Prompt 1: I provided ChatGPT with the following prompt and data: The goal of this analysis is to build a predictive model that determines whether a CEO was dismissed, using the CEO departures dataset. Please clean the data cleaning, and tune an XGBoost classification model and used H2O AutoML model for comparison in model accuracy. Additionally the following is a glimpse of the dataset as well as a skim of the dataset. data_clean %>% skimr::skim() ── Data Summary ──────────────────────── Values
Name Piped data Number of rows 7475
Number of columns 8
_______________________
Column type frequency:
factor 3
numeric 5
________________________
Group variables None

── Variable type: factor ─────────────────────────────────────────────────────────────────────────────── skim_variable n_missing complete_rate ordered n_unique top_counts
1 coname 0 1 FALSE 3427 BAR: 8, CLA: 8, FED: 8, GRE: 8 2 exec_fullname 0 1 FALSE 6975 Joh: 4, Mel: 4, Alb: 3, Ami: 3 3 ceo_dismissal 0 1 FALSE 2 not: 5992, dis: 1483

── Variable type: numeric ────────────────────────────────────────────────────────────────────────────── skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist 1 dismissal_dataset_id 0 1 5570. 25757. 1 2176. 4326 6580. 559044 ▇▁▁▁▁ 2 co_per_rol 0 1 21447. 16350. -1 6981 18269 33418. 64601 ▇▅▅▂▁ 3 tenure_no_ceodb 0 1 1.03 0.164 1 1 1 1 3 ▇▁▁▁▁ 4 max_tenure_ceodb 0 1 1.05 0.228 1 1 1 1 4 ▇▁▁▁▁ 5 fyear_gone 0 1 2006. 7.50 1980 2000 2006 2013 2021 ▁▂▇▇▆

data %>% glimpse() Rows: 9,423 Columns: 19 $ dismissal_dataset_id 559043, 12, 13, 31, 43, 51, 61, 63, 62, 65, 75, 76, 78, 80, 81, 84, 85, 88, 99, 109, 110, 11… $ coname “SONICBLUE INC”, “AMERICAN AIRLINES GROUP INC”, “AMERICAN AIRLINES GROUP INC”, “ABBOTT LABOR… $ gvkey 27903, 1045, 1045, 1078, 1161, 1177, 1194, 1194, 1194, 1209, 1239, 1239, 1240, 1243, 1243, 1… $ fyear 2002, 1997, 2002, 1998, 2001, 1997, 1993, 1997, 1993, 2000, 1993, 2007, 2000, 1993, 2000, 19… $ co_per_rol -1, 1, 3, 6, 11, 16, 21, 22, 24, 28, 33, 34, 38, 43, 44, 50, 51, 55, 60, 66, 68, 71, 73, 77,… $ exec_fullname ”L. Gregory Ballard”, “Robert L. Crandall”, “Donald J. Carty”, “Duane L. Burnham”, “Walter J… $ departure_code 7, 5, 3, 5, 5, 5, 5, 7, 9, 5, 5, 5, 3, 5, 5, 3, 3, 3, 5, 6, 5, 5, 7, 5, NA, 3, 5, 5, 5, 5, 7… $ ceo_dismissal 0, 0, 1, 0, 0, 0, 0, 0, NA, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, NA, 1, 0, 0, 0, 0, … $ interim_coceo NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, … $ tenure_no_ceodb 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,… $ max_tenure_ceodb 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,… $ fyear_gone 2003, 1998, 2003, 1998, 2002, 1997, 1993, 1998, 1993, 2001, 1995, 2007, 2001, 1993, 2001, 19… $ leftofc 2003-03-21, 1998-05-20, 2003-04-24, 1998-12-31, 2002-04-25, 1997-07-28, 1993-11-01, 1998-10… $ still_there NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, … $ notes ”Ballard took over when the outgoing CEO said that the board has given itself free money to … $ sources https://www.wsj.com/articles/SB1028857692190933480\nhttps://greensboro.com/sonicblue-inc-pl… $ eight_ks https://www.sec.gov/Archives/edgar/data/850519/000089161803001912/f89346e8vk.htm\rhttps://w… $ cik 850519, 6201, 6201, 1800, 2488, 1122304, 771667, 771667, 771667, 2969, 1368457, 1368457, 333… $ _merge “matched (3)”, “matched (3)”, “matched (3)”, “matched (3)”, “matched (3)”, “matched (3)”, “m… data %>% skimr::skim() ── Data Summary ──────────────────────── Values
Name Piped data Number of rows 9423
Number of columns 19
_______________________
Column type frequency:
character 8
numeric 10
POSIXct 1
________________________
Group variables None

