## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
##
## cor2cov
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
model_1_fit <- cfa(model_1, data = dfa)
summary(model_1_fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-19 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 918.852
## Degrees of freedom 36
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.931
## Tucker-Lewis Index (TLI) 0.896
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3737.745
## Loglikelihood unrestricted model (H1) -3695.092
##
## Akaike (AIC) 7517.490
## Bayesian (BIC) 7595.339
## Sample-size adjusted Bayesian (SABIC) 7528.739
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.092
## 90 Percent confidence interval - lower 0.071
## 90 Percent confidence interval - upper 0.114
## P-value H_0: RMSEA <= 0.050 0.001
## P-value H_0: RMSEA >= 0.080 0.840
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.065
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.900 0.772
## x2 0.554 0.100 5.554 0.000 0.498 0.424
## x3 0.729 0.109 6.685 0.000 0.656 0.581
## textual =~
## x4 1.000 0.990 0.852
## x5 1.113 0.065 17.014 0.000 1.102 0.855
## x6 0.926 0.055 16.703 0.000 0.917 0.838
## speed =~
## x7 1.000 0.619 0.570
## x8 1.180 0.165 7.152 0.000 0.731 0.723
## x9 1.082 0.151 7.155 0.000 0.670 0.665
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.408 0.074 5.552 0.000 0.459 0.459
## speed 0.262 0.056 4.660 0.000 0.471 0.471
## textual ~~
## speed 0.173 0.049 3.518 0.000 0.283 0.283
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.549 0.114 4.833 0.000 0.549 0.404
## .x2 1.134 0.102 11.146 0.000 1.134 0.821
## .x3 0.844 0.091 9.317 0.000 0.844 0.662
## .x4 0.371 0.048 7.779 0.000 0.371 0.275
## .x5 0.446 0.058 7.642 0.000 0.446 0.269
## .x6 0.356 0.043 8.277 0.000 0.356 0.298
## .x7 0.799 0.081 9.823 0.000 0.799 0.676
## .x8 0.488 0.074 6.573 0.000 0.488 0.477
## .x9 0.566 0.071 8.003 0.000 0.566 0.558
## visual 0.809 0.145 5.564 0.000 1.000 1.000
## textual 0.979 0.112 8.737 0.000 1.000 1.000
## speed 0.384 0.086 4.451 0.000 1.000 1.000
## Skipping install of 'semoutput' from a github remote, the SHA1 (0eb4f0de) has not changed since last install.
## Use `force = TRUE` to force installation
Model Significance | |||
N | χ2 | df | p |
---|---|---|---|
301 | 85.306 | 24 | <0.001 |
fitmeasures(model_1_fit,fit.measures = c("chisq" ,"df" , "pvalue","cfi","tli","rmsea","rmsea.ci.lower",
"rmsea.ci.upper","srmr"))
## chisq df pvalue cfi tli
## 85.306 24.000 0.000 0.931 0.896
## rmsea rmsea.ci.lower rmsea.ci.upper srmr
## 0.092 0.071 0.114 0.065
# ki kare anlamlı model ile veri seti arasında farklılık mevcut. CFİ yeterli, TLİ kabul edilebilir, rmsea biraz yüksek, srmr yeterli ancak esnek uyum indekslerini de inceleyelim
## Warning in pop_mod(mod = mod1, x = x, type = type, standardized =
## standardized): At least one loading is > 1. Consider revision of standardized.
## CFI SRMR
## 0.95230514 0.04564984
## SRMR
## cutoff 0.001 0.060
## cutoff 0.01 0.052
## cutoff 0.05 0.046
## cutoff 0.1 0.044
# Esnek uyum indeksleri incelendiğinde CFI değeri beklenenin altında çıkmış SRMR 0,001 anlamlılık düzeyinde kabul edilebilir düzeyde.
Factor Loadings | |||||||||||||||
Latent Factor | Indicator | Loading | 95% CI | ci.upper_unstd | sig | SE | z | p | Loading | 95% CI | ci.upper_std | sig | SE | z | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
speed | x7 | 1.000 | 1.000 | 1.000 | 0.000 | 0.570 | 0.465 | 0.674 | *** | 0.053 | 10.714 | 0.000 | |||
speed | x8 | 1.180 | 0.857 | 1.503 | *** | 0.165 | 7.152 | 0.000 | 0.723 | 0.624 | 0.822 | *** | 0.051 | 14.309 | 0.000 |
speed | x9 | 1.082 | 0.785 | 1.378 | *** | 0.151 | 7.155 | 0.000 | 0.665 | 0.565 | 0.765 | *** | 0.051 | 13.015 | 0.000 |
textual | x4 | 1.000 | 1.000 | 1.000 | 0.000 | 0.852 | 0.807 | 0.896 | *** | 0.023 | 37.776 | 0.000 | |||
textual | x5 | 1.113 | 0.985 | 1.241 | *** | 0.065 | 17.014 | 0.000 | 0.855 | 0.811 | 0.899 | *** | 0.022 | 38.273 | 0.000 |
textual | x6 | 0.926 | 0.817 | 1.035 | *** | 0.055 | 16.703 | 0.000 | 0.838 | 0.792 | 0.884 | *** | 0.023 | 35.881 | 0.000 |
visual | x1 | 1.000 | 1.000 | 1.000 | 0.000 | 0.772 | 0.664 | 0.880 | *** | 0.055 | 14.041 | 0.000 | |||
visual | x2 | 0.554 | 0.358 | 0.749 | *** | 0.100 | 5.554 | 0.000 | 0.424 | 0.307 | 0.540 | *** | 0.060 | 7.105 | <0.001 |
visual | x3 | 0.729 | 0.516 | 0.943 | *** | 0.109 | 6.685 | 0.000 | 0.581 | 0.473 | 0.689 | *** | 0.055 | 10.539 | 0.000 |
* p < .05; ** p < .01; *** p < .001 |
Factor Loadings | |||||||
Latent Factor | Indicator |
Standardized
|
|||||
---|---|---|---|---|---|---|---|
Loading | 95% CI | sig | SE | z | p | ||
speed | x7 | 0.570 | 0.465 — 0.674 | *** | 0.053 | 10.714 | 0.000 |
