# Load required package
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(apaTables)
library(interactions)
## Warning: package 'interactions' was built under R version 4.3.3
library(haven)
library(lme4)
## Loading required package: Matrix
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(modelsummary)
## Warning: package 'modelsummary' was built under R version 4.3.3
## `modelsummary` 2.0.0 now uses `tinytable` as its default table-drawing
##   backend. Learn more at: https://vincentarelbundock.github.io/tinytable/
## 
## Revert to `kableExtra` for one session:
## 
##   options(modelsummary_factory_default = 'kableExtra')
##   options(modelsummary_factory_latex = 'kableExtra')
##   options(modelsummary_factory_html = 'kableExtra')
## 
## Silence this message forever:
## 
##   config_modelsummary(startup_message = FALSE)
# Set working directory
setwd("/Users/lawrencehouston/Library/CloudStorage/Box-Box/NOD data/Employee survey")

# Load data
df <- read_sav("Employee Engagement Survey Data.sav")

Create New Variables for Disability Status

# Create MentalHealth_status (Yes-No) and MentalHealth_severity (i.e., Mental Health Status Continuous Variable) (0-2)
# Create PhysicalHealth_status (Yes-No) and PhysicalHealth_severity (i.e., Physical Health Status Continuous Variable) (0-2)
df <- df %>%
  mutate(
    MentalHealth_status_binary = case_when(
      MentalHealthCondition == "No" ~ 0,
      MentalHealthCondition == "Yes - one condition" ~ 1,
      MentalHealthCondition == "Yes - more than one condition" ~ 1,
      MentalHealthCondition == "I prefer not to answer" ~ NA_real_
    ),
    MentalHealth_status_cont = case_when(
      MentalHealthCondition == "No" ~ 0,
      MentalHealthCondition == "Yes - one condition" ~ 1,
      MentalHealthCondition == "Yes - more than one condition" ~ 2,
      MentalHealthCondition == "I prefer not to answer" ~ NA_real_
    ),
    PhysicalHealth_status_binary = case_when(
      PhysicalHealthCondition == "No" ~ 0,
      PhysicalHealthCondition == "Yes - one condition" ~ 1,
      PhysicalHealthCondition == "Yes - more than one condition" ~ 1,
      PhysicalHealthCondition == "I prefer not to answer" ~ NA_real_
    ),
    PhysicalHealth_status_cont = case_when(
      PhysicalHealthCondition == "No" ~ 0,
      PhysicalHealthCondition == "Yes - one condition" ~ 1,
      PhysicalHealthCondition == "Yes - more than one condition" ~ 2,
      PhysicalHealthCondition == "I prefer not to answer" ~ NA_real_
    )
  )

df <- df %>%
  mutate(
    Disability_severity = case_when(
      MentalHealth_status_cont == 2 & PhysicalHealth_status_cont == 2 ~ 4,
      MentalHealth_status_cont == 2 & PhysicalHealth_status_cont == 1  ~ 3,
      MentalHealth_status_cont == 1  & PhysicalHealth_status_cont == 2 ~ 3,
      MentalHealth_status_binary == 1 & PhysicalHealth_status_binary == 1   ~ 2,
      MentalHealth_status_binary == 1 & PhysicalHealth_status_binary == 0   ~ 1,
      MentalHealth_status_binary == 0 & PhysicalHealth_status_binary == 1   ~ 1,
      MentalHealth_status_binary == 0 & PhysicalHealth_status_binary == 0   ~ 0,
      TRUE ~ NA_real_
    )
  )

# Convert variables to factors
df <- df %>%
  mutate(
    MentalHealth_status_binary = factor(MentalHealth_status_binary, levels = c(0, 1)),
    PhysicalHealth_status_binary = factor(PhysicalHealth_status_binary, levels = c(0, 1)),
    Leadership_Status = factor(Leadership_Status, levels = c(0, 1)),
    DisabilityStatus = factor(DisabilityStatus, levels = c(0, 1))
  )

Correlations

# Define the list of variables to include in Correlation Matrix
vars_to_include <- c("DisabilityStatus", "Disability_severity", 
  "MentalHealth_status_binary", "MentalHealth_status_cont",
  "PhysicalHealth_status_binary", "PhysicalHealth_status_cont",
  "Engagement", "TO_Intent", "Accessibility", "Accommodation",
  "PsychSafety", "PeoplePractices", "OrgCommitment",
  "ManagerEffectiveness", "LeadershipCommitment", "CareerExperience"
)

# Create dataframe to include only key variables
df_subset <- df[ , vars_to_include]

# Create the APA-style correlation matrix
apa.cor.table(df_subset)
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                      M    SD   1            2           
##   1. Disability_severity        0.52 0.97                          
##                                                                    
##   2. MentalHealth_status_cont   0.27 0.60 .82**                    
##                                           [.81, .82]               
##                                                                    
##   3. PhysicalHealth_status_cont 0.32 0.64 .82**        .42**       
##                                           [.81, .83]   [.40, .44]  
##                                                                    
##   4. Engagement                 4.16 0.73 -.13**       -.13**      
##                                           [-.16, -.11] [-.15, -.10]
##                                                                    
##   5. TO_Intent                  3.19 0.52 -.09**       -.09**      
##                                           [-.11, -.06] [-.12, -.07]
##                                                                    
##   6. Accessibility              3.95 0.72 -.16**       -.11**      
##                                           [-.19, -.14] [-.14, -.09]
##                                                                    
##   7. Accommodation              3.13 0.93 -.19**       -.16**      
##                                           [-.22, -.17] [-.18, -.13]
##                                                                    
##   8. PsychSafety                3.84 0.88 -.22**       -.18**      
##                                           [-.24, -.19] [-.21, -.16]
##                                                                    
##   9. PeoplePractices            3.62 0.81 -.21**       -.18**      
##                                           [-.24, -.19] [-.20, -.15]
##                                                                    
##   10. OrgCommitment             3.54 0.78 -.20**       -.17**      
##                                           [-.23, -.18] [-.19, -.14]
##                                                                    
##   11. ManagerEffectiveness      4.10 0.86 -.18**       -.15**      
##                                           [-.21, -.16] [-.17, -.12]
##                                                                    
##   12. LeadershipCommitment      3.38 0.81 -.24**       -.21**      
##                                           [-.26, -.21] [-.23, -.18]
##                                                                    
##   13. CareerExperience          3.88 0.85 -.17**       -.13**      
##                                           [-.20, -.15] [-.16, -.10]
##                                                                    
##   3            4          5          6          7          8         
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##                                                                      
##   -.09**                                                             
##   [-.12, -.07]                                                       
##                                                                      
##   -.06**       .33**                                                 
##   [-.08, -.03] [.30, .35]                                            
##                                                                      
##   -.16**       .53**      .19**                                      
##   [-.18, -.13] [.51, .55] [.17, .22]                                 
##                                                                      
##   -.17**       .40**      .11**      .56**                           
##   [-.19, -.14] [.38, .42] [.09, .14] [.54, .58]                      
##                                                                      
##   -.19**       .61**      .28**      .65**      .58**                
##   [-.22, -.17] [.59, .62] [.26, .30] [.64, .67] [.57, .60]           
##                                                                      
##   -.19**       .54**      .25**      .64**      .62**      .71**     
##   [-.21, -.16] [.52, .55] [.22, .27] [.62, .65] [.60, .63] [.69, .72]
##                                                                      
##   -.19**       .49**      .17**      .60**      .68**      .68**     
##   [-.21, -.16] [.47, .51] [.15, .20] [.58, .62] [.66, .69] [.67, .69]
##                                                                      
##   -.16**       .56**      .29**      .55**      .46**      .74**     
##   [-.18, -.13] [.54, .57] [.26, .31] [.53, .56] [.44, .48] [.72, .75]
##                                                                      
##   -.20**       .48**      .21**      .58**      .63**      .66**     
##   [-.23, -.18] [.46, .50] [.19, .24] [.56, .59] [.61, .64] [.65, .68]
##                                                                      
##   -.15**       .65**      .36**      .54**      .48**      .65**     
##   [-.18, -.13] [.63, .66] [.34, .38] [.52, .56] [.46, .50] [.64, .67]
##                                                                      
##   9          10         11         12        
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##                                              
##   .68**                                      
##   [.67, .70]                                 
##                                              
##   .61**      .58**                           
##   [.59, .62] [.56, .59]                      
##                                              
##   .65**      .77**      .58**                
##   [.64, .67] [.76, .78] [.56, .60]           
##                                              
##   .60**      .57**      .60**      .59**     
##   [.58, .61] [.55, .58] [.59, .62] [.57, .61]
##                                              
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Disability Status (yes-no) x Leadership Status –> All Outcomes

