# Install required packages if not already installed
if (!require(readxl)) install.packages("readxl", dependencies = TRUE)
## Loading required package: readxl
if (!require(dplyr)) install.packages("dplyr", dependencies = TRUE)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Load libraries
library(readxl)
library(dplyr)
# Read in the Excel file
data <- read_excel("regression analysis survey.xlsx", sheet = "MKTG 4000 Survey - Electric Veh")
# Clean and select relevant variables
data_clean <- data %>%
select(likely_recommend_Tesla_1_10,
brand_recognition,
Tesla_brand_reputation,
gasoline_or_EVs_lower_costs,
willing_pay_lower_environmental_impact,
agree_disagree_EV_positive_impact_environment,
Importance_Price,
Importance_Interior_Quality) %>%
na.omit()
# Run linear regression
model <- lm(likely_recommend_Tesla_1_10 ~ brand_recognition +
Tesla_brand_reputation +
gasoline_or_EVs_lower_costs +
willing_pay_lower_environmental_impact +
agree_disagree_EV_positive_impact_environment +
Importance_Price +
Importance_Interior_Quality,
data = data_clean)
# Display summary of regression
summary(model)
##
## Call:
## lm(formula = likely_recommend_Tesla_1_10 ~ brand_recognition +
## Tesla_brand_reputation + gasoline_or_EVs_lower_costs + willing_pay_lower_environmental_impact +
## agree_disagree_EV_positive_impact_environment + Importance_Price +
## Importance_Interior_Quality, data = data_clean)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1948 -1.0086 0.1072 1.1661 2.9076
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 7.40869 3.20840 2.309
## brand_recognition -0.10606 0.65073 -0.163
## Tesla_brand_reputation 1.57818 0.55204 2.859
## gasoline_or_EVs_lower_costs -1.40387 0.49447 -2.839
## willing_pay_lower_environmental_impact -0.09405 0.79109 -0.119
## agree_disagree_EV_positive_impact_environment 0.32727 0.63143 0.518
## Importance_Price -1.16993 1.22325 -0.956
## Importance_Interior_Quality -0.67271 0.91085 -0.739
## Pr(>|t|)
## (Intercept) 0.0338 *
## brand_recognition 0.8724
## Tesla_brand_reputation 0.0109 *
## gasoline_or_EVs_lower_costs 0.0113 *
## willing_pay_lower_environmental_impact 0.9068
## agree_disagree_EV_positive_impact_environment 0.6109
## Importance_Price 0.3523
## Importance_Interior_Quality 0.4703
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 17 degrees of freedom
## Multiple R-squared: 0.6397, Adjusted R-squared: 0.4913
## F-statistic: 4.312 on 7 and 17 DF, p-value: 0.006518