speed | x8 | 0.723 | 0.624 — 0.822 | *** | 0.051 | 14.309 | 0.000 |
speed | x9 | 0.665 | 0.565 — 0.765 | *** | 0.051 | 13.015 | 0.000 |
textual | x4 | 0.852 | 0.807 — 0.896 | *** | 0.023 | 37.776 | 0.000 |
textual | x5 | 0.855 | 0.811 — 0.899 | *** | 0.022 | 38.273 | 0.000 |
textual | x6 | 0.838 | 0.792 — 0.884 | *** | 0.023 | 35.881 | 0.000 |
visual | x1 | 0.772 | 0.664 — 0.880 | *** | 0.055 | 14.041 | 0.000 |
visual | x2 | 0.424 | 0.307 — 0.540 | *** | 0.060 | 7.105 | <0.001 |
visual | x3 | 0.581 | 0.473 — 0.689 | *** | 0.055 | 10.539 | 0.000 |
* p < .05; ** p < .01; *** p < .001 |
# standartlaştırılmış faktör yükleri incelendiğinde faktö yükleri yeterli ve anlamlı bulunmuş
Latent Factor Variance/Residual Variance | ||||
Factor | Variance | Std. Variance | sig | p |
---|---|---|---|---|
visual | 0.809 | 1.000 | *** | <0.001 |
textual | 0.979 | 1.000 | *** | 0.000 |
speed | 0.384 | 1.000 | *** | <0.001 |
## $cov
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 1.358
## x2 0.448 1.382
## x3 0.590 0.327 1.275
## x4 0.408 0.226 0.298 1.351
## x5 0.454 0.252 0.331 1.090 1.660
## x6 0.378 0.209 0.276 0.907 1.010 1.196
## x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
## x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
## x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015
## $type
## [1] "normalized"
##
## $cov
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 0.000
## x2 -0.493 0.000
## x3 -0.125 1.539 0.000
## x4 1.159 -0.214 -1.170 0.000
## x5 -0.153 -0.459 -2.606 0.070 0.000
## x6 0.983 0.507 -0.436 -0.130 0.048 0.000
## x7 -2.423 -3.273 -1.450 0.625 -0.617 -0.240 0.000
## x8 -0.655 -0.896 -0.200 -1.162 -0.624 -0.375 1.170 0.000
## x9 2.405 1.249 2.420 0.808 1.126 0.958 -0.625 -0.504 0.000
2.58’i gecen değerler p<0.01 için,
1.96’yı gecen değerler ise p<0.05 için anlamlıdır.
## [1] 1.38639
x2 değişkenin varyansı 1.36 olarak kestirilmiştir.
## lhs op rhs est se z pvalue ci.lower ci.upper std.lv std.all
## 11 x2 ~~ x2 1.134 0.102 11.146 0 0.934 1.333 1.134 0.821
# x2 değişkeninin açıklanmayan varyans miktarı 1.134 olarak bulunmuştur.
## Warning in semTools::reliability(model_1_fit):
## The reliability() function was deprecated in 2022 and will cease to be included in future versions of semTools. See help('semTools-deprecated) for details.
##
## It is replaced by the compRelSEM() function, which can estimate alpha and model-based reliability in an even wider variety of models and data types, with greater control in specifying the desired type of reliability coefficient (i.e., more explicitly choosing assumptions).
##
## The average variance extracted should never have been included because it is not a reliability coefficient. It is now available from the AVE() function.
## visual textual speed
## alpha 0.6261171 0.8827069 0.6884550
## omega 0.6253180 0.8851754 0.6877600
## omega2 0.6253180 0.8851754 0.6877600
## omega3 0.6120052 0.8850608 0.6858417
## avevar 0.3705589 0.7210163 0.4244883
semTools paketinin reliability fonkisyonu AVE, alpha ve omega değerlerini vermektedir. omega1 ve omega2 model kovaryans modelini dikkate alır. Modifikasyon yapılmadığı durumda aynı çıkar. omega2 ilişkilendirilmiş hataları hesaba katar. omega3 ise hiyerarşik omega olarak bilinir ve gözlenenkovarynas matrisini kullanır.
standartlaştırılmamış çözümler
library(semPlot)
semPaths(model_1_fit, what="par",
style="lisrel",layout="tree",residuals = TRUE,rotation = 2 )
standartlaştırılmış çözümler
Latent Factor Correlations | ||||||
Factor | Factor | r | 95% CI | sig | SE | p |
---|---|---|---|---|---|---|
visual | textual | 0.459 | 0.334 — 0.584 | *** | 0.064 | <0.001 |
visual | speed | 0.471 | 0.328 — 0.613 | *** | 0.073 | <0.001 |
textual | speed | 0.283 | 0.148 — 0.418 | *** | 0.069 | <0.001 |
* p < .05; ** p < .01; *** p < .001 |
## lhs op rhs mi epc
## 30 visual =~ x9 36.411 0.577
## 76 x7 ~~ x8 34.145 0.536
## 28 visual =~ x7 18.631 -0.422
## 78 x8 ~~ x9 14.946 -0.423
## 33 textual =~ x3 9.151 -0.272
## 55 x2 ~~ x7 8.918 -0.183
# modelin yanlış tanımlandığı düşünülebilir. speed faktörünün maddeleri ile visual faktörünün maddeleri yer değiştirerek model tekrar kuralım
model_2 <- "
visual =~ x7 + x8 + x9
textual =~ x4+ x5 + x6
speed =~ x1 + x2 + x3"
model_2_fit <- cfa(model_2, data = dfa)
sem_sig(model_2_fit)
Model Significance | |||
N | χ2 | df | p |
---|---|---|---|
301 | 85.306 | 24 | <0.001 |
Model Fit | ||||||
CFI | RMSEA | 90% CI | TLI | SRMR | AIC | BIC |
---|---|---|---|---|---|---|
0.931 | 0.092 | 0.071 — 0.114 | 0.896 | 0.065 | 7517.490 | 7595.339 |
## CFI SRMR RMSEA TLI
## 0.95230514 0.04564984 0.04520126 0.92845771
#modifikasyonlar sonucu elde edilen model standart kestirim değerlerini sağlıyor ancak esnek uyum indeksleri için beklenenin biraz altında.