# Leadership Status modeled as moderator: Disability Status (yes-no) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ DisabilityStatus * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions, except when predicting LeadershipCommitment
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2306 -0.3693 -0.0360  0.6307  0.9640 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           4.35059    0.02216 196.334   <2e-16 ***
## DisabilityStatus1                    -0.12004    0.06898  -1.740   0.0819 .  
## Leadership_Status1                   -0.21245    0.02498  -8.505   <2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.01785    0.07483   0.239   0.8115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7156 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.01716,    Adjusted R-squared:  0.01664 
## F-statistic: 33.36 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.96072 -0.46072  0.03928  0.53928  1.21300 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           4.104267   0.021787 188.385  < 2e-16 ***
## DisabilityStatus1                    -0.177183   0.067825  -2.612  0.00902 ** 
## Leadership_Status1                   -0.143542   0.024560  -5.844 5.36e-09 ***
## DisabilityStatus1:Leadership_Status1  0.003457   0.073577   0.047  0.96252    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7036 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.01505,    Adjusted R-squared:  0.01454 
## F-statistic: 29.21 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4041 -0.6178 -0.1178  0.5959  2.1328 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.40412    0.02841 119.837  < 2e-16 ***
## DisabilityStatus1                    -0.33746    0.08843  -3.816 0.000137 ***
## Leadership_Status1                   -0.28636    0.03202  -8.942  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.08691    0.09593   0.906 0.364975    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9174 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.02605,    Adjusted R-squared:  0.02554 
## F-statistic: 51.12 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1032 -0.5096  0.1571  0.5634  1.4242 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           4.10323    0.02660 154.242  < 2e-16 ***
## DisabilityStatus1                    -0.37823    0.08282  -4.567 5.05e-06 ***
## Leadership_Status1                   -0.26033    0.02999  -8.681  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.11117    0.08984   1.237    0.216    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8591 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.02829,    Adjusted R-squared:  0.02778 
## F-statistic: 55.63 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.74167 -0.54167  0.00904  0.60904  1.61770 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.947651   0.024388 161.868  < 2e-16 ***
## DisabilityStatus1                    -0.205984   0.075924  -2.713  0.00669 ** 
## Leadership_Status1                   -0.356688   0.027493 -12.974  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1 -0.002683   0.082362  -0.033  0.97401    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7876 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.04226,    Adjusted R-squared:  0.04176 
## F-statistic: 84.32 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.78308 -0.54213 -0.04213  0.45787  1.69433 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.78308    0.02385 158.607  < 2e-16 ***
## DisabilityStatus1                    -0.30808    0.07425  -4.149 3.39e-05 ***
## Leadership_Status1                   -0.24095    0.02689  -8.961  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.07162    0.08055   0.889    0.374    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7703 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.02872,    Adjusted R-squared:  0.02822 
## F-statistic: 56.52 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3320 -0.3410  0.0958  0.6680  1.0958 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           4.33198    0.02620 165.341  < 2e-16 ***
## DisabilityStatus1                    -0.29239    0.08157  -3.585  0.00034 ***
## Leadership_Status1                   -0.24096    0.02954  -8.158 4.14e-16 ***
## DisabilityStatus1:Leadership_Status1  0.10559    0.08848   1.193  0.23276    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8461 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.02005,    Adjusted R-squared:  0.01954 
## F-statistic:  39.1 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6352 -0.3910 -0.1352  0.5833  1.8804 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           3.63519    0.02438 149.078  < 2e-16 ***
## DisabilityStatus1                    -0.46852    0.07591  -6.172 7.21e-10 ***
## Leadership_Status1                   -0.24418    0.02749  -8.883  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.19716    0.08235   2.394   0.0167 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7875 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.03299,    Adjusted R-squared:  0.03248 
## F-statistic: 65.19 on 3 and 5733 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ DisabilityStatus * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1166 -0.5304  0.1362  0.5500  1.3241 
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           4.11665    0.02576 159.808  < 2e-16 ***
## DisabilityStatus1                    -0.21943    0.08019  -2.736  0.00623 ** 
## Leadership_Status1                   -0.25289    0.02904  -8.709  < 2e-16 ***
## DisabilityStatus1:Leadership_Status1  0.03156    0.08700   0.363  0.71680    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8319 on 5733 degrees of freedom
##   (293 observations deleted due to missingness)
## Multiple R-squared:  0.02202,    Adjusted R-squared:  0.0215 
## F-statistic: 43.02 on 3 and 5733 DF,  p-value: < 2.2e-16
# Plot significant interaction showing that leaders (vs individual contributors) with disability viewed leadership more negatively
model_lead <- lm(LeadershipCommitment ~ DisabilityStatus * Leadership_Status, data = df)
interact_plot(model_lead, pred = DisabilityStatus, modx = Leadership_Status,
              main.title = "Interaction: Disability Status × Leadership Status on Leadership Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

Disability Severity (range: 0 to 4) x Leadership Status –> All Outcomes

# Leadership Status modeled as moderator: Disability Severity (range: 0 to 4) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ Disability_severity * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions, except when predicting OrgCommitment and LeadershipCommitment
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1724 -0.3771 -0.0438  0.6229  1.1861 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             4.37713    0.02309 189.543  < 2e-16 ***
## Disability_severity                    -0.10123    0.02556  -3.961 7.56e-05 ***
## Leadership_Status1                     -0.20477    0.02606  -7.856 4.70e-15 ***
## Disability_severity:Leadership_Status1  0.01160    0.02764   0.420    0.675    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7112 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.02964,    Adjusted R-squared:  0.02912 
## F-statistic: 57.55 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.02428 -0.38947  0.00225  0.50225  1.47995 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             4.11914    0.02272 181.306  < 2e-16 ***
## Disability_severity                    -0.09486    0.02514  -3.773 0.000163 ***
## Leadership_Status1                     -0.12139    0.02564  -4.734 2.26e-06 ***
## Disability_severity:Leadership_Status1 -0.02456    0.02719  -0.903 0.366435    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6997 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.03253,    Adjusted R-squared:  0.03202 
## F-statistic: 63.37 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4461 -0.6719 -0.1583  0.5539  2.5129 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             3.44614    0.02950 116.803  < 2e-16 ***
## Disability_severity                    -0.20934    0.03265  -6.412 1.56e-10 ***
## Leadership_Status1                     -0.27424    0.03330  -8.235  < 2e-16 ***
## Disability_severity:Leadership_Status1  0.03815    0.03531   1.080     0.28    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9086 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.04978,    Adjusted R-squared:  0.04927 
## F-statistic: 98.71 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.14742 -0.48075  0.09577  0.61091  1.82297 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             4.14742    0.02750 150.818  < 2e-16 ***
## Disability_severity                    -0.22804    0.03043  -7.493 7.76e-14 ***
## Leadership_Status1                     -0.24319    0.03104  -7.835 5.55e-15 ***
## Disability_severity:Leadership_Status1  0.04624    0.03291   1.405     0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8469 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.05846,    Adjusted R-squared:  0.05796 
## F-statistic:   117 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65053 -0.45053  0.01473  0.54947  2.01893 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             3.98527    0.02519 158.225  < 2e-16 ***
## Disability_severity                    -0.15463    0.02787  -5.547 3.03e-08 ***
## Leadership_Status1                     -0.33474    0.02843 -11.775  < 2e-16 ***
## Disability_severity:Leadership_Status1 -0.01274    0.03015  -0.423    0.673    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7757 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.07376,    Adjusted R-squared:  0.07327 
## F-statistic: 150.1 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.82884 -0.57884 -0.07884  0.41084  2.00948 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             3.82884    0.02465 155.322  < 2e-16 ***
## Disability_severity                    -0.20958    0.02728  -7.682 1.83e-14 ***
## Leadership_Status1                     -0.23968    0.02782  -8.614  < 2e-16 ***
## Disability_severity:Leadership_Status1  0.06155    0.02951   2.086    0.037 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7592 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.05448,    Adjusted R-squared:  0.05398 
## F-statistic: 108.6 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3723 -0.3946  0.1054  0.6277  1.4435 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             4.37234    0.02709 161.408  < 2e-16 ***
## Disability_severity                    -0.18953    0.02998  -6.322 2.77e-10 ***
## Leadership_Status1                     -0.22778    0.03057  -7.450 1.07e-13 ***
## Disability_severity:Leadership_Status1  0.04252    0.03242   1.311     0.19    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8343 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.04329,    Adjusted R-squared:  0.04278 
## F-statistic: 85.26 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.67727 -0.44751 -0.01962  0.55249  2.26405 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             3.67727    0.02519 145.964  < 2e-16 ***
## Disability_severity                    -0.26290    0.02788  -9.430  < 2e-16 ***
## Leadership_Status1                     -0.22976    0.02843  -8.080 7.84e-16 ***
## Disability_severity:Leadership_Status1  0.08501    0.03015   2.819  0.00483 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7759 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.06736,    Adjusted R-squared:  0.06686 
## F-statistic: 136.1 on 3 and 5653 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ Disability_severity * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.15370 -0.48704  0.08837  0.56175  1.64858 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                             4.15370    0.02681 154.955  < 2e-16 ***
## Disability_severity                    -0.14504    0.02967  -4.889 1.04e-06 ***
## Leadership_Status1                     -0.24207    0.03026  -8.001 1.49e-15 ***
## Disability_severity:Leadership_Status1  0.00499    0.03208   0.156    0.876    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8256 on 5653 degrees of freedom
##   (373 observations deleted due to missingness)
## Multiple R-squared:  0.04224,    Adjusted R-squared:  0.04173 
## F-statistic: 83.11 on 3 and 5653 DF,  p-value: < 2.2e-16
# Plot significant interactions showing that leaders (vs individual contributors) with disabilities viewed the org and leadership more negatively
# Plot 1: OrgCommitment
model_org <- lm(OrgCommitment ~ Disability_severity * Leadership_Status, data = df)
interact_plot(model_org, pred = Disability_severity, modx = Leadership_Status,
              main.title = "Interaction: Disability Level × Leadership Status on Org Commitment")