── Variable type: character ─────────────────────────────────────────────────────────────────────────────────────────────── skim_variable n_missing complete_rate min max empty n_unique whitespace 1 coname 0 1 2 30 0 3860 0 2 exec_fullname 0 1 5 790 0 8701 0 3 interim_coceo 9105 0.0337 6 7 0 6 0 4 still_there 7311 0.224 3 10 0 77 0 5 notes 1644 0.826 5 3117 0 7755 0 6 sources 1475 0.843 18 1843 0 7915 0 7 eight_ks 4499 0.523 69 3884 0 4914 0 8 _merge 0 1 11 11 0 1 0

── Variable type: numeric ───────────────────────────────────────────────────────────────────────────────────────────────── skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist 1 dismissal_dataset_id 0 1 5684. 25005. 1 2306. 4593 6812. 559044 ▇▁▁▁▁ 2 gvkey 0 1 40132. 53921. 1004 7337 14385 60900. 328795 ▇▁▁▁▁ 3 fyear 0 1 2008. 8.19 1987 2000 2008 2016 2020 ▁▆▅▅▇ 4 co_per_rol 0 1 25580. 18202. -1 8556. 22980 39276. 64602 ▇▆▅▃▃ 5 departure_code 1667 0.823 5.20 1.53 1 5 5 7 9 ▁▃▇▅▁ 6 ceo_dismissal 1813 0.808 0.196 0.397 0 0 0 0 1 ▇▁▁▁▂ 7 tenure_no_ceodb 0 1 1.03 0.167 0 1 1 1 3 ▁▇▁▁▁ 8 max_tenure_ceodb 0 1 1.05 0.235 1 1 1 1 4 ▇▁▁▁▁ 9 fyear_gone 1802 0.809 2007. 13.6 1980 2000 2007 2013 2997 ▇▁▁▁▁ 10 cik 245 0.974 741469. 486551. 1750 106413 857323 1050376. 1808065 ▆▁▇▂▁

── Variable type: POSIXct ───────────────────────────────────────────────────────────────────────────────────────────────── skim_variable n_missing complete_rate min max median n_unique 1 leftofc 1802 0.809 1981-01-01 00:00:00 2998-04-27 00:00:00 2006-12-31 00:00:00 3627

data <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2021/2021-04-27/departures.csv')
## Rows: 9423 Columns: 19
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr   (8): coname, exec_fullname, interim_coceo, still_there, notes, sources...
## dbl  (10): dismissal_dataset_id, gvkey, fyear, co_per_rol, departure_code, c...
## dttm  (1): leftofc
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_clean <- data %>%
  filter(!is.na(ceo_dismissal)) %>%
  mutate(
    ceo_dismissal = if_else(ceo_dismissal == 1, "dismissed", "not_dis") %>% as.factor()
  ) %>%
  select(-c(
    still_there, interim_coceo, eight_ks, notes,
    `_merge`, sources, departure_code,
    cik, gvkey, fyear, leftofc
  )) %>%
  distinct(dismissal_dataset_id, .keep_all = TRUE) %>%
  filter(fyear_gone < 2025) %>%
  mutate(across(where(is.character), as.factor)) %>%
  na.omit()

data_clean %>% skimr::skim()
Data summary
Name Piped data
Number of rows 7475
Number of columns 8
_______________________
Column type frequency:
factor 3
numeric 5
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
coname 0 1 FALSE 3427 BAR: 8, CLA: 8, FED: 8, GRE: 8
exec_fullname 0 1 FALSE 6975 Joh: 4, Mel: 4, Alb: 3, Ami: 3
ceo_dismissal 0 1 FALSE 2 not: 5992, dis: 1483

