Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that dis- plays each of these quantities as a function ofˆ pm1. The x-axis should displayˆ pm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes,ˆ pm1 = 1− ˆ pm2. You could make this plot by hand, but it will be much easier to make in R.
library(ISLR)
library(tree)
library(rpart)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
p = seq(0, 1, 0.001)
gini.index = 2 * p * (1 - p)
class.error = 1 - pmax(p, 1 - p)
cross.entropy = - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), ylab = "gini.index, class.error, cross.entropy", col = c("green", "blue", "orange"))
#8. In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable. (a) Split the data set into a training set and a test set.
##
## Regression tree:
## tree(formula = Sales ~ ., data = strain)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
## [1] 4.922039
## [1] 4.918134
## [1] 2.599099
## %IncMSE IncNodePurity
## CompPrice 26.18616309 170.781666
## Income 5.25063979 90.717958
## Advertising 13.25673204 97.498810
## Population -2.14346969 58.289311
## Price 60.58241525 503.478806
## ShelveLoc 50.77308639 380.258594
## Age 19.03720001 158.282846
## Education 1.24264920 44.834257
## Urban -0.08461165 9.883299
## US 4.71515903 17.907727
## [1] 2.605253
## %IncMSE IncNodePurity
## CompPrice 24.8888481 170.182937
## Income 4.7121131 91.264880
## Advertising 12.7692401 97.164338
## Population -1.8074075 58.244596
## Price 56.3326252 502.903407
## ShelveLoc 48.8886689 380.032715
## Age 17.7275460 157.846774
## Education 0.5962186 44.598731
## Urban 0.1728373 9.822082
## US 4.2172102 18.073863
#Question 9
Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJtrain)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196196 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196196 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
## [1] 0.1703704
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
echo = FALSE parameter was added to the code
chunk to prevent printing of the R code that generated the plot.