In-class activity #10: Correlation between teams rank and wins

# Rank of teams in 2012 and 2013 playoffs (1 = highest, 5 = lowest)
teamRank <- c(1, 2, 3, 3, 4, 4, 4, 4, 5, 5)
# Wins in 2012 by team, in order of playoff rank
wins2012 <- c(94, 88, 95, 88, 93, 94, 98, 97, 93, 94)
# Wins in 2013 by team, in order of playoff rank
wins2013 <- c(97, 97, 92, 93, 92, 96, 94, 96, 92, 90)
cor(teamRank, wins2012)
[1] 0.3477129
# Correlation between rank and wins in 2013
cor_2013 <- cor(teamRank, wins2013)
print(paste("Correlation between teamRank and wins2013:", round(cor_2013, 4)))
[1] "Correlation between teamRank and wins2013: -0.6557"
# That value of -0.6557 for the correlation between teamRank and wins2013 suggests a moderate to strong negative relationship
teamRank
 [1] 1 2 3 3 4 4 4 4 5 5
wins2012
 [1] 94 88 95 88 93 94 98 97 93 94
wins2013
 [1] 97 97 92 93 92 96 94 96 92 90
cor(teamRank, wins2012)
[1] 0.3477129
cor(teamRank, wins2013)
[1] -0.6556945
plot(wins2013, teamRank, main="Team Rank vs Wins 2013",
     xlab="Regular Season Wins", ylab="Playoff Rank", pch=19)
abline(lm(teamRank ~ wins2013), col="red")  # Optional trend line

# There is a moderate negative correlation between regular season wins and playoff rank in 2013. This demonstrates that although more wins help, they do not guarantee postseason success.
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpJbi1jbGFzcyBhY3Rpdml0eSAjMTA6IENvcnJlbGF0aW9uIGJldHdlZW4gdGVhbXMgcmFuayBhbmQgd2lucw0KDQpgYGB7cn0NCiMgUmFuayBvZiB0ZWFtcyBpbiAyMDEyIGFuZCAyMDEzIHBsYXlvZmZzICgxID0gaGlnaGVzdCwgNSA9IGxvd2VzdCkNCnRlYW1SYW5rIDwtIGMoMSwgMiwgMywgMywgNCwgNCwgNCwgNCwgNSwgNSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBXaW5zIGluIDIwMTIgYnkgdGVhbSwgaW4gb3JkZXIgb2YgcGxheW9mZiByYW5rDQp3aW5zMjAxMiA8LSBjKDk0LCA4OCwgOTUsIDg4LCA5MywgOTQsIDk4LCA5NywgOTMsIDk0KQ0KYGBgDQoNCg0KYGBge3J9DQojIFdpbnMgaW4gMjAxMyBieSB0ZWFtLCBpbiBvcmRlciBvZiBwbGF5b2ZmIHJhbmsNCndpbnMyMDEzIDwtIGMoOTcsIDk3LCA5MiwgOTMsIDkyLCA5NiwgOTQsIDk2LCA5MiwgOTApDQpgYGANCg0KDQpgYGB7cn0NCiMgQ29ycmVsYXRpb24gYmV0d2VlbiByYW5rIGFuZCB3aW5zIGluIDIwMTINCmNvcl8yMDEyIDwtIGNvcih0ZWFtUmFuaywgd2luczIwMTIpDQpwcmludChwYXN0ZSgiQ29ycmVsYXRpb24gYmV0d2VlbiB0ZWFtUmFuayBhbmQgd2luczIwMTI6Iiwgcm91bmQoY29yXzIwMTIsIDQpKSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyBDb3JyZWxhdGlvbiBiZXR3ZWVuIHJhbmsgYW5kIHdpbnMgaW4gMjAxMw0KY29yXzIwMTMgPC0gY29yKHRlYW1SYW5rLCB3aW5zMjAxMykNCnByaW50KHBhc3RlKCJDb3JyZWxhdGlvbiBiZXR3ZWVuIHRlYW1SYW5rIGFuZCB3aW5zMjAxMzoiLCByb3VuZChjb3JfMjAxMywgNCkpKQ0KYGBgDQoNCg0KYGBge3J9DQojIFRoYXQgdmFsdWUgb2YgLTAuNjU1NyBmb3IgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gdGVhbVJhbmsgYW5kIHdpbnMyMDEzIHN1Z2dlc3RzIGEgbW9kZXJhdGUgdG8gc3Ryb25nIG5lZ2F0aXZlIHJlbGF0aW9uc2hpcA0KYGBgDQoNCg0KYGBge3J9DQp0ZWFtUmFuaw0Kd2luczIwMTINCndpbnMyMDEzDQpjb3IodGVhbVJhbmssIHdpbnMyMDEyKQ0KY29yKHRlYW1SYW5rLCB3aW5zMjAxMykNCmBgYA0KDQoNCmBgYHtyfQ0KcGxvdCh3aW5zMjAxMywgdGVhbVJhbmssIG1haW49IlRlYW0gUmFuayB2cyBXaW5zIDIwMTMiLA0KICAgICB4bGFiPSJSZWd1bGFyIFNlYXNvbiBXaW5zIiwgeWxhYj0iUGxheW9mZiBSYW5rIiwgcGNoPTE5KQ0KYWJsaW5lKGxtKHRlYW1SYW5rIH4gd2luczIwMTMpLCBjb2w9InJlZCIpICAjIE9wdGlvbmFsIHRyZW5kIGxpbmUNCmBgYA0KDQoNCmBgYHtyfQ0KIyBUaGVyZSBpcyBhIG1vZGVyYXRlIG5lZ2F0aXZlIGNvcnJlbGF0aW9uIGJldHdlZW4gcmVndWxhciBzZWFzb24gd2lucyBhbmQgcGxheW9mZiByYW5rIGluIDIwMTMuIFRoaXMgZGVtb25zdHJhdGVzIHRoYXQgYWx0aG91Z2ggbW9yZSB3aW5zIGhlbHAsIHRoZXkgZG8gbm90IGd1YXJhbnRlZSBwb3N0c2Vhc29uIHN1Y2Nlc3MuDQpgYGANCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0K