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
dismissal_dataset_id 0 1 5570.32 25757.33 1 2175.5 4326 6579.5 559044 ▇▁▁▁▁
co_per_rol 0 1 21446.53 16350.34 -1 6981.0 18269 33418.5 64601 ▇▅▅▂▁
tenure_no_ceodb 0 1 1.03 0.16 1 1.0 1 1.0 3 ▇▁▁▁▁
max_tenure_ceodb 0 1 1.05 0.23 1 1.0 1 1.0 4 ▇▁▁▁▁
fyear_gone 0 1 2006.41 7.50 1980 2000.0 2006 2013.0 2021 ▁▂▇▇▆
set.seed(2025)
data_split <- initial_split(data_clean, strata = ceo_dismissal)
data_train <- training(data_split)
data_test  <- testing(data_split)

data_cv <- vfold_cv(data_train, v = 5, strata = ceo_dismissal)
xgboost_rec <- recipe(ceo_dismissal ~ ., data = data_train) %>%
  update_role(dismissal_dataset_id, new_role = "ID") %>%
  step_other(exec_fullname, coname, threshold = 0.01) %>%
  step_dummy(all_nominal_predictors()) %>%
  step_YeoJohnson(max_tenure_ceodb) %>%
  step_normalize(all_numeric_predictors()) %>%
  step_smote(ceo_dismissal)
xgboost_spec <- boost_tree(
  trees = tune(),
  tree_depth = tune(),
  min_n = tune(),
  mtry = tune(),
  learn_rate = tune()
) %>%
  set_mode("classification") %>%
  set_engine("xgboost")

xgboost_workflow <- workflow() %>%
  add_recipe(xgboost_rec) %>%
  add_model(xgboost_spec)

Prompt 2:

“I got this error how do I fix it ‘Error in check_grid(): ! The provided grid is missing the following parameter columns that have been marked for tuning by tune(): ’mtry’. Backtrace: ▆ 1. ├─tune::tune_grid(…) 2. └─tune:::tune_grid.workflow(…) 3. └─tune:::tune_grid_workflow(…) 4. └─tune:::check_grid(grid = grid, workflow = workflow, pset = pset) 5. └─rlang::abort(msg)

Quitting from lines 85-105 [unnamed-chunk-5] (Apply_12.Rmd) Execution halted’”

I was provided with the response “Update this block:

tree_grid <- grid_regular( trees(), tree_depth(), min_n(), learn_rate(), levels = 3 )

To this:

tree_grid <- grid_regular(trees(), tree_depth(), levels = 5) )

tree_grid <- grid_regular(trees(),
                          tree_depth(),
                          levels = 5)

doParallel::registerDoParallel()

set.seed(17375)
xgboost_tune <-
  tune_grid(xgboost_workflow, 
            resamples = data_cv, 
            grid = 5,
            control = control_grid(save_pred = TRUE))
## i Creating pre-processing data to finalize unknown parameter: mtry
collect_metrics(xgboost_tune)
## # A tibble: 15 × 11
##     mtry trees min_n tree_depth learn_rate .metric     .estimator  mean     n
##    <int> <int> <int>      <int>      <dbl> <chr>       <chr>      <dbl> <int>
##  1     1  1674    21          8    0.0166  accuracy    binary     0.536     5
##  2     1  1674    21          8    0.0166  brier_class binary     0.240     5
##  3     1  1674    21          8    0.0166  roc_auc     binary     0.584     5
##  4     2   346    39         12    0.128   accuracy    binary     0.575     5
##  5     2   346    39         12    0.128   brier_class binary     0.237     5
##  6     2   346    39         12    0.128   roc_auc     binary     0.577     5
##  7     4   852    17          2    0.00405 accuracy    binary     0.537     5
##  8     4   852    17          2    0.00405 brier_class binary     0.243     5
##  9     4   852    17          2    0.00405 roc_auc     binary     0.584     5
## 10     5  1497    27          6    0.0475  accuracy    binary     0.610     5
## 11     5  1497    27          6    0.0475  brier_class binary     0.230     5
## 12     5  1497    27          6    0.0475  roc_auc     binary     0.578     5
## 13     6   659     8         14    0.00288 accuracy    binary     0.580     5
## 14     6   659     8         14    0.00288 brier_class binary     0.235     5
## 15     6   659     8         14    0.00288 roc_auc     binary     0.576     5
## # ℹ 2 more variables: std_err <dbl>, .config <chr>
collect_predictions(xgboost_tune) %>%
  group_by(id) %>%
  roc_curve(ceo_dismissal, .pred_dismissed) %>%
  autoplot()

