data("mtcars")
mtcars <- as_tibble(mtcars)
MyData <- read_csv("../00_data/MyData.csv")
## New names:
## Rows: 380 Columns: 23
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (6): Date, HomeTeam, AwayTeam, FTR, HTR, Referee dbl (17): ...1, FTHG, FTAG,
## HTHG, HTAG, HS, AS, HST, AST, HF, AF, HC, AC, HY...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
Case of numeric variables
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(mean)
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
# Adding an Argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
Create your own function
# Double values in columns
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
When you have a grouping variable (factor)
mtcars %>% lm(formula = mpg ~ wt, data = .)
##
## Call:
## lm(formula = mpg ~ wt, data = .)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
## cyl
## <dbl>
## 1 6
## 2 4
## 3 8
reg_coeff_tbl <- mtcars %>%
# Split it into a list of data frames
split(.$cyl) %>%
# Repeat regression over each group
map(~lm(formula = mpg ~ wt, data = .x)) %>%
# Extract coefficients from regression results
map(broom::tidy, conf.int = TRUE) %>%
# Convert to tibble
bind_rows(.id = "cyl") %>%
# Filter for wt coefficients
filter(term == "wt")
reg_coeff_tbl %>%
mutate(estimate = -estimate,
conf.low = -conf.low,
conf.high = -conf.high) %>%
ggplot(aes(x = estimate, y = cyl)) +
geom_point() +
geom_errorbar(aes(xmin = conf.low, xmax = conf.high))
Choose either one of the two cases above and apply it to your data
MyData %>% map_dbl(.x = ., .f = ~mean(x = .x))
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## ...1 Date HomeTeam AwayTeam FTHG FTAG
## 190.50000000 NA NA NA 1.51315789 1.30526316
## FTR HTHG HTAG HTR Referee HS
## NA 0.68157895 0.58947368 NA NA 13.84736842
## AS HST AST HF AF HC
## 11.73684211 4.67894737 4.14210526 10.05526316 10.15789474 5.60263158
## AC HY AY HR AR
## 4.82105263 1.65263158 1.74473684 0.05000000 0.06315789
MyData %>% map_dbl(.f = ~mean(x = .x))
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## Warning in mean.default(x = .x): argument is not numeric or logical: returning
## NA
## ...1 Date HomeTeam AwayTeam FTHG FTAG
## 190.50000000 NA NA NA 1.51315789 1.30526316
## FTR HTHG HTAG HTR Referee HS
## NA 0.68157895 0.58947368 NA NA 13.84736842
## AS HST AST HF AF HC
## 11.73684211 4.67894737 4.14210526 10.05526316 10.15789474 5.60263158
## AC HY AY HR AR
## 4.82105263 1.65263158 1.74473684 0.05000000 0.06315789
MyData %>% map_dbl(mean)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## ...1 Date HomeTeam AwayTeam FTHG FTAG