Factor Loadings | |||||||
Latent Factor | Indicator |
Standardized
|
|||||
---|---|---|---|---|---|---|---|
Loading | 95% CI | sig | SE | z | p | ||
speed | x1 | 0.772 | 0.664 — 0.880 | *** | 0.055 | 14.041 | 0.000 |
speed | x2 | 0.424 | 0.307 — 0.540 | *** | 0.060 | 7.105 | <0.001 |
speed | x3 | 0.581 | 0.473 — 0.689 | *** | 0.055 | 10.539 | 0.000 |
textual | x4 | 0.852 | 0.807 — 0.896 | *** | 0.023 | 37.776 | 0.000 |
textual | x5 | 0.855 | 0.811 — 0.899 | *** | 0.022 | 38.273 | 0.000 |
textual | x6 | 0.838 | 0.792 — 0.884 | *** | 0.023 | 35.881 | 0.000 |
visual | x7 | 0.570 | 0.465 — 0.674 | *** | 0.053 | 10.714 | 0.000 |
visual | x8 | 0.723 | 0.624 — 0.822 | *** | 0.051 | 14.309 | 0.000 |
visual | x9 | 0.665 | 0.565 — 0.765 | *** | 0.051 | 13.015 | 0.000 |
* p < .05; ** p < .01; *** p < .001 |
## Warning: lavaan->lavTestLRT():
## some models have the same degrees of freedom
##
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
## model_1_fit 24 7517.5 7595.3 85.305
## model_2_fit 24 7517.5 7595.3 85.305 5.258e-13 0 0
#modeller arasında anlamlı bir farklılık yoktur.
model_3 <-
"
visual =~ x1 + x2 + x3
textual =~ x4+ x5 + x6
speed =~ x7 + x8 + x9
Genel zihinsel yetenek =~ visual + textual + speed"
## Warning: lavaan->ldw_parse_model_string():
## having identifiers with spaces ('Genel zihinsel yetenek') is deprecated at
## line 4, pos 2
## Genel zihinsel yetenek =~ visual + textual + speed
## ^
## Warning: lavaan->ldw_parse_model_string():
## having identifiers with spaces ('Genel zihinsel yetenek') is deprecated at
## line 4, pos 2
## Genel zihinsel yetenek =~ visual + textual + speed
## ^
## Warning: lavaan->ldw_parse_model_string():
## having identifiers with spaces ('Genel zihinsel yetenek') is deprecated at
## line 4, pos 2
## Genel zihinsel yetenek =~ visual + textual + speed
## ^
## lavaan 0.6-19 ended normally after 34 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 301
##
## Model Test User Model:
##
## Test statistic 85.306
## Degrees of freedom 24
## P-value (Chi-square) 0.000
##
## Model Test Baseline Model:
##
## Test statistic 918.852
## Degrees of freedom 36
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.931
## Tucker-Lewis Index (TLI) 0.896
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3737.745
## Loglikelihood unrestricted model (H1) -3695.092
##
## Akaike (AIC) 7517.490
## Bayesian (BIC) 7595.339
## Sample-size adjusted Bayesian (SABIC) 7528.739
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.092
## 90 Percent confidence interval - lower 0.071
## 90 Percent confidence interval - upper 0.114
## P-value H_0: RMSEA <= 0.050 0.001
## P-value H_0: RMSEA >= 0.080 0.840
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.065
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## visual =~
## x1 1.000
## x2 0.554 0.100 5.554 0.000
## x3 0.729 0.109 6.685 0.000
## textual =~
## x4 1.000
## x5 1.113 0.065 17.014 0.000
## x6 0.926 0.055 16.703 0.000
## speed =~
## x7 1.000
## x8 1.180 0.165 7.152 0.000
## x9 1.082 0.151 7.155 0.000
## Genel zihinsel yetenek =~
## visual 1.000
## textual 0.662 0.173 3.826 0.000
## speed 0.425 0.118 3.602 0.000
## Std.lv Std.all
##
## 0.900 0.772
## 0.498 0.424
## 0.656 0.581
##
## 0.990 0.852
## 1.102 0.855
## 0.917 0.838
##
## 0.619 0.570
## 0.731 0.723
## 0.670 0.665
##
## 0.873 0.873
## 0.525 0.525
## 0.539 0.539
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.549 0.114 4.833 0.000 0.549 0.404
## .x2 1.134 0.102 11.146 0.000 1.134 0.821
## .x3 0.844 0.091 9.317 0.000 0.844 0.662
## .x4 0.371 0.048 7.778 0.000 0.371 0.275
## .x5 0.446 0.058 7.642 0.000 0.446 0.269
## .x6 0.356 0.043 8.277 0.000 0.356 0.298
## .x7 0.799 0.081 9.823 0.000 0.799 0.676
## .x8 0.488 0.074 6.573 0.000 0.488 0.477
## .x9 0.566 0.071 8.003 0.000 0.566 0.558
## .visual 0.192 0.170 1.128 0.259 0.238 0.238
## .textual 0.709 0.107 6.626 0.000 0.724 0.724
## .speed 0.272 0.069 3.954 0.000 0.710 0.710
## Genelzhnslytnk 0.617 0.183 3.372 0.001 1.000 1.000
Factor Loadings | |||||||
Latent Factor | Indicator |
Standardized
|
|||||
---|---|---|---|---|---|---|---|
Loading | 95% CI | sig | SE | z | p | ||
Genel zihinsel yetenek | speed | 0.539 | 0.372 — 0.706 | *** | 0.085 | 6.326 | <0.001 |
Genel zihinsel yetenek | textual | 0.525 | 0.370 — 0.680 | *** | 0.079 | 6.625 | <0.001 |
Genel zihinsel yetenek | visual | 0.873 | 0.648 — 1.098 | *** | 0.115 | 7.615 | <0.001 |
speed | x7 | 0.570 | 0.465 — 0.674 | *** | 0.053 | 10.714 | 0.000 |
speed | x8 | 0.723 | 0.624 — 0.822 | *** | 0.051 | 14.309 | 0.000 |
speed | x9 | 0.665 | 0.565 — 0.765 | *** | 0.051 | 13.015 | 0.000 |
textual | x4 | 0.852 | 0.807 — 0.896 | *** | 0.023 | 37.776 | 0.000 |
textual | x5 | 0.855 | 0.811 — 0.899 | *** | 0.022 | 38.273 | 0.000 |
textual | x6 | 0.838 | 0.792 — 0.884 | *** | 0.023 | 35.881 | 0.000 |
visual | x1 | 0.772 | 0.664 — 0.880 | *** | 0.055 | 14.041 | 0.000 |
visual | x2 | 0.424 | 0.307 — 0.540 | *** | 0.060 | 7.105 | <0.001 |
visual | x3 | 0.581 | 0.473 — 0.689 | *** | 0.055 | 10.539 | 0.000 |
* p < .05; ** p < .01; *** p < .001 |
## Warning: lavaan->lavTestLRT():
## some models have the same degrees of freedom
##
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
## fit_model_3 24 7517.5 7595.3 85.305
## model_1_fit 24 7517.5 7595.3 85.305 -1.4164e-09 0 0
Model 3 ile model 1 arasında anlamlı bir farklılık yoktur.