# Plot 2: LeadershipCommitment
model_lead <- lm(LeadershipCommitment ~ Disability_severity * Leadership_Status, data = df)
interact_plot(model_lead, pred = Disability_severity, modx = Leadership_Status,
              main.title = "Interaction: Disability Level × Leadership Status on Leadership Commitment")

Mental Disability Status (yes-no) x Leadership Status –> All Outcomes

# Leadership Status modeled as moderator: Mental Disability Status (yes-no) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ MentalHealth_status_binary * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions, except when predicting OrgCommitment, ManagerEffectiveness, and LeadershipCommitment
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1648 -0.3743 -0.0409  0.6257  1.0339 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     4.37428    0.02271 192.657
## MentalHealth_status_binary1                    -0.20949    0.05804  -3.610
## Leadership_Status1                             -0.21337    0.02559  -8.339
## MentalHealth_status_binary1:Leadership_Status1  0.01463    0.06365   0.230
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    0.000309 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1 0.818187    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7126 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02674,    Adjusted R-squared:  0.02624 
## F-statistic:  52.6 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.11193 -0.46664  0.03336  0.53336  1.21463 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                     4.1119289  0.0224906 182.829
## MentalHealth_status_binary1                    -0.1807492  0.0574886  -3.144
## Leadership_Status1                             -0.1452851  0.0253443  -5.732
## MentalHealth_status_binary1:Leadership_Status1 -0.0005249  0.0630513  -0.008
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                     0.00167 ** 
## Leadership_Status1                             1.04e-08 ***
## MentalHealth_status_binary1:Leadership_Status1  0.99336    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7059 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.01768,    Adjusted R-squared:  0.01717 
## F-statistic: 34.45 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4345 -0.6440 -0.1440  0.5655  2.1843 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     3.43452    0.02913 117.896
## MentalHealth_status_binary1                    -0.44575    0.07446  -5.986
## Leadership_Status1                             -0.29055    0.03283  -8.851
## MentalHealth_status_binary1:Leadership_Status1  0.11743    0.08167   1.438
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    2.28e-09 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1    0.151    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9143 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03762,    Adjusted R-squared:  0.03711 
## F-statistic: 74.81 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1320 -0.5138  0.1277  0.5347  1.4863 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     4.13198    0.02725 151.659
## MentalHealth_status_binary1                    -0.45033    0.06964  -6.466
## Leadership_Status1                             -0.25965    0.03070  -8.457
## MentalHealth_status_binary1:Leadership_Status1  0.09176    0.07638   1.201
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    1.09e-10 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1     0.23    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8551 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04343,    Adjusted R-squared:  0.04293 
## F-statistic: 86.91 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.65506 -0.41978  0.02558  0.58022  1.69753 
## 
## Coefficients:
##                                                 Estimate Std. Error t value
## (Intercept)                                     3.974416   0.024908 159.562
## MentalHealth_status_binary1                    -0.319360   0.063668  -5.016
## Leadership_Status1                             -0.354635   0.028069 -12.635
## MentalHealth_status_binary1:Leadership_Status1  0.002044   0.069829   0.029
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    5.43e-07 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1    0.977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7817 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.05835,    Adjusted R-squared:  0.05785 
## F-statistic: 118.6 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ MentalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8107 -0.5611 -0.0611  0.4389  1.7154 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     3.81066    0.02442 156.028
## MentalHealth_status_binary1                    -0.40195    0.06243  -6.439
## Leadership_Status1                             -0.24956    0.02752  -9.068
## MentalHealth_status_binary1:Leadership_Status1  0.12542    0.06847   1.832
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                     1.3e-10 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1    0.067 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7665 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.0389, Adjusted R-squared:  0.0384 
## F-statistic: 77.48 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ MentalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3622 -0.3668  0.1332  0.6378  1.1584 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     4.36218    0.02678 162.875
## MentalHealth_status_binary1                    -0.40291    0.06846  -5.885
## Leadership_Status1                             -0.24533    0.03018  -8.129
## MentalHealth_status_binary1:Leadership_Status1  0.12770    0.07508   1.701
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    4.19e-09 ***
## Leadership_Status1                             5.26e-16 ***
## MentalHealth_status_binary1:Leadership_Status1    0.089 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8406 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03198,    Adjusted R-squared:  0.03148 
## F-statistic: 63.24 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ MentalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.66117 -0.41781 -0.07422  0.58219  1.92578 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     3.66117    0.02494 146.777
## MentalHealth_status_binary1                    -0.53898    0.06376  -8.453
## Leadership_Status1                             -0.24336    0.02811  -8.658
## MentalHealth_status_binary1:Leadership_Status1  0.19539    0.06993   2.794
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                     < 2e-16 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1  0.00522 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7829 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.0489, Adjusted R-squared:  0.0484 
## F-statistic: 98.41 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ MentalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1421 -0.5478  0.1189  0.5245  1.3612 
## 
## Coefficients:
##                                                Estimate Std. Error t value
## (Intercept)                                     4.14213    0.02649 156.345
## MentalHealth_status_binary1                    -0.28071    0.06772  -4.145
## Leadership_Status1                             -0.26104    0.02986  -8.743
## MentalHealth_status_binary1:Leadership_Status1  0.03841    0.07427   0.517
##                                                Pr(>|t|)    
## (Intercept)                                     < 2e-16 ***
## MentalHealth_status_binary1                    3.45e-05 ***
## Leadership_Status1                              < 2e-16 ***
## MentalHealth_status_binary1:Leadership_Status1    0.605    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8315 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02977,    Adjusted R-squared:  0.02927 
## F-statistic: 58.74 on 3 and 5742 DF,  p-value: < 2.2e-16
# Plot significant interactions showing that leaders (vs individual contributors) with mental disability viewed the org, management, and leadership more negatively
model_org <- lm(OrgCommitment ~ MentalHealth_status_binary * Leadership_Status, data = df)
model_mgr <- lm(ManagerEffectiveness ~ MentalHealth_status_binary * Leadership_Status, data = df)
model_lead <- lm(LeadershipCommitment ~ MentalHealth_status_binary * Leadership_Status, data = df)

# Plot 1: OrgCommitment
interact_plot(model_org, pred = MentalHealth_status_binary, modx = Leadership_Status,
              main.title = "Interaction: Mental Health × Leadership Status on Org Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Plot 2: ManagerEffectiveness
interact_plot(model_mgr, pred = MentalHealth_status_binary, modx = Leadership_Status,
              main.title = "Interaction: Mental Health × Leadership Status on Manager Effectiveness")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Plot 3: LeadershipCommitment
interact_plot(model_lead, pred = MentalHealth_status_binary, modx = Leadership_Status,
              main.title = "Interaction: Mental Health × Leadership Status on Leadership Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