Prompt 3:

“This is the error I got how do I fix it? ’Error in select_best(): ! … must be empty. ✖ Problematic argument: • ..1 =”accuracy” ℹ Did you forget to name an argument? Backtrace: ▆ 1. ├─… %>% last_fit(data_split) 2. ├─tune::last_fit(., data_split) 3. ├─tune::finalize_workflow(., select_best(xgboost_tune, “accuracy”)) 4. │ └─tune:::check_final_param(parameters) 5. ├─tune::select_best(xgboost_tune, “accuracy”) 6. └─tune:::select_best.tune_results(xgboost_tune, “accuracy”) 7. └─rlang::check_dots_empty() 8. └─rlang:::action_dots(…) 9. ├─base (local) try_dots(…) 10. └─rlang (local) action(…)

Quitting from lines 109-118 [unnamed-chunk-7] (Apply_12.Rmd) Execution halted’” I was provided with the response “Change this line:

select_best(xgboost_tune, “accuracy”)

To:

select_best(xgboost_tune, metric = “accuracy”)”

xgboost_final <- xgboost_workflow %>%
  finalize_workflow(select_best(xgboost_tune, metric = "accuracy")) %>%
  last_fit(data_split)

collect_metrics(xgboost_final)
## # A tibble: 3 × 4
##   .metric     .estimator .estimate .config             
##   <chr>       <chr>          <dbl> <chr>               
## 1 accuracy    binary         0.589 Preprocessor1_Model1
## 2 roc_auc     binary         0.561 Preprocessor1_Model1
## 3 brier_class binary         0.235 Preprocessor1_Model1
collect_predictions(xgboost_final) %>%
  conf_mat(ceo_dismissal, .pred_class) %>%
  autoplot()

xgboost_final %>%
  extract_fit_engine() %>%
  vip()

recipe_obj <- recipe(ceo_dismissal ~ ., data = data_train) %>%
  step_zv(all_predictors())
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         3 days 12 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 15 days 
##     H2O cluster name:           H2O_started_from_R_bradymartin_hek320 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.04 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.2 (2024-10-31)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 15 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(data_train), ratios = 0.85, seed = 2025)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o  <- as.h2o(data_test)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
y <- "ceo_dismissal"
x <- setdiff(names(data_train), c(y))

models_h2o <- h2o.automl(
  x = x,
  y = y,
  training_frame    = train_h2o,
  validation_frame  = valid_h2o,
  leaderboard_frame = test_h2o,
  max_models        = 10,
  exclude_algos     = "DeepLearning",
  nfolds            = 5,
  seed              = 2025
)
##   |                                                                              |                                                                      |   0%  |                                                                              |===                                                                   |   4%
## 11:54:58.255: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 11:54:58.257: AutoML: XGBoost is not available; skipping it.  |                                                                              |===============                                                       |  21%  |                                                                              |====================                                                  |  29%  |                                                                              |===============================================                       |  67%  |                                                                              |======================================================================| 100%
leader_model <- h2o.get_best_model(models_h2o)
performance_h2o <- h2o.performance(leader_model, newdata = test_h2o)

