2592844 2.243377e-01 2.921645e-29 0.25523451
## n 0.25027254 1.270864e-31 0.2151782 1.620625e-01 8.796281e-14 0.18933099
## p 0.04590978 1.522513e-58 0.1046917 1.410267e-27 2.581172e-35 0.09446864
## s 0.05319713 2.773005e-71 0.1098439 8.234885e-02 8.185050e-36 0.09797559
## y 0.05319714 1.080395e-71 0.1098440 8.234887e-02 8.706705e-37 0.09797563
## `cap-surface`g `cap-surface`s `cap-surface`y `cap-color`c `cap-color`e
## c NaN 3.067788e-01 4.994285e-13 4.536063e-12 NaN
## f NaN 2.486531e-01 2.299994e-01 8.282475e-15 1.245973e-01
## l 1.470349e-13 3.206359e-01 3.057061e-01 NaN 7.516078e-18
## m 1.471982e-30 4.722261e-19 7.742256e-02 1.757588e-01 1.885202e-01
## n 1.411587e-10 2.484154e-01 2.346384e-01 1.757588e-01 1.122322e-01
## p 2.351090e-27 9.991586e-02 9.845882e-02 1.086069e-28 5.394135e-16
## s 1.601879e-40 9.407053e-02 8.630405e-02 5.168857e-17 6.238847e-02
## y 4.840583e-42 9.407053e-02 8.630409e-02 3.783285e-17 6.238850e-02
## `cap-color`g `cap-color`n `cap-color`p `cap-color`r `cap-color`u `cap-color`w
## c 9.231776e-02 2.503288e-13 1.450236e-01 2.418361e-14 NaN 1.412551e-01
## f 1.071045e-01 1.661970e-01 7.429841e-15 9.047253e-15 6.438791e-15 1.695109e-01
## l 3.301372e-19 1.870898e-01 NaN 5.872213e-17 5.091205e-17 1.336737e-01
## m 3.572804e-17 2.188067e-01 4.989252e-19 1.116888e-12 1.116504e-12 2.747600e-19
## n 9.483812e-02 1.508212e-01 1.450236e-01 1.071431e-09 1.071264e-09 1.372479e-01
## p 2.068291e-17 1.193007e-01 5.906677e-12 1.205642e-12 1.205194e-12 1.089649e-01
## s 3.351215e-15 7.956379e-02 1.444695e-14 5.895744e-10 5.894769e-10 4.447381e-17
## y 2.582281e-15 7.956381e-02 1.606253e-14 4.797347e-10 4.796643e-10 3.821213e-18
## `cap-color`y
## c 4.331820e-15
## f 1.460330e-01
## l 1.181810e-01
## m 1.533338e-16
## n 2.305706e-01
## p 1.614590e-15
## s 4.234417e-17
## y 4.586734e-17
##
## Residual Deviance: 16742.84
## AIC: 17030.84
1. Model dimulai dengan nilai log-likelihood awal sekitar 17848.06, lalu mengalami penurunan bertahap hingga mencapai 8371.42, menandakan peningkatan kecocokan model terhadap data
2. Setelah 90 iterasi, model berhasil konvergen, artinya proses optimasi parameter selesai karena perubahan log-likelihood sudah sangat kecil.