Mental Disability Status (range: 0 to 2) x Leadership Status –> All Outcomes

# Leadership Status modeled as moderator: Mental Disability Status (range: 0 to 2) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ MentalHealth_status_cont * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions, except when predicting OrgCommitment, ManagerEffectiveness, LeadershipCommitment, and PsychSafety. Pattern same as above
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.16202 -0.37601 -0.04267  0.62399  1.12045 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  4.37601    0.02245 194.908
## MentalHealth_status_cont                    -0.16039    0.03933  -4.078
## Leadership_Status1                          -0.21399    0.02528  -8.465
## MentalHealth_status_cont:Leadership_Status1  0.01916    0.04291   0.446
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                     4.6e-05 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1    0.655    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7116 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02939,    Adjusted R-squared:  0.02888 
## F-statistic: 57.96 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.10865 -0.46845  0.03155  0.53155  1.29975 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  4.10865    0.02225 184.687
## MentalHealth_status_cont                    -0.11575    0.03897  -2.970
## Leadership_Status1                          -0.14020    0.02505  -5.597
## MentalHealth_status_cont:Leadership_Status1 -0.01835    0.04252  -0.432
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                     0.00299 ** 
## Leadership_Status1                          2.28e-08 ***
## MentalHealth_status_cont:Leadership_Status1  0.66604    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7051 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.01974,    Adjusted R-squared:  0.01923 
## F-statistic: 38.54 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4353 -0.6411 -0.1411  0.5647  2.3018 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  3.43530    0.02882 119.209
## MentalHealth_status_cont                    -0.32757    0.05048  -6.489
## Leadership_Status1                          -0.29425    0.03245  -9.068
## MentalHealth_status_cont:Leadership_Status1  0.10617    0.05507   1.928
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    9.36e-11 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1   0.0539 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9134 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03951,    Adjusted R-squared:  0.03901 
## F-statistic: 78.73 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1341 -0.5361  0.1305  0.5406  1.6165 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  4.13412    0.02694 153.475
## MentalHealth_status_cont                    -0.33736    0.04719  -7.150
## Leadership_Status1                          -0.26465    0.03033  -8.726
## MentalHealth_status_cont:Leadership_Status1  0.09439    0.05148   1.834
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    9.79e-13 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1   0.0668 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8538 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04634,    Adjusted R-squared:  0.04584 
## F-statistic:    93 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6191 -0.4191  0.0225  0.5809  1.8240 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  3.97750    0.02461 161.596
## MentalHealth_status_cont                    -0.24667    0.04312  -5.721
## Leadership_Status1                          -0.35836    0.02771 -12.930
## MentalHealth_status_cont:Leadership_Status1  0.02512    0.04704   0.534
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    1.11e-08 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1    0.593    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7802 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.06216,    Adjusted R-squared:  0.06167 
## F-statistic: 126.9 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8137 -0.5595 -0.0595  0.4405  1.8195 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  3.81367    0.02414 157.965
## MentalHealth_status_cont                    -0.30633    0.04229  -7.243
## Leadership_Status1                          -0.25418    0.02718  -9.350
## MentalHealth_status_cont:Leadership_Status1  0.11686    0.04614   2.533
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    4.95e-13 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1   0.0113 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7652 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04213,    Adjusted R-squared:  0.04163 
## F-statistic: 84.19 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ MentalHealth_status_cont * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3601 -0.3649  0.0724  0.6399  1.2596 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  4.36012    0.02650 164.528
## MentalHealth_status_cont                    -0.28293    0.04642  -6.095
## Leadership_Status1                          -0.24525    0.02984  -8.219
## MentalHealth_status_cont:Leadership_Status1  0.09571    0.05065   1.890
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    1.17e-09 ***
## Leadership_Status1                          2.51e-16 ***
## MentalHealth_status_cont:Leadership_Status1   0.0588 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.84 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03336,    Adjusted R-squared:  0.03286 
## F-statistic: 66.06 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ MentalHealth_status_cont * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6623 -0.4185 -0.1623  0.5761  2.0707 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  3.66234    0.02462 148.768
## MentalHealth_status_cont                    -0.39716    0.04312  -9.210
## Leadership_Status1                          -0.24387    0.02772  -8.798
## MentalHealth_status_cont:Leadership_Status1  0.15256    0.04705   3.243
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                     < 2e-16 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1  0.00119 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7803 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.05514,    Adjusted R-squared:  0.05465 
## F-statistic: 111.7 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ MentalHealth_status_cont * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1450 -0.5465  0.1202  0.5216  1.4530 
## 
## Coefficients:
##                                             Estimate Std. Error t value
## (Intercept)                                  4.14505    0.02621 158.159
## MentalHealth_status_cont                    -0.21777    0.04591  -4.743
## Leadership_Status1                          -0.26523    0.02951  -8.988
## MentalHealth_status_cont:Leadership_Status1  0.05135    0.05009   1.025
##                                             Pr(>|t|)    
## (Intercept)                                  < 2e-16 ***
## MentalHealth_status_cont                    2.15e-06 ***
## Leadership_Status1                           < 2e-16 ***
## MentalHealth_status_cont:Leadership_Status1    0.305    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8307 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03165,    Adjusted R-squared:  0.03115 
## F-statistic: 62.57 on 3 and 5742 DF,  p-value: < 2.2e-16