semPaths(fit_model_3, "std", weighted = FALSE, nCharNodes = 7,
shapeMan = "rectangle", sizeMan = 8, sizeMan2 = 5)
semPaths(model_1_fit, "std", weighted = FALSE, nCharNodes = 7,
shapeMan = "rectangle", sizeMan = 8, sizeMan2 = 5)
# okullar arasında sonuçların deüğişip değişmediğini test edelim.
fit_1 <- cfa(model_1,
data = olcme,
group = "school",
# group.equal = c(), # Şimdilik herhangi bir eşitlik kısıtlaması koymuyoruz
estimator = "ML",
missing = "fiml")
summary(fit_1, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 67 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 60
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of missing patterns per group:
## Pasteur 1
## Grant-White 1
##
## Model Test User Model:
##
## Test statistic 115.851
## Degrees of freedom 48
## P-value (Chi-square) 0.000
## Test statistic for each group:
## Pasteur 64.309
## Grant-White 51.542
##
## Model Test Baseline Model:
##
## Test statistic 957.769
## Degrees of freedom 72
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.923
## Tucker-Lewis Index (TLI) 0.885
##
## Robust Comparative Fit Index (CFI) 0.923
## Robust Tucker-Lewis Index (TLI) 0.885
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3682.198
## Loglikelihood unrestricted model (H1) -3624.272
##
## Akaike (AIC) 7484.395
## Bayesian (BIC) 7706.822
## Sample-size adjusted Bayesian (SABIC) 7516.536
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.097
## 90 Percent confidence interval - lower 0.075
## 90 Percent confidence interval - upper 0.120
## P-value H_0: RMSEA <= 0.050 0.001
## P-value H_0: RMSEA >= 0.080 0.897
##
## Robust RMSEA 0.097
## 90 Percent confidence interval - lower 0.075
## 90 Percent confidence interval - upper 0.120
## P-value H_0: Robust RMSEA <= 0.050 0.001
## P-value H_0: Robust RMSEA >= 0.080 0.897
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.068
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 1.047 0.887
## x2 0.394 0.145 2.706 0.007 0.412 0.336
## x3 0.570 0.154 3.690 0.000 0.597 0.515
## textual =~
## x4 1.000 0.946 0.823
## x5 1.183 0.100 11.788 0.000 1.119 0.856
## x6 0.875 0.079 11.051 0.000 0.827 0.838
## speed =~
## x7 1.000 0.591 0.547
## x8 1.125 0.260 4.323 0.000 0.665 0.682
## x9 0.922 0.252 3.656 0.000 0.545 0.551
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.479 0.114 4.205 0.000 0.484 0.484
## speed 0.185 0.076 2.423 0.015 0.299 0.299
## textual ~~
## speed 0.182 0.071 2.546 0.011 0.325 0.325
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 4.941 0.095 52.249 0.000 4.941 4.183
## .x2 5.984 0.098 60.949 0.000 5.984 4.880
## .x3 2.487 0.093 26.778 0.000 2.487 2.144
## .x4 2.823 0.092 30.689 0.000 2.823 2.457
## .x5 3.995 0.105 38.183 0.000 3.995 3.057
## .x6 1.922 0.079 24.321 0.000 1.922 1.947
## .x7 4.432 0.087 51.181 0.000 4.432 4.098
## .x8 5.563 0.078 71.214 0.000 5.563 5.702
## .x9 5.418 0.079 68.440 0.000 5.418 5.480
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.298 0.254 1.176 0.240 0.298 0.214
## .x2 1.334 0.164 8.125 0.000 1.334 0.887
## .x3 0.989 0.144 6.874 0.000 0.989 0.735
## .x4 0.425 0.070 6.042 0.000 0.425 0.322
## .x5 0.456 0.085 5.332 0.000 0.456 0.267
## .x6 0.290 0.051 5.641 0.000 0.290 0.297
## .x7 0.820 0.126 6.510 0.000 0.820 0.701
## .x8 0.510 0.118 4.333 0.000 0.510 0.535
## .x9 0.680 0.112 6.075 0.000 0.680 0.696
## visual 1.097 0.295 3.718 0.000 1.000 1.000
## textual 0.894 0.150 5.943 0.000 1.000 1.000
## speed 0.350 0.127 2.749 0.006 1.000 1.000
##
##
## Group 2 [Grant-White]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.777 0.677
## x2 0.736 0.163 4.504 0.000 0.572 0.517
## x3 0.925 0.179 5.179 0.000 0.719 0.694
## textual =~
## x4 1.000 0.971 0.866
## x5 0.990 0.087 11.409 0.000 0.961 0.829
## x6 0.963 0.085 11.361 0.000 0.935 0.826
## speed =~
## x7 1.000 0.679 0.659
## x8 1.226 0.172 7.110 0.000 0.833 0.796
## x9 1.058 0.198 5.332 0.000 0.719 0.701
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.408 0.101 4.026 0.000 0.541 0.541
## speed 0.276 0.080 3.464 0.001 0.523 0.523
## textual ~~
## speed 0.222 0.076 2.906 0.004 0.336 0.336
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 4.930 0.095 51.696 0.000 4.930 4.293
## .x2 6.200 0.092 67.416 0.000 6.200 5.599
## .x3 1.996 0.086 23.195 0.000 1.996 1.926
## .x4 3.317 0.093 35.625 0.000 3.317 2.959
## .x5 4.712 0.096 48.986 0.000 4.712 4.068
## .x6 2.469 0.094 26.277 0.000 2.469 2.182
## .x7 3.921 0.086 45.819 0.000 3.921 3.805
## .x8 5.488 0.087 63.174 0.000 5.488 5.246
## .x9 5.327 0.085 62.571 0.000 5.327 5.196
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.715 0.131 5.445 0.000 0.715 0.542