## 190.50000000 NA NA NA 1.51315789 1.30526316
## FTR HTHG HTAG HTR Referee HS
## NA 0.68157895 0.58947368 NA NA 13.84736842
## AS HST AST HF AF HC
## 11.73684211 4.67894737 4.14210526 10.05526316 10.15789474 5.60263158
## AC HY AY HR AR
## 4.82105263 1.65263158 1.74473684 0.05000000 0.06315789
MyData %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## Warning in mean.default(x = .x, trim = 0.1): argument is not numeric or
## logical: returning NA
## ...1 Date HomeTeam AwayTeam FTHG FTAG
## 190.5000000 NA NA NA 1.3684211 1.1447368
## FTR HTHG HTAG HTR Referee HS
## NA 0.5526316 0.4473684 NA NA 13.5493421
## AS HST AST HF AF HC
## 11.4342105 4.5394737 3.9046053 10.0164474 9.9638158 5.3750000
## AC HY AY HR AR
## 4.6513158 1.5592105 1.6809211 0.0000000 0.0000000
MyData %>% map_dbl(mean, trim = 0.1)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## ...1 Date HomeTeam AwayTeam FTHG FTAG
## 190.5000000 NA NA NA 1.3684211 1.1447368
## FTR HTHG HTAG HTR Referee HS
## NA 0.5526316 0.4473684 NA NA 13.5493421
## AS HST AST HF AF HC
## 11.4342105 4.5394737 3.9046053 10.0164474 9.9638158 5.3750000
## AC HY AY HR AR
## 4.6513158 1.5592105 1.6809211 0.0000000 0.0000000
MyData %>% select(.data = ., HS)
## # A tibble: 380 × 1
## HS
## <dbl>
## 1 8
## 2 16
## 3 14
## 4 13
## 5 14
## 6 9
## 7 13
## 8 14
## 9 17
## 10 13
## # ℹ 370 more rows
MyData %>% select(HS)
## # A tibble: 380 × 1
## HS
## <dbl>
## 1 8
## 2 16
## 3 14
## 4 13
## 5 14
## 6 9
## 7 13
## 8 14
## 9 17
## 10 13
## # ℹ 370 more rows
triple_by_factor <- function(x) {
x * 3
}
10 %>% triple_by_factor()
## [1] 30
10 %>% triple_by_factor()
## [1] 30
MyData$FTHG %>% map(triple_by_factor)
## [[1]]
## [1] 6
##
## [[2]]
## [1] 15
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 9
##
## [[5]]
## [1] 9
##
## [[6]]
## [1] 3
##
## [[7]]
## [1] 9
##
## [[8]]
## [1] 0
##
## [[9]]
## [1] 6
##
## [[10]]
## [1] 3
##
## [[11]]
## [1] 6
##
## [[12]]
## [1] 6
##
## [[13]]
## [1] 0
##
## [[14]]
## [1] 6
##
## [[15]]
## [1] 15
##
## [[16]]
## [1] 6
##
## [[17]]
## [1] 3
##
## [[18]]
## [1] 0
##
## [[19]]
## [1] 0
##
## [[20]]
## [1] 12
##
## [[21]]
## [1] 15
##
## [[22]]
## [1] 3
##
## [[23]]
## [1] 0
##
## [[24]]
## [1] 6
##
## [[25]]
## [1] 3
##
## [[26]]
## [1] 6
##
## [[27]]
## [1] 3
##
## [[28]]
## [1] 3
##
## [[29]]
## [1] 3
##
## [[30]]
## [1] 0
##
## [[31]]
## [1] 9
##
## [[32]]
## [1] 3
##
## [[33]]
## [1] 0
##
## [[34]]
## [1] 0
##
## [[35]]
## [1] 12
##
## [[36]]
## [1] 0
##
## [[37]]
## [1] 0
##
## [[38]]
## [1] 9
##
## [[39]]
## [1] 0
##
## [[40]]
## [1] 9
##
## [[41]]
## [1] 3
##
## [[42]]
## [1] 0
##
## [[43]]
## [1] 0
##
## [[44]]
## [1] 9
##
## [[45]]
## [1] 0
##
## [[46]]
## [1] 3
##
## [[47]]
## [1] 9
##
## [[48]]
## [1] 6
##
## [[49]]
## [1] 3
##
## [[50]]
## [1] 0
##
## [[51]]
## [1] 0
##
## [[52]]
## [1] 0
##
## [[53]]
## [1] 6
##
## [[54]]
## [1] 3
##
## [[55]]
## [1] 6
##
## [[56]]
## [1] 3
##
## [[57]]
## [1] 9
##
## [[58]]
## [1] 0
##
## [[59]]
## [1] 9
##