Physical Disability Status (yes-no) x Leadership Status –> All Outcomes

# Leadership Status modeled as moderator: Physical Disability Status (yes-no) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ PhysicalHealth_status_binary * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.3563 -0.0197  0.6437  0.9803 
## 
## Coefficients:
##                                                   Estimate Std. Error t value
## (Intercept)                                       4.356263   0.022896 190.265
## PhysicalHealth_status_binary1                    -0.126316   0.057049  -2.214
## Leadership_Status1                               -0.205682   0.025885  -7.946
## PhysicalHealth_status_binary1:Leadership_Status1 -0.004566   0.062224  -0.073
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                      0.0269 *  
## Leadership_Status1                                2.3e-15 ***
## PhysicalHealth_status_binary1:Leadership_Status1   0.9415    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7146 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02005,    Adjusted R-squared:  0.01954 
## F-statistic: 39.17 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.98715 -0.48384  0.01285  0.51285  1.26616 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.10780    0.02252 182.428
## PhysicalHealth_status_binary1                    -0.16663    0.05611  -2.970
## Leadership_Status1                               -0.12065    0.02546  -4.740
## PhysicalHealth_status_binary1:Leadership_Status1 -0.08668    0.06120  -1.416
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                     0.00299 ** 
## Leadership_Status1                               2.19e-06 ***
## PhysicalHealth_status_binary1:Leadership_Status1  0.15669    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7027 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02721,    Adjusted R-squared:  0.0267 
## F-statistic: 53.53 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4112 -0.6579 -0.1579  0.5888  2.2008 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.41119    0.02926 116.572
## PhysicalHealth_status_binary1                    -0.28820    0.07291  -3.953
## Leadership_Status1                               -0.25328    0.03308  -7.656
## PhysicalHealth_status_binary1:Leadership_Status1 -0.07054    0.07953  -0.887
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    7.82e-05 ***
## Leadership_Status1                               2.24e-14 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.375    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9133 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03975,    Adjusted R-squared:  0.03925 
## F-statistic: 79.24 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1157 -0.5094  0.1145  0.5510  1.4906 
## 
## Coefficients:
##                                                   Estimate Std. Error t value
## (Intercept)                                       4.115674   0.027390 150.260
## PhysicalHealth_status_binary1                    -0.368794   0.068249  -5.404
## Leadership_Status1                               -0.230180   0.030966  -7.433
## PhysicalHealth_status_binary1:Leadership_Status1 -0.007313   0.074440  -0.098
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    6.79e-08 ***
## Leadership_Status1                               1.21e-13 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8548 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04567,    Adjusted R-squared:  0.04517 
## F-statistic: 91.59 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.71551 -0.43152  0.03409  0.56848  1.70139 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.96591    0.02505 158.292
## PhysicalHealth_status_binary1                    -0.25041    0.06243  -4.011
## Leadership_Status1                               -0.33439    0.02833 -11.805
## PhysicalHealth_status_binary1:Leadership_Status1 -0.08250    0.06809  -1.212
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    6.12e-05 ***
## Leadership_Status1                                < 2e-16 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.226    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7819 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.06153,    Adjusted R-squared:  0.06104 
## F-statistic: 125.5 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.80287 -0.57888 -0.05287  0.42112  1.74792 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.80287    0.02446 155.462
## PhysicalHealth_status_binary1                    -0.35635    0.06095  -5.846
## Leadership_Status1                               -0.22399    0.02766  -8.099
## PhysicalHealth_status_binary1:Leadership_Status1  0.02954    0.06648   0.444
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    5.30e-09 ***
## Leadership_Status1                               6.69e-16 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.657    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7634 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04653,    Adjusted R-squared:  0.04603 
## F-statistic: 93.41 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3419 -0.3839  0.1161  0.6581  1.1854 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.34189    0.02695 161.086
## PhysicalHealth_status_binary1                    -0.29643    0.06716  -4.414
## Leadership_Status1                               -0.20804    0.03047  -6.827
## PhysicalHealth_status_binary1:Leadership_Status1 -0.02278    0.07325  -0.311
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    1.03e-05 ***
## Leadership_Status1                               9.56e-12 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.756    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8412 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.0355, Adjusted R-squared:  0.03499 
## F-statistic: 70.44 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64784 -0.42718 -0.07248  0.57282  1.92752 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.64784    0.02515 145.063
## PhysicalHealth_status_binary1                    -0.45667    0.06266  -7.288
## Leadership_Status1                               -0.22066    0.02843  -7.762
## PhysicalHealth_status_binary1:Leadership_Status1  0.10197    0.06834   1.492
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    3.56e-13 ***
## Leadership_Status1                               9.86e-15 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7848 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.05001,    Adjusted R-squared:  0.04951 
## F-statistic: 100.8 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1277 -0.5661  0.1006  0.5390  1.3890 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.12765    0.02656 155.428
## PhysicalHealth_status_binary1                    -0.21321    0.06617  -3.222
## Leadership_Status1                               -0.22826    0.03002  -7.603
## PhysicalHealth_status_binary1:Leadership_Status1 -0.07522    0.07217  -1.042
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                     0.00128 ** 
## Leadership_Status1                               3.37e-14 ***
## PhysicalHealth_status_binary1:Leadership_Status1  0.29736    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8288 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03418,    Adjusted R-squared:  0.03367 
## F-statistic: 67.73 on 3 and 5742 DF,  p-value: < 2.2e-16
# Leadership Status modeled as moderator: Physical Disability Status (range: 0 to 2) --> All Outcomes
model_LeadershipStatus <- lm(cbind(Engagement,Accessibility,Accommodation,PsychSafety,PeoplePractices,OrgCommitment,ManagerEffectiveness,LeadershipCommitment,CareerExperience) ~ PhysicalHealth_status_binary * Leadership_Status, data = df)
summary(model_LeadershipStatus) # no significant interactions
## Response Engagement :
## 
## Call:
## lm(formula = Engagement ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2299 -0.3563 -0.0197  0.6437  0.9803 
## 
## Coefficients:
##                                                   Estimate Std. Error t value
## (Intercept)                                       4.356263   0.022896 190.265
## PhysicalHealth_status_binary1                    -0.126316   0.057049  -2.214
## Leadership_Status1                               -0.205682   0.025885  -7.946
## PhysicalHealth_status_binary1:Leadership_Status1 -0.004566   0.062224  -0.073
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                      0.0269 *  
## Leadership_Status1                                2.3e-15 ***
## PhysicalHealth_status_binary1:Leadership_Status1   0.9415    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7146 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02005,    Adjusted R-squared:  0.01954 
## F-statistic: 39.17 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accessibility :
## 
## Call:
## lm(formula = Accessibility ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.98715 -0.48384  0.01285  0.51285  1.26616 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.10780    0.02252 182.428
## PhysicalHealth_status_binary1                    -0.16663    0.05611  -2.970
## Leadership_Status1                               -0.12065    0.02546  -4.740
## PhysicalHealth_status_binary1:Leadership_Status1 -0.08668    0.06120  -1.416
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                     0.00299 ** 
## Leadership_Status1                               2.19e-06 ***
## PhysicalHealth_status_binary1:Leadership_Status1  0.15669    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7027 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.02721,    Adjusted R-squared:  0.0267 
## F-statistic: 53.53 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response Accommodation :
## 
## Call:
## lm(formula = Accommodation ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4112 -0.6579 -0.1579  0.5888  2.2008 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.41119    0.02926 116.572
## PhysicalHealth_status_binary1                    -0.28820    0.07291  -3.953
## Leadership_Status1                               -0.25328    0.03308  -7.656
## PhysicalHealth_status_binary1:Leadership_Status1 -0.07054    0.07953  -0.887
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    7.82e-05 ***
## Leadership_Status1                               2.24e-14 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.375    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9133 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03975,    Adjusted R-squared:  0.03925 
## F-statistic: 79.24 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PsychSafety :
## 
## Call:
## lm(formula = PsychSafety ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1157 -0.5094  0.1145  0.5510  1.4906 
## 
## Coefficients:
##                                                   Estimate Std. Error t value
## (Intercept)                                       4.115674   0.027390 150.260
## PhysicalHealth_status_binary1                    -0.368794   0.068249  -5.404
## Leadership_Status1                               -0.230180   0.030966  -7.433
## PhysicalHealth_status_binary1:Leadership_Status1 -0.007313   0.074440  -0.098
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    6.79e-08 ***
## Leadership_Status1                               1.21e-13 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.922    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8548 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04567,    Adjusted R-squared:  0.04517 
## F-statistic: 91.59 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response PeoplePractices :
## 
## Call:
## lm(formula = PeoplePractices ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.71551 -0.43152  0.03409  0.56848  1.70139 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.96591    0.02505 158.292
## PhysicalHealth_status_binary1                    -0.25041    0.06243  -4.011
## Leadership_Status1                               -0.33439    0.02833 -11.805
## PhysicalHealth_status_binary1:Leadership_Status1 -0.08250    0.06809  -1.212
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    6.12e-05 ***
## Leadership_Status1                                < 2e-16 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.226    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7819 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.06153,    Adjusted R-squared:  0.06104 
## F-statistic: 125.5 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response OrgCommitment :
## 
## Call:
## lm(formula = OrgCommitment ~ PhysicalHealth_status_binary * Leadership_Status, 
##     data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.80287 -0.57888 -0.05287  0.42112  1.74792 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.80287    0.02446 155.462
## PhysicalHealth_status_binary1                    -0.35635    0.06095  -5.846
## Leadership_Status1                               -0.22399    0.02766  -8.099
## PhysicalHealth_status_binary1:Leadership_Status1  0.02954    0.06648   0.444
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    5.30e-09 ***
## Leadership_Status1                               6.69e-16 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.657    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7634 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.04653,    Adjusted R-squared:  0.04603 
## F-statistic: 93.41 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response ManagerEffectiveness :
## 
## Call:
## lm(formula = ManagerEffectiveness ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3419 -0.3839  0.1161  0.6581  1.1854 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.34189    0.02695 161.086
## PhysicalHealth_status_binary1                    -0.29643    0.06716  -4.414
## Leadership_Status1                               -0.20804    0.03047  -6.827
## PhysicalHealth_status_binary1:Leadership_Status1 -0.02278    0.07325  -0.311
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    1.03e-05 ***
## Leadership_Status1                               9.56e-12 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.756    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8412 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.0355, Adjusted R-squared:  0.03499 
## F-statistic: 70.44 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response LeadershipCommitment :
## 
## Call:
## lm(formula = LeadershipCommitment ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64784 -0.42718 -0.07248  0.57282  1.92752 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       3.64784    0.02515 145.063
## PhysicalHealth_status_binary1                    -0.45667    0.06266  -7.288
## Leadership_Status1                               -0.22066    0.02843  -7.762
## PhysicalHealth_status_binary1:Leadership_Status1  0.10197    0.06834   1.492
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                    3.56e-13 ***
## Leadership_Status1                               9.86e-15 ***
## PhysicalHealth_status_binary1:Leadership_Status1    0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7848 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.05001,    Adjusted R-squared:  0.04951 
## F-statistic: 100.8 on 3 and 5742 DF,  p-value: < 2.2e-16
## 
## 
## Response CareerExperience :
## 
## Call:
## lm(formula = CareerExperience ~ PhysicalHealth_status_binary * 
##     Leadership_Status, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1277 -0.5661  0.1006  0.5390  1.3890 
## 
## Coefficients:
##                                                  Estimate Std. Error t value
## (Intercept)                                       4.12765    0.02656 155.428
## PhysicalHealth_status_binary1                    -0.21321    0.06617  -3.222
## Leadership_Status1                               -0.22826    0.03002  -7.603
## PhysicalHealth_status_binary1:Leadership_Status1 -0.07522    0.07217  -1.042
##                                                  Pr(>|t|)    
## (Intercept)                                       < 2e-16 ***
## PhysicalHealth_status_binary1                     0.00128 ** 
## Leadership_Status1                               3.37e-14 ***
## PhysicalHealth_status_binary1:Leadership_Status1  0.29736    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8288 on 5742 degrees of freedom
##   (284 observations deleted due to missingness)
## Multiple R-squared:  0.03418,    Adjusted R-squared:  0.03367 
## F-statistic: 67.73 on 3 and 5742 DF,  p-value: < 2.2e-16

Multilevel Models: Cross-Level Main Effects

Disability Status & Org Level Predictors –> Outcome

# Disability Inclusion (Level 2)
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_accessibility)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Accessibility ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12291.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2312 -0.6857  0.0234  0.7325  1.7208 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.003776 0.06145       
##                 DisabilityStatus1 0.009788 0.09893  -1.00
##  Residual                         0.497199 0.70512       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)         3.66999    0.13912  1.97309  26.380  0.00154 **
## DisabilityStatus1  -0.15250    0.06117  2.64650  -2.493  0.09951 . 
## disInclusion2_2024  0.09532    0.03775  2.88290   2.525  0.08918 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.589       
## dsInc2_2024 -0.972  0.409
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(model_people)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## PeoplePractices ~ DisabilityStatus + disInclusion2_2024 + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13586.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3253 -0.5375 -0.0306  0.7297  2.0883 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.022899 0.15132       
##                 DisabilityStatus1 0.006075 0.07794  -1.00
##  Residual                         0.622759 0.78915       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)         2.04714    0.41251  1.56155   4.963   0.0615 .
## DisabilityStatus1  -0.21639    0.05818  2.24156  -3.719   0.0546 .
## disInclusion2_2024  0.48958    0.10524  1.51098   4.652   0.0716 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.730       
## dsInc2_2024 -0.988  0.645
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
# Disability Support (Level 2)
model_engagement <- lmer(Engagement ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_engagement)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Engagement ~ DisabilityStatus + disSupport1_2024 + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12508.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.4295 -0.5481 -0.0831  0.8382  1.4892 
## 
## Random effects:
##  Groups         Name              Variance  Std.Dev. Corr
##  company_mapped (Intercept)       3.204e-04 0.017899     
##                 DisabilityStatus1 3.799e-05 0.006164 1.00
##  Residual                         5.167e-01 0.718801     
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                   Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)        4.41771    0.05125  2.39329  86.200 3.09e-05 ***
## DisabilityStatus1 -0.12223    0.02705  9.04876  -4.518  0.00143 ** 
## disSupport1_2024  -0.12045    0.02431  5.48692  -4.954  0.00330 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.045       
## dsSpp1_2024 -0.944  0.003
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
# Disability Training (Level 2)
model_engagement <- lmer(Engagement ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.3e+03
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)