## .x2 0.899 0.124 7.258 0.000 0.899 0.733
## .x3 0.557 0.108 5.140 0.000 0.557 0.519
## .x4 0.315 0.065 4.862 0.000 0.315 0.251
## .x5 0.419 0.072 5.794 0.000 0.419 0.312
## .x6 0.406 0.069 5.867 0.000 0.406 0.317
## .x7 0.600 0.095 6.294 0.000 0.600 0.566
## .x8 0.401 0.113 3.543 0.000 0.401 0.367
## .x9 0.535 0.110 4.873 0.000 0.535 0.509
## visual 0.604 0.165 3.666 0.000 1.000 1.000
## textual 0.942 0.153 6.175 0.000 1.000 1.000
## speed 0.461 0.121 3.804 0.000 1.000 1.000
# Her iki gruptada maddelerin aynı faktörlere yüklendiği görüldüğü için metrik değişmezliğe geçilebilr.
fit_2 <- cfa(model_1
,
data = olcme,
group = "school", # Gruplama değişkeni
group.equal = c("loadings"), # Yalnızca faktör yükleri eşit kısıtlanıyor
estimator = "ML",
missing = "fiml")
# Sonuçları yazdır
summary(fit_2, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 51 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 60
## Number of equality constraints 6
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of missing patterns per group:
## Pasteur 1
## Grant-White 1
##
## Model Test User Model:
##
## Test statistic 124.044
## Degrees of freedom 54
## P-value (Chi-square) 0.000
## Test statistic for each group:
## Pasteur 68.825
## Grant-White 55.219
##
## Model Test Baseline Model:
##
## Test statistic 957.769
## Degrees of freedom 72
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.921
## Tucker-Lewis Index (TLI) 0.895
##
## Robust Comparative Fit Index (CFI) 0.921
## Robust Tucker-Lewis Index (TLI) 0.895
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3686.294
## Loglikelihood unrestricted model (H1) -3624.272
##
## Akaike (AIC) 7480.587
## Bayesian (BIC) 7680.771
## Sample-size adjusted Bayesian (SABIC) 7509.514
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.093
## 90 Percent confidence interval - lower 0.071
## 90 Percent confidence interval - upper 0.114
## P-value H_0: RMSEA <= 0.050 0.001
## P-value H_0: RMSEA >= 0.080 0.845
##
## Robust RMSEA 0.093
## 90 Percent confidence interval - lower 0.071
## 90 Percent confidence interval - upper 0.114
## P-value H_0: Robust RMSEA <= 0.050 0.001
## P-value H_0: Robust RMSEA >= 0.080 0.845
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.072
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.897 0.771
## x2 (.p2.) 0.599 0.112 5.327 0.000 0.537 0.432
## x3 (.p3.) 0.784 0.121 6.508 0.000 0.704 0.600
## textual =~
## x4 1.000 0.956 0.823
## x5 (.p5.) 1.083 0.067 16.077 0.000 1.035 0.824
## x6 (.p6.) 0.912 0.059 15.410 0.000 0.871 0.860
## speed =~
## x7 1.000 0.552 0.514
## x8 (.p8.) 1.201 0.143 8.380 0.000 0.663 0.679
## x9 (.p9.) 1.038 0.164 6.331 0.000 0.573 0.577
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.416 0.108 3.843 0.000 0.485 0.485
## speed 0.169 0.065 2.604 0.009 0.340 0.340
## textual ~~
## speed 0.176 0.062 2.855 0.004 0.333 0.333
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 4.941 0.093 52.991 0.000 4.941 4.243
## .x2 5.984 0.100 60.096 0.000 5.984 4.812
## .x3 2.487 0.094 26.465 0.000 2.487 2.119
## .x4 2.823 0.093 30.371 0.000 2.823 2.432
## .x5 3.995 0.101 39.714 0.000 3.995 3.180
## .x6 1.922 0.081 23.711 0.000 1.922 1.898
## .x7 4.432 0.086 51.540 0.000 4.432 4.126
## .x8 5.563 0.078 71.088 0.000 5.563 5.692
## .x9 5.418 0.079 68.153 0.000 5.418 5.457
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.551 0.151 3.647 0.000 0.551 0.406
## .x2 1.258 0.157 8.009 0.000 1.258 0.813
## .x3 0.882 0.133 6.636 0.000 0.882 0.640
## .x4 0.434 0.072 6.006 0.000 0.434 0.322
## .x5 0.508 0.085 5.980 0.000 0.508 0.322
## .x6 0.266 0.052 5.139 0.000 0.266 0.260
## .x7 0.849 0.116 7.305 0.000 0.849 0.736
## .x8 0.515 0.100 5.128 0.000 0.515 0.539
## .x9 0.658 0.102 6.475 0.000 0.658 0.667
## visual 0.805 0.186 4.325 0.000 1.000 1.000
## textual 0.913 0.138 6.619 0.000 1.000 1.000
## speed 0.305 0.080 3.816 0.000 1.000 1.000
##
##
## Group 2 [Grant-White]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.850 0.727
## x2 (.p2.) 0.599 0.112 5.327 0.000 0.509 0.466
## x3 (.p3.) 0.784 0.121 6.508 0.000 0.667 0.651
## textual =~
## x4 1.000 0.952 0.857
## x5 (.p5.) 1.083 0.067 16.077 0.000 1.031 0.857
## x6 (.p6.) 0.912 0.059 15.410 0.000 0.868 0.795
## speed =~
## x7 1.000 0.689 0.665
## x8 (.p8.) 1.201 0.143 8.380 0.000 0.828 0.793
## x9 (.p9.) 1.038 0.164 6.331 0.000 0.715 0.700
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.437 0.100 4.382 0.000 0.540 0.540
## speed 0.314 0.081 3.889 0.000 0.536 0.536
## textual ~~
## speed 0.226 0.074 3.049 0.002 0.345 0.345
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 4.930 0.097 50.763 0.000 4.930 4.216
