p <- seq(0, 1, by = 0.01)
gini <- 2 * p * (1 - p)
class_error <- 1 - pmax(p, 1 - p)
entropy <- -p * log2(p) - (1 - p) * log2(1 - p)
entropy[is.nan(entropy)] <- 0
plot(p, gini, type = "l", col = "red", lwd = 2,
ylab = "Impurity Measure", xlab = expression(hat(p)[m1]),
main = "Impurity Measures vs. Class 1 Probability", ylim = c(0, 1))
lines(p, class_error, col = "blue", lwd = 2)
lines(p, entropy, col = "darkgreen", lwd = 2)
legend("top", legend = c("Gini Index", "Classification Error", "Entropy"),
col = c("red", "blue", "darkgreen"), lwd = 2, bty = "n")
#8
library(ISLR2)
library(tree)
set.seed(1)
train_indices <- sample(1:nrow(Carseats), nrow(Carseats)/2)
train <- Carseats[train_indices, ]
test <- Carseats[-train_indices, ]
tree_model <- tree(Sales ~ ., data = train)
summary(tree_model)
##
## Regression tree:
## tree(formula = Sales ~ ., data = train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(tree_model)
text(tree_model, pretty = 0)
pred_tree <- predict(tree_model, newdata = test)
mse_tree <- mean((pred_tree - test$Sales)^2)
mse_tree
## [1] 4.922039
test MSE: 4.922
set.seed(1)
cv_tree <- cv.tree(tree_model)
plot(cv_tree$size, cv_tree$dev, type = "b")
pruned_tree <- prune.tree(tree_model, best = 8)
plot(pruned_tree)
text(pruned_tree, pretty = 0)
pred_pruned <- predict(pruned_tree, newdata = test)
mse_pruned <- mean((pred_pruned - test$Sales)^2)
mse_pruned
## [1] 5.113254
MSE increased to 5.11 from 4.922
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag_model <- randomForest(Sales ~ ., data = train, mtry = ncol(train) - 1, importance = TRUE)
pred_bag <- predict(bag_model, newdata = test)
mean((pred_bag - test$Sales)^2)
## [1] 2.605253
importance(bag_model)
## %IncMSE IncNodePurity
## CompPrice 24.8888481 170.182937
## Income 4.7121131 91.264880
## Advertising 12.7692401 97.164338
## Population -1.8074075 58.244596
## Price 56.3326252 502.903407
## ShelveLoc 48.8886689 380.032715
## Age 17.7275460 157.846774
## Education 0.5962186 44.598731
## Urban 0.1728373 9.822082
## US 4.2172102 18.073863
Test MSE: 2.61
set.seed(1)
rf_model <- randomForest(Sales ~ ., data = train, mtry = 4, importance = TRUE)
pred_rf <- predict(rf_model, newdata = test)
mse_rf <- mean((pred_rf - test$Sales)^2)
importance(rf_model)
## %IncMSE IncNodePurity
## CompPrice 15.7891655 160.57944
## Income 4.1275509 121.12953
## Advertising 9.6425758 111.54581
## Population -1.3596645 85.92575
## Price 43.4055391 423.06225
## ShelveLoc 37.8850232 311.97119
## Age 13.8924424 174.18229
## Education 0.1960888 62.77782
## Urban 0.1393816 12.92952
## US 6.3532441 30.42255
varImpPlot(rf_model)
Most important variables: Price and ShelveLoc
library(BART)
## Loading required package: nlme
## Loading required package: survival
x_train <- data.matrix(train[, -which(names(train) == "Sales")])
y_train <- train$Sales
x_test <- data.matrix(test[, -which(names(test) == "Sales")])
set.seed(1)
bart_model <- gbart(x.train = x_train, y.train = y_train, x.test = x_test)
## *****Calling gbart: type=1
## *****Data:
## data:n,p,np: 200, 10, 200
## y1,yn: 2.781850, 1.091850
## x1,x[n*p]: 107.000000, 2.000000
## xp1,xp[np*p]: 111.000000, 2.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 63 ... 1
## *****burn,nd,thin: 100,1000,1
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,0.273474,3,0.692269,7.57815
## *****sigma: 1.885179
## *****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,10,0
## *****printevery: 100
##
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 5s
## trcnt,tecnt: 1000,1000
pred_bart <- bart_model$yhat.test.mean
mse_bart <- mean((pred_bart - test$Sales)^2)
mse_bart
## [1] 1.465254
BART MSE: 1.465
set.seed(1)
data(OJ)
train_indices <- sample(1:nrow(OJ), 800)
train <- OJ[train_indices, ]
test <- OJ[-train_indices, ]
tree_oj <- tree(Purchase ~ ., data = train)
summary(tree_oj)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
The tree uses only 5 variable and 9 terminal nodes.
tree_oj
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196196 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196196 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
Terminal Node 7 contains 261 observations and predicts CH with 95.8% probability for CH and 4.2% for MM. LoyalCH > 0.7646 indiocates strong brand loyalty.
plot(tree_oj)
text(tree_oj, pretty = 0)
LoyalCH is the most important feature
pred_test <- predict(tree_oj, newdata = test, type = "class")
conf_matrix <- table(pred_test, test$Purchase)
conf_matrix
##
## pred_test CH MM
## CH 160 38
## MM 8 64
test_error <- mean(pred_test != test$Purchase)
test_error
## [1] 0.1703704
Test error rate: 0.1704
set.seed(1)
cv_oj <- cv.tree(tree_oj, FUN = prune.misclass)
plot(cv_oj$size, cv_oj$dev, type = "b", xlab = "Tree Size", ylab = "CV Misclassification Error")
min_dev_index <- which.min(cv_oj$dev)
optimal_size <- cv_oj$size[min_dev_index]
optimal_size
## [1] 9
Tree size 9 corresponds with the lowest cross validated classification error rate
pruned_oj <- prune.misclass(tree_oj, best = optimal_size)
plot(pruned_oj)
text(pruned_oj, pretty = 0)
set.seed(1)
train_pred_unpruned <- predict(tree_oj, newdata = train, type = "class")
train_pred_pruned <- predict(pruned_oj, newdata = train, type = "class")
train_error_unpruned <- mean(train_pred_unpruned != train$Purchase)
train_error_pruned <- mean(train_pred_pruned != train$Purchase)
train_error_unpruned
## [1] 0.15875
train_error_pruned
## [1] 0.15875
Pruned and unpruned has the same error rate.
test_pred_pruned <- predict(pruned_oj, newdata = test, type = "class")
test_error_pruned <- mean(test_pred_pruned != test$Purchase)
test_error # from part (e)
## [1] 0.1703704
test_error_pruned
## [1] 0.1703704