model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + training3_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_accessibility)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## Accessibility ~ DisabilityStatus + training3_2024 + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12291.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2305 -0.6851  0.0239  0.7330  1.7214 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.001773 0.04210       
##                 DisabilityStatus1 0.006758 0.08221  -1.00
##  Residual                         0.497232 0.70515       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                   Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)        3.86179    0.05553  1.18251  69.542  0.00442 **
## DisabilityStatus1 -0.15692    0.05535  1.71873  -2.835  0.12441   
## training3_2024     0.05040    0.01752  3.50425   2.878  0.05285 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.662       
## trnng3_2024 -0.884  0.310
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(model_people)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## PeoplePractices ~ DisabilityStatus + training3_2024 + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13585.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3241 -0.5365 -0.0296  0.7306  2.0844 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.007328 0.08560       
##                 DisabilityStatus1 0.001979 0.04449  -0.42
##  Residual                         0.622842 0.78920       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                   Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)        3.14567    0.16613  1.89559  18.936  0.00353 **
## DisabilityStatus1 -0.24092    0.04434  0.66161  -5.433  0.20248   
## training3_2024     0.22241    0.04681  1.85353   4.751  0.04808 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.209       
## trnng3_2024 -0.968  0.126
# Overall Accessibility (Level 2)
model_engagement <- lmer(Engagement ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -2.7e+02
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + overallAccessibility2_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: Overall Accessibility (Level 2) has no significant direct effect on outcomes
# Accommodations (Level 2)
model_engagement <- lmer(Engagement ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + Accommodations1_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: Accommodations (Level 2) have no significant direct effect on outcomes
# Disability Promotion (Level 2)
model_engagement <- lmer(Engagement ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus + overallDisPromotion_2024 + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_accessibility)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Accessibility ~ DisabilityStatus + overallDisPromotion_2024 +  
##     (DisabilityStatus | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12291.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2312 -0.6857  0.0234  0.7325  1.7208 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.003776 0.06145       
##                 DisabilityStatus1 0.009788 0.09893  -1.00
##  Residual                         0.497199 0.70512       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                          Estimate Std. Error       df t value Pr(>|t|)   
## (Intercept)               3.38403    0.25061  2.28925  13.503  0.00313 **
## DisabilityStatus1        -0.15250    0.06117  2.64650  -2.493  0.09951 . 
## overallDisPromotion_2024  0.09532    0.03775  2.88290   2.525  0.08918 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.512       
## ovrlDP_2024 -0.991  0.409
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
summary(model_people)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PeoplePractices ~ DisabilityStatus + overallDisPromotion_2024 +  
##     (DisabilityStatus | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13586.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3253 -0.5375 -0.0306  0.7297  2.0883 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.022899 0.15132       
##                 DisabilityStatus1 0.006075 0.07794  -1.00
##  Residual                         0.622759 0.78915       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                          Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept)               0.57840    0.72605  1.52415   0.797   0.5308  
## DisabilityStatus1        -0.21639    0.05818  2.24156  -3.719   0.0546 .
## overallDisPromotion_2024  0.48958    0.10524  1.51098   4.652   0.0716 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1
## DsbltyStts1 -0.696       
## ovrlDP_2024 -0.996  0.645
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Multilevel Models: Cross-Level Interaction Effects

Note: Disability Status x Org-Level Predictors –> Outcome No sig cross-level interactions

Below Analyses: Mental Health Status x Org-Level Predictors –> Outcomes

# Disability Inclusion (Level 2)
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)

model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * disInclusion2_2024 + (1 | company_mapped), data = df)

summary(model_people)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PeoplePractices ~ MentalHealth_status_binary * disInclusion2_2024 +  
##     (1 | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13513.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3909 -0.5798  0.0188  0.6980  2.2000 
## 
## Random effects:
##  Groups         Name        Variance Std.Dev.
##  company_mapped (Intercept) 0.01734  0.1317  
##  Residual                   0.61246  0.7826  
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                  Estimate Std. Error         df
## (Intercept)                                       2.60543    0.56269    3.33930
## MentalHealth_status_binary1                      -0.78911    0.23650 5433.54218
## disInclusion2_2024                                0.34943    0.14689    3.48461
## MentalHealth_status_binary1:disInclusion2_2024    0.13788    0.07477 5357.02921
##                                                t value Pr(>|t|)    
## (Intercept)                                      4.630 0.014930 *  
## MentalHealth_status_binary1                     -3.337 0.000854 ***
## disInclusion2_2024                               2.379 0.085676 .  
## MentalHealth_status_binary1:disInclusion2_2024   1.844 0.065216 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnH__1 dI2_20
## MntlHlth__1 -0.097              
## dsInc2_2024 -0.995  0.118       
## MH__1:I2_20  0.098 -0.994 -0.120
interact_plot(model_people, pred = MentalHealth_status_binary, modx = disInclusion2_2024,
              main.title = "Interaction: Mental Health Status × Disability Inclusion on People Practices")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Disability Support (Level 2)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * disSupport1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_orgcommit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: OrgCommitment ~ MentalHealth_status_binary * disSupport1_2024 +  
##     (MentalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13269
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5328 -0.7651 -0.1121  0.5408  2.2795 
## 
## Random effects:
##  Groups         Name                        Variance Std.Dev. Corr
##  company_mapped (Intercept)                 0.028152 0.16779      
##                 MentalHealth_status_binary1 0.001765 0.04201  1.00
##  Residual                                   0.586382 0.76576      
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   3.804389   0.163375  5.403511
## MentalHealth_status_binary1                  -0.496666   0.125940 51.686150
## disSupport1_2024                             -0.005446   0.070524  5.805722
## MentalHealth_status_binary1:disSupport1_2024  0.108634   0.061231 89.500829
##                                              t value Pr(>|t|)    
## (Intercept)                                   23.286 1.25e-06 ***
## MentalHealth_status_binary1                   -3.944 0.000243 ***
## disSupport1_2024                              -0.077 0.941037    
## MentalHealth_status_binary1:disSupport1_2024   1.774 0.079434 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnH__1 dS1_20
## MntlHlth__1  0.110              
## dsSpp1_2024 -0.909 -0.057       
## MH__1:S1_20 -0.050 -0.970  0.042
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_orgcommit, pred = MentalHealth_status_binary, modx = disSupport1_2024,
              main.title = "Interaction: Mental Health Status × Disability Support on Org Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Disability Training (Level 2)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * training3_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -2.7e+01
# Note: No significant interactions
# Overall Accessibility (Level 2)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -8.6e+03
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00204505 (tol = 0.002, component 1)
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * overallAccessibility2_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: No significant interactions
# Accommodations (Level 2)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * Accommodations1_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: No significant interactions
# Disability Promotion (Level 2)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * overallDisPromotion_2024 + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: No significant interactions

Below Analyses: Physical Status x Org-Level Predictors –> Outcomes

# Disability Inclusion (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * disInclusion2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)

summary(model_accessibility)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Accessibility ~ PhysicalHealth_status_binary * disInclusion2_2024 +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12291.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2738 -0.6997 -0.0106  0.7000  1.7872 
## 
## Random effects:
##  Groups         Name                          Variance Std.Dev. Corr 
##  company_mapped (Intercept)                   0.005276 0.07264       
##                 PhysicalHealth_status_binary1 0.038344 0.19582  -1.00
##  Residual                                     0.495179 0.70369       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                  Estimate Std. Error       df
## (Intercept)                                       3.87904    0.32010  1.72037
## PhysicalHealth_status_binary1                    -0.67644    0.84731  2.45056
## disInclusion2_2024                                0.04280    0.08475  1.89425
## PhysicalHealth_status_binary1:disInclusion2_2024  0.13712    0.22249  2.61798
##                                                  t value Pr(>|t|)  
## (Intercept)                                       12.118   0.0115 *
## PhysicalHealth_status_binary1                     -0.798   0.4947  
## disInclusion2_2024                                 0.505   0.6661  
## PhysicalHealth_status_binary1:disInclusion2_2024   0.616   0.5871  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 dI2_20
## PhysclHl__1 -0.955              
## dsInc2_2024 -0.993  0.936       
## PH__1:I2_20  0.944 -0.994 -0.935
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_accessibility, pred = PhysicalHealth_status_binary, modx = disInclusion2_2024,
              main.title = "Interaction: Physical Disability Status × Disability Inclusion on Accessibility")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_accommodation)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Accommodation ~ PhysicalHealth_status_binary * disInclusion2_2024 +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 15345.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5840 -0.7800 -0.2352  0.7693  2.3666 
## 
## Random effects:
##  Groups         Name                          Variance Std.Dev. Corr 
##  company_mapped (Intercept)                   0.022416 0.14972       
##                 PhysicalHealth_status_binary1 0.003323 0.05765  -0.33
##  Residual                                     0.842565 0.91791       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                  Estimate Std. Error       df
## (Intercept)                                       3.27336    0.64057  2.80455
## PhysicalHealth_status_binary1                    -0.95052    0.37138  0.15370
## disInclusion2_2024                               -0.01914    0.16730  2.92844
## PhysicalHealth_status_binary1:disInclusion2_2024  0.18741    0.10947  0.25831
##                                                  t value Pr(>|t|)  
## (Intercept)                                        5.110   0.0171 *
## PhysicalHealth_status_binary1                     -2.559   0.6790  
## disInclusion2_2024                                -0.114   0.9163  
## PhysicalHealth_status_binary1:disInclusion2_2024   1.712   0.6214  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 dI2_20
## PhysclHl__1 -0.283              
## dsInc2_2024 -0.995  0.296       
## PH__1:I2_20  0.262 -0.990 -0.280
interact_plot(model_accommodation, pred = PhysicalHealth_status_binary, modx = disInclusion2_2024,
              main.title = "Interaction: Physical Disability Status × Disability Inclusion on Accommodations")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_people)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PeoplePractices ~ PhysicalHealth_status_binary * disInclusion2_2024 +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13528.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3957 -0.5883  0.1013  0.6878  2.1698 
## 
## Random effects:
##  Groups         Name                          Variance Std.Dev. Corr 
##  company_mapped (Intercept)                   0.015716 0.12536       
##                 PhysicalHealth_status_binary1 0.005892 0.07676  -1.00
##  Residual                                     0.614114 0.78365       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                  Estimate Std. Error      df
## (Intercept)                                        2.6727     0.5370  2.7439
## PhysicalHealth_status_binary1                     -0.8465     0.4009  0.9881
## disInclusion2_2024                                 0.3294     0.1403  2.8707
## PhysicalHealth_status_binary1:disInclusion2_2024   0.1617     0.1128  1.3915
##                                                  t value Pr(>|t|)  
## (Intercept)                                        4.977   0.0192 *
## PhysicalHealth_status_binary1                     -2.111   0.2839  
## disInclusion2_2024                                 2.348   0.1044  
## PhysicalHealth_status_binary1:disInclusion2_2024   1.433   0.3356  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 dI2_20
## PhysclHl__1 -0.844              
## dsInc2_2024 -0.995  0.845       
## PH__1:I2_20  0.785 -0.990 -0.795
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_people, pred = PhysicalHealth_status_binary, modx = disInclusion2_2024,
              main.title = "Interaction: Physical Disability Status × Disability Inclusion on People Practices")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Disability Support (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * disSupport1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_leadership) # Suggests that support increase the negative effect of physical health status on perceived leadership commitment
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## LeadershipCommitment ~ PhysicalHealth_status_binary * disSupport1_2024 +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13568.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4446 -0.5807 -0.0765  0.6913  2.4674 
## 
## Random effects:
##  Groups         Name                          Variance Std.Dev. Corr
##  company_mapped (Intercept)                   0.012327 0.11103      
##                 PhysicalHealth_status_binary1 0.003643 0.06035  1.00
##  Residual                                     0.618091 0.78619      
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                Estimate Std. Error       df
## (Intercept)                                     3.48469    0.11667  5.05341
## PhysicalHealth_status_binary1                  -0.06378    0.14801 32.49064
## disSupport1_2024                                0.05406    0.05122  5.79101
## PhysicalHealth_status_binary1:disSupport1_2024 -0.12925    0.07129 57.03211
##                                                t value Pr(>|t|)    
## (Intercept)                                     29.868 7.02e-07 ***
## PhysicalHealth_status_binary1                   -0.431   0.6694    
## disSupport1_2024                                 1.055   0.3332    
## PhysicalHealth_status_binary1:disSupport1_2024  -1.813   0.0751 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 dS1_20
## PhysclHl__1  0.130              
## dsSpp1_2024 -0.911 -0.054       
## PH__1:S1_20 -0.057 -0.970  0.039
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_leadership, pred = PhysicalHealth_status_binary, modx = disSupport1_2024,
              main.title = "Interaction: Physical Disability Status × Disability Support on Leadership Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Disability Training (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)