## .x2 6.200 0.091 68.379 0.000 6.200 5.679
## .x3 1.996 0.085 23.455 0.000 1.996 1.948
## .x4 3.317 0.092 35.950 0.000 3.317 2.985
## .x5 4.712 0.100 47.173 0.000 4.712 3.918
## .x6 2.469 0.091 27.248 0.000 2.469 2.263
## .x7 3.921 0.086 45.555 0.000 3.921 3.783
## .x8 5.488 0.087 63.257 0.000 5.488 5.253
## .x9 5.327 0.085 62.786 0.000 5.327 5.214
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.645 0.127 5.073 0.000 0.645 0.472
## .x2 0.933 0.124 7.532 0.000 0.933 0.783
## .x3 0.605 0.103 5.902 0.000 0.605 0.577
## .x4 0.329 0.064 5.173 0.000 0.329 0.266
## .x5 0.384 0.073 5.281 0.000 0.384 0.265
## .x6 0.437 0.068 6.426 0.000 0.437 0.367
## .x7 0.599 0.093 6.414 0.000 0.599 0.558
## .x8 0.406 0.104 3.912 0.000 0.406 0.372
## .x9 0.532 0.102 5.215 0.000 0.532 0.510
## visual 0.722 0.159 4.538 0.000 1.000 1.000
## textual 0.906 0.138 6.570 0.000 1.000 1.000
## speed 0.475 0.112 4.256 0.000 1.000 1.000
#standartlaştırılmış aldığımız için farklı çıktı katsayılar
#Metrik model, zorlanmış faktör yükleri ile birlikte iki grup (Pasteur,
Grant-White) için kısmen kabul edilebilir bir uyum göstermektedir, ancak
TLI ve RMSEA biraz zayıftır.
Bu noktada, katı modele geçmeden önce modifikasyon indeksleri, model iyileştirmeleri ve özellikle veri yapısının teoriyle uyumu da göz önünde bulundurulmalıdır.
fit_3 <- cfa(model_1,
data = olcme
,
group = "school",
group.equal = c("loadings", "intercepts"), # Yüklemeler ve sabit terimler eşit
estimator = "ML",
missing = "fiml")
# Sonuçları yazdır
summary(fit_3, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 60 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 63
## Number of equality constraints 15
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of missing patterns per group:
## Pasteur 1
## Grant-White 1
##
## Model Test User Model:
##
## Test statistic 164.103
## Degrees of freedom 60
## P-value (Chi-square) 0.000
## Test statistic for each group:
## Pasteur 90.210
## Grant-White 73.892
##
## Model Test Baseline Model:
##
## Test statistic 957.769
## Degrees of freedom 72
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.882
## Tucker-Lewis Index (TLI) 0.859
##
## Robust Comparative Fit Index (CFI) 0.882
## Robust Tucker-Lewis Index (TLI) 0.859
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3706.323
## Loglikelihood unrestricted model (H1) -3624.272
##
## Akaike (AIC) 7508.647
## Bayesian (BIC) 7686.588
## Sample-size adjusted Bayesian (SABIC) 7534.359
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.107
## 90 Percent confidence interval - lower 0.088
## 90 Percent confidence interval - upper 0.127
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.989
##
## Robust RMSEA 0.107
## 90 Percent confidence interval - lower 0.088
## 90 Percent confidence interval - upper 0.127
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 0.989
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.082
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.892 0.768
## x2 (.p2.) 0.576 0.109 5.262 0.000 0.514 0.411
## x3 (.p3.) 0.798 0.130 6.140 0.000 0.712 0.591
## textual =~
## x4 1.000 0.938 0.815
## x5 (.p5.) 1.120 0.066 16.962 0.000 1.050 0.829
## x6 (.p6.) 0.932 0.057 16.315 0.000 0.874 0.862
## speed =~
## x7 1.000 0.568 0.516
## x8 (.p8.) 1.130 0.137 8.258 0.000 0.641 0.657
## x9 (.p9.) 1.009 0.160 6.325 0.000 0.573 0.578
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.410 0.107 3.844 0.000 0.490 0.490
## speed 0.178 0.067 2.657 0.008 0.351 0.351
## textual ~~
## speed 0.180 0.063 2.867 0.004 0.338 0.338
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.25.) 5.001 0.092 54.423 0.000 5.001 4.302
## .x2 (.26.) 6.151 0.079 77.428 0.000 6.151 4.925
## .x3 (.27.) 2.271 0.089 25.636 0.000 2.271 1.885
## .x4 (.28.) 2.778 0.087 31.956 0.000 2.778 2.413
## .x5 (.29.) 4.035 0.097 41.681 0.000 4.035 3.184
## .x6 (.30.) 1.926 0.079 24.409 0.000 1.926 1.900
## .x7 (.31.) 4.242 0.077 55.383 0.000 4.242 3.855
## .x8 (.32.) 5.630 0.073 77.378 0.000 5.630 5.771
## .x9 (.33.) 5.465 0.070 78.027 0.000 5.465 5.516
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.555 0.157 3.539 0.000 0.555 0.411