h2o.auc(performance_h2o)
## [1] 0.5867554
h2o.accuracy(performance_h2o)
##   threshold  accuracy
## 1 0.9421074 0.1990369
## 2 0.9389176 0.2001070
## 3 0.9369205 0.2017121
## 4 0.9353372 0.2027822
## 5 0.9341904 0.2033173
## 
## ---
##     threshold  accuracy
## 395 0.4506053 0.7998930
## 396 0.4361137 0.8004280
## 397 0.4313271 0.7998930
## 398 0.4052392 0.8004280
## 399 0.3792865 0.8009631
## 400 0.3446967 0.8014981
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.344696694305184:
##           dismissed not_dis    Error       Rate
## dismissed         0     371 1.000000   =371/371
## not_dis           0    1498 0.000000    =0/1498
## Totals            0    1869 0.198502  =371/1869
predictions <- h2o.predict(leader_model, test_h2o) %>% as_tibble()
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
## Warning in doTryCatch(return(expr), name, parentenv, handler): Test/Validation
## dataset column 'coname' has levels not trained on: ["3D SYSTEMS CORP", "AAON
## INC", "ACADIA HEALTHCARE CO INC", "ACCESS HEALTH INC", "ACTEL CORP", "ACUITY
## BRANDS INC", "ACUITY CIMATRIX INC", "ADESA INC", "ADIENT PLC", "ADVANCED TISSUE
## SCI -CL A", ...360 not listed..., "WESTWOOD ONE INC -OLD", "WEX INC", "WGL
## HOLDINGS INC", "WILSHIRE BANCORP INC", "WORLD FUEL SERVICES CORP", "WYLE
## ELECTRONICS", "WYNN'S INTERNATIONAL INC", "XIRCOM INC", "ZEP INC", "ZERO
## CORP/DE"]
## Warning in doTryCatch(return(expr), name, parentenv, handler): Test/Validation
## dataset column 'exec_fullname' has levels not trained on: ["A. E. Benton", "A.
## Earl Swift", "A. Eugene Sapp, Jr.", "A. James Dearlove", "A. Lorne Weil",
## "Aaron D. Todd III", "Aaron William Regent F.C.A. FCPA B.A. C.A", "Abhijit Y.
## Talwalkar", "Abraham N. Reichental", "Adam D. Singer", ...1624 not listed...,
## "William V. Murray", "William W. Boyle MBA", "William W. Lovette", "William
## White Adams", "William Wrigley Jr.", "Willis J. Johnson", "Wilson W. Cheung",
## "Yaron I. Eitan", "Ying Lu", "Zan Guerry"]
predictions %>%
  bind_cols(data_test) %>%
  select(ceo_dismissal, predict, everything())
## # A tibble: 1,869 × 11
##    ceo_dismissal predict dismissed not_dis dismissal_dataset_id coname          
##    <fct>         <fct>       <dbl>   <dbl>                <dbl> <fct>           
##  1 not_dis       not_dis    0.125    0.875                   76 ALBERTO-CULVER …
##  2 not_dis       not_dis    0.125    0.875                   81 ALCAN INC       
##  3 not_dis       not_dis    0.108    0.892                  109 ALCOA INC       
##  4 not_dis       not_dis    0.121    0.879                  117 HESS CORP       
##  5 dismissed     not_dis    0.131    0.869                  119 AMDAHL CORP     
##  6 not_dis       not_dis    0.0934   0.907                  122 BEAM INC        
##  7 not_dis       not_dis    0.132    0.868                  138 AMERICAN ELECTR…
##  8 not_dis       not_dis    0.132    0.868                  139 AMERICAN ELECTR…
##  9 dismissed     not_dis    0.132    0.868                  143 AMERICAN EXPRES…
## 10 not_dis       not_dis    0.130    0.870                  150 AMERICAN GENERA…
## # ℹ 1,859 more rows
## # ℹ 5 more variables: co_per_rol <dbl>, exec_fullname <fct>,
## #   tenure_no_ceodb <dbl>, max_tenure_ceodb <dbl>, fyear_gone <dbl>