model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * training3_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -2.1e+01
# Note: No significant interactions
# Overall Accessibility (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.7e+02
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * overallAccessibility2_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_mgr_effect) # Suggests that accessibility increase the negative effect of physical health status on perceived manager effectiveness
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## ManagerEffectiveness ~ PhysicalHealth_status_binary * overallAccessibility2_2024 +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 14367
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8805 -0.4891  0.1042  0.9073  1.4025 
## 
## Random effects:
##  Groups         Name                          Variance  Std.Dev. Corr 
##  company_mapped (Intercept)                   0.0127095 0.11274       
##                 PhysicalHealth_status_binary1 0.0002878 0.01696  -1.00
##  Residual                                     0.7103342 0.84281       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                                           Estimate Std. Error
## (Intercept)                                                3.62742    0.50235
## PhysicalHealth_status_binary1                              1.27749    0.56335
## overallAccessibility2_2024                                 0.05193    0.04109
## PhysicalHealth_status_binary1:overallAccessibility2_2024  -0.12637    0.04383
##                                                                 df t value
## (Intercept)                                               10.96981   7.221
## PhysicalHealth_status_binary1                            256.58584   2.268
## overallAccessibility2_2024                                10.03726   1.264
## PhysicalHealth_status_binary1:overallAccessibility2_2024 190.54555  -2.883
##                                                          Pr(>|t|)    
## (Intercept)                                              1.73e-05 ***
## PhysicalHealth_status_binary1                             0.02418 *  
## overallAccessibility2_2024                                0.23486    
## PhysicalHealth_status_binary1:overallAccessibility2_2024  0.00439 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 oA2_20
## PhysclHl__1 -0.482              
## ovrlA2_2024 -0.995  0.466       
## PH__1:A2_20  0.486 -0.999 -0.472
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_mgr_effect, pred = PhysicalHealth_status_binary, modx = overallAccessibility2_2024,
              main.title = "Interaction: Physical Disability Status × Overall Accessibility on Manager Effectiveness")
## Warning: 13.4340220570054 is outside the observed range of
## overallAccessibility2_2024
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

# Accommodations (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -1.1e+03
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * Accommodations1_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
# Note: No significant interactions
# Disability Promotion (Level 2)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_accommodation <- lmer(Accommodation ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * overallDisPromotion_2024 + (PhysicalHealth_status_binary | company_mapped), data = df)

# Note: No significant interactions

Disability Status x Accommodations (Employee Survey) –> Outcomes

Moderating Role of Accomodations at Level 1

# Accommodations (Level 1)
model_engagement <- lmer(Engagement ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
## Warning: Model failed to converge with 1 negative eigenvalue: -2.2e+01
model_mgr_effect <- lmer(ManagerEffectiveness ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ DisabilityStatus * Accommodation + (DisabilityStatus | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_psychsafety)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PsychSafety ~ DisabilityStatus * Accommodation + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12320.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3251 -0.4878  0.0920  0.5913  3.5793 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.005964 0.07723       
##                 DisabilityStatus1 0.002681 0.05178  -1.00
##  Residual                         0.498968 0.70638       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        2.29302    0.05206   20.94228  44.044
## DisabilityStatus1                 -0.38423    0.08569   97.31742  -4.484
## Accommodation                      0.52717    0.01115 5729.45704  47.269
## DisabilityStatus1:Accommodation    0.06307    0.02636 5730.27318   2.393
##                                 Pr(>|t|)    
## (Intercept)                       <2e-16 ***
## DisabilityStatus1                  2e-05 ***
## Accommodation                     <2e-16 ***
## DisabilityStatus1:Accommodation   0.0168 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1 Accmmd
## DsbltyStts1 -0.508              
## Accommodatn -0.680  0.413       
## DsbltySt1:A  0.284 -0.904 -0.423
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_psychsafety, pred = DisabilityStatus, modx = Accommodation,
              main.title = "Interaction: Disability Status × Accommodations on Psych Safety")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_mgr_effect)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## ManagerEffectiveness ~ DisabilityStatus * Accommodation + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13123.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8225 -0.5198  0.1069  0.7248  2.5874 
## 
## Random effects:
##  Groups         Name              Variance Std.Dev. Corr 
##  company_mapped (Intercept)       0.016326 0.12778       
##                 DisabilityStatus1 0.009905 0.09953  -1.00
##  Residual                         0.573723 0.75745       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                        2.99067    0.06768   13.85594  44.190
## DisabilityStatus1                 -0.37809    0.09786   50.95240  -3.863
## Accommodation                      0.40364    0.01196 5732.74925  33.737
## DisabilityStatus1:Accommodation    0.05805    0.02827 5729.79323   2.054
##                                 Pr(>|t|)    
## (Intercept)                      2.6e-16 ***
## DisabilityStatus1               0.000317 ***
## Accommodation                    < 2e-16 ***
## DisabilityStatus1:Accommodation 0.040033 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1 Accmmd
## DsbltyStts1 -0.591              
## Accommodatn -0.561  0.388       
## DsbltySt1:A  0.235 -0.849 -0.423
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_mgr_effect, pred = DisabilityStatus, modx = Accommodation,
              main.title = "Interaction: Disability Status × Accommodations on Manager Effectiveness")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_leadership) 
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## LeadershipCommitment ~ DisabilityStatus * Accommodation + (DisabilityStatus |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 10824.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5885 -0.5448 -0.1102  0.6653  4.3474 
## 
## Random effects:
##  Groups         Name              Variance  Std.Dev. Corr 
##  company_mapped (Intercept)       0.0094001 0.09695       
##                 DisabilityStatus1 0.0005187 0.02277  -1.00
##  Residual                         0.3841891 0.61983       
## Number of obs: 5737, groups:  company_mapped, 7
## 
## Fixed effects:
##                                   Estimate Std. Error         df t value
## (Intercept)                      1.950e+00  5.261e-02  1.311e+01  37.066
## DisabilityStatus1               -4.851e-01  7.267e-02  7.046e+02  -6.675
## Accommodation                    5.129e-01  9.789e-03  5.732e+03  52.397
## DisabilityStatus1:Accommodation  9.327e-02  2.314e-02  5.727e+03   4.031
##                                 Pr(>|t|)    
## (Intercept)                     1.16e-14 ***
## DisabilityStatus1               5.01e-11 ***
## Accommodation                    < 2e-16 ***
## DisabilityStatus1:Accommodation 5.62e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) DsblS1 Accmmd
## DsbltyStts1 -0.380              
## Accommodatn -0.591  0.428       
## DsbltySt1:A  0.242 -0.936 -0.422
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_leadership, pred = DisabilityStatus, modx = Accommodation,
              main.title = "Interaction: Disability Status × Accommodations on Leadership Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