## .x2 1.296 0.161 8.071 0.000 1.296 0.831
## .x3 0.944 0.148 6.399 0.000 0.944 0.650
## .x4 0.445 0.072 6.209 0.000 0.445 0.336
## .x5 0.502 0.086 5.859 0.000 0.502 0.313
## .x6 0.263 0.051 5.124 0.000 0.263 0.256
## .x7 0.888 0.127 7.006 0.000 0.888 0.734
## .x8 0.541 0.099 5.483 0.000 0.541 0.568
## .x9 0.654 0.101 6.476 0.000 0.654 0.666
## visual 0.796 0.192 4.146 0.000 1.000 1.000
## textual 0.879 0.132 6.654 0.000 1.000 1.000
## speed 0.322 0.085 3.786 0.000 1.000 1.000
##
##
## Group 2 [Grant-White]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.841 0.721
## x2 (.p2.) 0.576 0.109 5.262 0.000 0.484 0.442
## x3 (.p3.) 0.798 0.130 6.140 0.000 0.672 0.643
## textual =~
## x4 1.000 0.933 0.847
## x5 (.p5.) 1.120 0.066 16.962 0.000 1.045 0.862
## x6 (.p6.) 0.932 0.057 16.315 0.000 0.869 0.796
## speed =~
## x7 1.000 0.711 0.668
## x8 (.p8.) 1.130 0.137 8.258 0.000 0.803 0.773
## x9 (.p9.) 1.009 0.160 6.325 0.000 0.717 0.704
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.427 0.098 4.366 0.000 0.544 0.544
## speed 0.329 0.084 3.932 0.000 0.550 0.550
## textual ~~
## speed 0.236 0.075 3.154 0.002 0.356 0.356
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.25.) 5.001 0.092 54.423 0.000 5.001 4.286
## .x2 (.26.) 6.151 0.079 77.428 0.000 6.151 5.618
## .x3 (.27.) 2.271 0.089 25.636 0.000 2.271 2.174
## .x4 (.28.) 2.778 0.087 31.956 0.000 2.778 2.522
## .x5 (.29.) 4.035 0.097 41.681 0.000 4.035 3.330
## .x6 (.30.) 1.926 0.079 24.409 0.000 1.926 1.763
## .x7 (.31.) 4.242 0.077 55.383 0.000 4.242 3.991
## .x8 (.32.) 5.630 0.073 77.378 0.000 5.630 5.422
## .x9 (.33.) 5.465 0.070 78.027 0.000 5.465 5.369
## visual -0.148 0.127 -1.164 0.244 -0.176 -0.176
## textual 0.576 0.117 4.935 0.000 0.618 0.618
## speed -0.177 0.094 -1.884 0.060 -0.250 -0.250
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 0.654 0.131 4.973 0.000 0.654 0.480
## .x2 0.964 0.127 7.573 0.000 0.964 0.804
## .x3 0.641 0.113 5.685 0.000 0.641 0.587
## .x4 0.343 0.064 5.397 0.000 0.343 0.283
## .x5 0.376 0.074 5.101 0.000 0.376 0.256
## .x6 0.437 0.068 6.389 0.000 0.437 0.366
## .x7 0.625 0.103 6.078 0.000 0.625 0.553
## .x8 0.434 0.101 4.308 0.000 0.434 0.403
## .x9 0.522 0.101 5.191 0.000 0.522 0.504
## visual 0.708 0.162 4.382 0.000 1.000 1.000
## textual 0.870 0.133 6.550 0.000 1.000 1.000
## speed 0.505 0.119 4.249 0.000 1.000 1.000
#CFI ve TLI: Modeller arasında karşılaştırma yapıldığında, elde edilen CFI (0.882) ve TLI (0.859) değerleri, genellikle tatmin edici ancak katı değişmezlik için biraz daha yüksek bir uyum sağlanması tercih edilebilir. Genellikle, CFI’nin 0.90’ın üzerinde olması iyi bir uyum göstergesi olarak kabul edilir.
RMSEA: 0.107’lik RMSEA değeri, modelin çok iyi uyum sağlamadığını gösteriyor çünkü bu değer 0.08’in üzerinde ve genellikle 0.05’in altına çekilmesi beklenir.
fit_4 <- cfa(model_1,
data = olcme,
group = "school",
group.equal = c("loadings", "intercepts","residuals"), # Yüklemeler ve sabit terimler eşit
estimator = "ML",
missing = "fiml")
# Sonuçları yazdır
summary(fit_4, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6-19 ended normally after 59 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 63
## Number of equality constraints 24
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of missing patterns per group:
## Pasteur 1
## Grant-White 1
##
## Model Test User Model:
##
## Test statistic 181.511
## Degrees of freedom 69
## P-value (Chi-square) 0.000
## Test statistic for each group:
## Pasteur 93.093
## Grant-White 88.419
##
## Model Test Baseline Model:
##
## Test statistic 957.769
## Degrees of freedom 72
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.873
## Tucker-Lewis Index (TLI) 0.867
##
## Robust Comparative Fit Index (CFI) 0.873
## Robust Tucker-Lewis Index (TLI) 0.867
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3715.028
## Loglikelihood unrestricted model (H1) -3624.272
##
## Akaike (AIC) 7508.055
## Bayesian (BIC) 7652.632
## Sample-size adjusted Bayesian (SABIC) 7528.947
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.104
## 90 Percent confidence interval - lower 0.086
## 90 Percent confidence interval - upper 0.123
## P-value H_0: RMSEA <= 0.050 0.000
## P-value H_0: RMSEA >= 0.080 0.984
##
## Robust RMSEA 0.104
## 90 Percent confidence interval - lower 0.086
## 90 Percent confidence interval - upper 0.123
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 0.984
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.088
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.876 0.739
## x2 (.p2.) 0.591 0.113 5.240 0.000 0.518 0.438
## x3 (.p3.) 0.837 0.143 5.856 0.000 0.733 0.641
## textual =~
## x4 1.000 0.945 0.837
## x5 (.p5.) 1.125 0.065 17.222 0.000 1.064 0.850
## x6 (.p6.) 0.933 0.056 16.596 0.000 0.882 0.829
## speed =~
## x7 1.000 0.583 0.554
## x8 (.p8.) 1.121 0.142 7.904 0.000 0.654 0.678
## x9 (.p9.) 1.028 0.171 6.017 0.000 0.600 0.620
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.367 0.107 3.425 0.001 0.444 0.444
## speed 0.174 0.066 2.628 0.009 0.341 0.341
## textual ~~
## speed 0.176 0.063 2.789 0.005 0.319 0.319
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.25.) 5.012 0.092 54.442 0.000 5.012 4.227
## .x2 (.26.) 6.133 0.078 78.664 0.000 6.133 5.186
## .x3 (.27.) 2.314 0.086 26.925 0.000 2.314 2.023
## .x4 (.28.) 2.784 0.086 32.240 0.000 2.784 2.464
## .x5 (.29.) 4.029 0.097 41.723 0.000 4.029 3.219
## .x6 (.30.) 1.927 0.081 23.728 0.000 1.927 1.811
## .x7 (.31.) 4.271 0.074 57.437 0.000 4.271 4.056
## .x8 (.32.) 5.622 0.072 78.050 0.000 5.622 5.834
## .x9 (.33.) 5.461 0.070 77.984 0.000 5.461 5.644
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.10.) 0.638 0.119 5.368 0.000 0.638 0.454
## .x2 (.11.) 1.130 0.103 10.970 0.000 1.130 0.808
## .x3 (.12.) 0.771 0.105 7.374 0.000 0.771 0.589
## .x4 (.13.) 0.383 0.047 8.096 0.000 0.383 0.300
## .x5 (.14.) 0.435 0.058 7.535 0.000 0.435 0.278
## .x6 (.15.) 0.354 0.043 8.187 0.000 0.354 0.312
## .x7 (.16.) 0.769 0.087 8.875 0.000 0.769 0.693
## .x8 (.17.) 0.501 0.079 6.334 0.000 0.501 0.540
## .x9 (.18.) 0.576 0.081 7.147 0.000 0.576 0.616
## visual 0.767 0.173 4.443 0.000 1.000 1.000
## textual 0.894 0.132 6.782 0.000 1.000 1.000
## speed 0.340 0.089 3.812 0.000 1.000 1.000
##
##
## Group 2 [Grant-White]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual =~
## x1 1.000 0.810 0.712
## x2 (.p2.) 0.591 0.113 5.240 0.000 0.479 0.411
## x3 (.p3.) 0.837 0.143 5.856 0.000 0.678 0.611
## textual =~
## x4 1.000 0.936 0.834
## x5 (.p5.) 1.125 0.065 17.222 0.000 1.053 0.847
## x6 (.p6.) 0.933 0.056 16.596 0.000 0.874 0.827
## speed =~
## x7 1.000 0.692 0.619
## x8 (.p8.) 1.121 0.142 7.904 0.000 0.775 0.738
## x9 (.p9.) 1.028 0.171 6.017 0.000 0.711 0.684
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## visual ~~
## textual 0.422 0.096 4.384 0.000 0.556 0.556
## speed 0.331 0.082 4.030 0.000 0.590 0.590
## textual ~~
## speed 0.236 0.075 3.161 0.002 0.364 0.364
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.25.) 5.012 0.092 54.442 0.000 5.012 4.404
## .x2 (.26.) 6.133 0.078 78.664 0.000 6.133 5.260
## .x3 (.27.) 2.314 0.086 26.925 0.000 2.314 2.086
## .x4 (.28.) 2.784 0.086 32.240 0.000 2.784 2.481
## .x5 (.29.) 4.029 0.097 41.723 0.000 4.029 3.243
## .x6 (.30.) 1.927 0.081 23.728 0.000 1.927 1.824
## .x7 (.31.) 4.271 0.074 57.437 0.000 4.271 3.825
## .x8 (.32.) 5.622 0.072 78.050 0.000 5.622 5.356
## .x9 (.33.) 5.461 0.070 77.984 0.000 5.461 5.249
## visual -0.157 0.125 -1.258 0.208 -0.194 -0.194
## textual 0.575 0.117 4.904 0.000 0.614 0.614
## speed -0.176 0.094 -1.868 0.062 -0.255 -0.255
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .x1 (.10.) 0.638 0.119 5.368 0.000 0.638 0.493
## .x2 (.11.) 1.130 0.103 10.970 0.000 1.130 0.831
## .x3 (.12.) 0.771 0.105 7.374 0.000 0.771 0.626
## .x4 (.13.) 0.383 0.047 8.096 0.000 0.383 0.304
## .x5 (.14.) 0.435 0.058 7.535 0.000 0.435 0.282
## .x6 (.15.) 0.354 0.043 8.187 0.000 0.354 0.317
## .x7 (.16.) 0.769 0.087 8.875 0.000 0.769 0.616
## .x8 (.17.) 0.501 0.079 6.334 0.000 0.501 0.455
## .x9 (.18.) 0.576 0.081 7.147 0.000 0.576 0.533
## visual 0.657 0.168 3.912 0.000 1.000 1.000
## textual 0.876 0.133 6.570 0.000 1.000 1.000
## speed 0.478 0.119 4.013 0.000 1.000 1.000
##
## Chi-Squared Difference Test
##
## Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
## fit_1 48 7484.4 7706.8 115.85
## fit_2 54 7480.6 7680.8 124.04 8.192 0.049272 6 0.22436
## fit_3 60 7508.6 7686.6 164.10 40.059 0.194211 6 4.435e-07 ***
## fit_4 69 7508.1 7652.6 181.51 17.409 0.078790 9 0.04269 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## chisq df pvalue rmsea srmr cfi
## 115.851 48.000 0.000 0.097 0.068 0.923
## chisq df pvalue rmsea srmr cfi
## 124.044 54.000 0.000 0.093 0.072 0.921
## chisq df pvalue rmsea srmr cfi
## 164.103 60.000 0.000 0.107 0.082 0.882
## chisq df pvalue rmsea srmr cfi
## 181.511 69.000 0.000 0.104 0.088 0.873
Model uyum indeksleri için aşağıdaki değerler uygundur: RMSEA: < 0,05 veya 0,08 CFI: > 0,95 veya 0,90 SRMR: < 0,08 veya 0,10
Modeldeki kısıtlamalar arttıkça, özellikle fit_3 modeli, anlamlı bir iyileşme sağlıyor. Ancak fit_4’teki iyileşme daha sınırlı ve anlamlı olsa da daha düşük bir düzeyde kalıyor. Bu, modelin artık daha fazla parametre eklemek yerine mevcut yapı ile uyum sağladığını ve fazla kısıtlamalar eklemek yerine mevcut parametrelerle devam etmenin daha mantıklı olabileceğini gösteriyor.
Dolayısıyla, fit_3 (ölçek değişmezliği) modeli en uygun seçenek gibi görünüyor.