Mental Health Status x Accommodations (Employee Survey) –> Outcomes

# Accommodations (Level 1)
model_engagement <- lmer(Engagement ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_psychsafety <- lmer(PsychSafety ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
model_mgr_effect <- lmer(ManagerEffectiveness ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_leadership <- lmer(LeadershipCommitment ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_psychsafety)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## PsychSafety ~ MentalHealth_status_binary * Accommodation + (MentalHealth_status_binary |  
##     company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12345.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3405 -0.4769  0.0718  0.6327  3.6171 
## 
## Random effects:
##  Groups         Name                        Variance  Std.Dev. Corr
##  company_mapped (Intercept)                 5.313e-03 0.072892     
##                 MentalHealth_status_binary1 6.852e-05 0.008278 1.00
##  Residual                                   4.994e-01 0.706714     
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                             Estimate Std. Error         df
## (Intercept)                                  2.33774    0.05119   22.98080
## MentalHealth_status_binary1                 -0.39892    0.07493 1748.64887
## Accommodation                                0.51505    0.01152 5738.28953
## MentalHealth_status_binary1:Accommodation    0.07104    0.02424 5733.82876
##                                           t value Pr(>|t|)    
## (Intercept)                                45.668  < 2e-16 ***
## MentalHealth_status_binary1                -5.324 1.15e-07 ***
## Accommodation                              44.727  < 2e-16 ***
## MentalHealth_status_binary1:Accommodation   2.930   0.0034 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnH__1 Accmmd
## MntlHlth__1 -0.349              
## Accommodatn -0.723  0.492       
## MntlHl__1:A  0.336 -0.947 -0.474
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_psychsafety, pred = MentalHealth_status_binary, modx = Accommodation,
              main.title = "Interaction: Mental Health Status × Accommodations on Psych Safety")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_mgr_effect)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ManagerEffectiveness ~ MentalHealth_status_binary * Accommodation +  
##     (MentalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13113.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8425 -0.4893  0.1211  0.7138  2.6271 
## 
## Random effects:
##  Groups         Name                        Variance  Std.Dev. Corr 
##  company_mapped (Intercept)                 0.0152713 0.12358       
##                 MentalHealth_status_binary1 0.0005445 0.02333  -1.00
##  Residual                                   0.5705852 0.75537       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                             Estimate Std. Error         df
## (Intercept)                                  3.01780    0.06658   14.44439
## MentalHealth_status_binary1                 -0.34047    0.08060  536.49821
## Accommodation                                0.39412    0.01231 5739.94248
## MentalHealth_status_binary1:Accommodation    0.05237    0.02591 5736.19962
##                                           t value Pr(>|t|)    
## (Intercept)                                45.328  < 2e-16 ***
## MentalHealth_status_binary1                -4.224 2.82e-05 ***
## Accommodation                              32.008  < 2e-16 ***
## MentalHealth_status_binary1:Accommodation   2.021   0.0433 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnH__1 Accmmd
## MntlHlth__1 -0.410              
## Accommodatn -0.595  0.489       
## MntlHl__1:A  0.277 -0.939 -0.474
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_mgr_effect, pred = MentalHealth_status_binary, modx = Accommodation,
              main.title = "Interaction: Mental Health Status × Accommodations on Manager Effectiveness")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_leadership) 
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: LeadershipCommitment ~ MentalHealth_status_binary * Accommodation +  
##     (MentalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 10831.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6079 -0.5650 -0.0975  0.6512  4.8744 
## 
## Random effects:
##  Groups         Name                        Variance  Std.Dev. Corr
##  company_mapped (Intercept)                 0.0060784 0.07796      
##                 MentalHealth_status_binary1 0.0006621 0.02573  1.00
##  Residual                                   0.3835192 0.61929      
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                             Estimate Std. Error         df
## (Intercept)                                  1.96440    0.04777   22.48732
## MentalHealth_status_binary1                 -0.37811    0.06653  449.63980
## Accommodation                                0.50689    0.01009 5739.76419
## MentalHealth_status_binary1:Accommodation    0.07217    0.02125 5734.82043
##                                           t value Pr(>|t|)    
## (Intercept)                                41.119  < 2e-16 ***
## MentalHealth_status_binary1                -5.684 2.37e-08 ***
## Accommodation                              50.228  < 2e-16 ***
## MentalHealth_status_binary1:Accommodation   3.397 0.000687 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) MnH__1 Accmmd
## MntlHlth__1 -0.235              
## Accommodatn -0.679  0.485       
## MntlHl__1:A  0.314 -0.935 -0.473
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_leadership, pred = MentalHealth_status_binary, modx = Accommodation,
              main.title = "Interaction: Mental Health Status × Accommodations on Leadership Commitment")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

Physical Health Status x Accommodations (Employee Survey) –> Outcomes

# Accommodations (Level 1)
model_engagement <- lmer(Engagement ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
model_accessibility <- lmer(Accessibility ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
model_psychsafety <- lmer(PsychSafety ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_people <- lmer(PeoplePractices ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_orgcommit <- lmer(OrgCommitment ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_mgr_effect <- lmer(ManagerEffectiveness ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
model_leadership <- lmer(LeadershipCommitment ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
model_career <- lmer(CareerExperience ~ PhysicalHealth_status_binary * Accommodation + (PhysicalHealth_status_binary | company_mapped), data = df)
## boundary (singular) fit: see help('isSingular')
summary(model_psychsafety)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: PsychSafety ~ PhysicalHealth_status_binary * Accommodation +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 12342.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3516 -0.4743  0.1021  0.6312  3.5586 
## 
## Random effects:
##  Groups         Name                          Variance  Std.Dev. Corr
##  company_mapped (Intercept)                   0.0055196 0.07429      
##                 PhysicalHealth_status_binary1 0.0001624 0.01274  1.00
##  Residual                                     0.4991100 0.70648      
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                               Estimate Std. Error         df
## (Intercept)                                    2.31684    0.05162   19.16708
## PhysicalHealth_status_binary1                 -0.32291    0.07335  539.50392
## Accommodation                                  0.52023    0.01167 5736.92988
## PhysicalHealth_status_binary1:Accommodation    0.04603    0.02364 5732.25092
##                                             t value Pr(>|t|)    
## (Intercept)                                  44.880  < 2e-16 ***
## PhysicalHealth_status_binary1                -4.402 1.29e-05 ***
## Accommodation                                44.582  < 2e-16 ***
## PhysicalHealth_status_binary1:Accommodation   1.947   0.0516 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 Accmmd
## PhysclHl__1 -0.339              
## Accommodatn -0.724  0.511       
## PhyscH__1:A  0.348 -0.947 -0.493
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
interact_plot(model_psychsafety, pred = PhysicalHealth_status_binary, modx = Accommodation,
              main.title = "Interaction: Physical Health Status × Accommodations on Psych Safety")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.

summary(model_mgr_effect)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ManagerEffectiveness ~ PhysicalHealth_status_binary * Accommodation +  
##     (PhysicalHealth_status_binary | company_mapped)
##    Data: df
## 
## REML criterion at convergence: 13125.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.8523 -0.4835  0.1397  0.7002  2.6325 
## 
## Random effects:
##  Groups         Name                          Variance Std.Dev. Corr
##  company_mapped (Intercept)                   0.01236  0.1112       
##                 PhysicalHealth_status_binary1 0.01434  0.1197   0.19
##  Residual                                     0.57142  0.7559       
## Number of obs: 5746, groups:  company_mapped, 7
## 
## Fixed effects:
##                                               Estimate Std. Error         df
## (Intercept)                                    3.00254    0.06376   15.82504
## PhysicalHealth_status_binary1                 -0.30427    0.10300    4.66710
## Accommodation                                  0.39447    0.01249 5729.31422
## PhysicalHealth_status_binary1:Accommodation    0.04770    0.02532 5684.54795
##                                             t value Pr(>|t|)    
## (Intercept)                                  47.094   <2e-16 ***
## PhysicalHealth_status_binary1                -2.954   0.0345 *  
## Accommodation                                31.584   <2e-16 ***
## PhysicalHealth_status_binary1:Accommodation   1.884   0.0597 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PhH__1 Accmmd
## PhysclHl__1 -0.270              
## Accommodatn -0.627  0.387       
## PhyscH__1:A  0.306 -0.737 -0.493
interact_plot(model_mgr_effect, pred = PhysicalHealth_status_binary, modx = Accommodation,
              main.title = "Interaction: Physical Health Status × Accommodations on Manager Effectiveness")
## ✖ Detected factor predictor.
## ℹ Plotting with cat_plot() instead.
## ℹ See `?interactions::cat_plot()` for full details on how to specify models
##   with categorical predictors.
## ℹ If you experience errors or unexpected results, try using cat_plot()
##   directly.