## [[60]]
## [1] 3
##
## [[61]]
## [1] 3
##
## [[62]]
## [1] 0
##
## [[63]]
## [1] 9
##
## [[64]]
## [1] 3
##
## [[65]]
## [1] 6
##
## [[66]]
## [1] 0
##
## [[67]]
## [1] 6
##
## [[68]]
## [1] 6
##
## [[69]]
## [1] 3
##
## [[70]]
## [1] 6
##
## [[71]]
## [1] 0
##
## [[72]]
## [1] 6
##
## [[73]]
## [1] 12
##
## [[74]]
## [1] 6
##
## [[75]]
## [1] 0
##
## [[76]]
## [1] 3
##
## [[77]]
## [1] 0
##
## [[78]]
## [1] 0
##
## [[79]]
## [1] 6
##
## [[80]]
## [1] 6
##
## [[81]]
## [1] 9
##
## [[82]]
## [1] 21
##
## [[83]]
## [1] 3
##
## [[84]]
## [1] 6
##
## [[85]]
## [1] 3
##
## [[86]]
## [1] 6
##
## [[87]]
## [1] 3
##
## [[88]]
## [1] 3
##
## [[89]]
## [1] 3
##
## [[90]]
## [1] 0
##
## [[91]]
## [1] 0
##
## [[92]]
## [1] 9
##
## [[93]]
## [1] 6
##
## [[94]]
## [1] 0
##
## [[95]]
## [1] 0
##
## [[96]]
## [1] 0
##
## [[97]]
## [1] 0
##
## [[98]]
## [1] 3
##
## [[99]]
## [1] 3
##
## [[100]]
## [1] 6
##
## [[101]]
## [1] 3
##
## [[102]]
## [1] 0
##
## [[103]]
## [1] 3
##
## [[104]]
## [1] 3
##
## [[105]]
## [1] 6
##
## [[106]]
## [1] 3
##
## [[107]]
## [1] 3
##
## [[108]]
## [1] 0
##
## [[109]]
## [1] 3
##
## [[110]]
## [1] 9
##
## [[111]]
## [1] 0
##
## [[112]]
## [1] 6
##
## [[113]]
## [1] 9
##
## [[114]]
## [1] 9
##
## [[115]]
## [1] 6
##
## [[116]]
## [1] 12
##
## [[117]]
## [1] 3
##
## [[118]]
## [1] 12
##
## [[119]]
## [1] 9
##
## [[120]]
## [1] 6
##
## [[121]]
## [1] 6
##
## [[122]]
## [1] 3
##
## [[123]]
## [1] 12
##
## [[124]]
## [1] 0
##
## [[125]]
## [1] 0
##
## [[126]]
## [1] 3
##
## [[127]]
## [1] 12
##
## [[128]]
## [1] 6
##
## [[129]]
## [1] 3
##
## [[130]]
## [1] 3
##
## [[131]]
## [1] 3
##
## [[132]]
## [1] 6
##
## [[133]]
## [1] 3
##
## [[134]]
## [1] 3
##
## [[135]]
## [1] 0
##
## [[136]]
## [1] 3
##
## [[137]]
## [1] 3
##
## [[138]]
## [1] 6
##
## [[139]]
## [1] 9
##
## [[140]]
## [1] 9
##
## [[141]]
## [1] 3
##
## [[142]]
## [1] 3
##
## [[143]]
## [1] 0
##
## [[144]]
## [1] 3
##
## [[145]]
## [1] 6
##
## [[146]]
## [1] 3
##
## [[147]]
## [1] 9
##
## [[148]]
## [1] 6
##
## [[149]]
## [1] 6
##
## [[150]]
## [1] 6
##
## [[151]]
## [1] 3
##
## [[152]]
## [1] 9
##
## [[153]]
## [1] 9
##
## [[154]]
## [1] 3
##
## [[155]]
## [1] 0
##
## [[156]]
## [1] 0
##
## [[157]]
## [1] 12
##
## [[158]]
## [1] 9
##
## [[159]]
## [1] 0
##
## [[160]]
## [1] 21
##
## [[161]]
## [1] 0
##
## [[162]]
## [1] 6
##
## [[163]]
## [1] 6
##
## [[164]]
## [1] 3
##
## [[165]]
## [1] 9
##
## [[166]]
## [1] 3
##
## [[167]]
## [1] 0
##
## [[168]]
## [1] 0
##
## [[169]]
## [1] 6
##
## [[170]]
## [1] 18
##
## [[171]]
## [1] 0
##
## [[172]]
## [1] 9
##
## [[173]]
## [1] 6
##
## [[174]]
## [1] 3
##
## [[175]]
## [1] 6
##
## [[176]]
## [1] 3
##
## [[177]]
## [1] 9
##
## [[178]]
## [1] 3
##
## [[179]]
## [1] 3
##
## [[180]]
## [1] 3
##
## [[181]]
## [1] 3
##
## [[182]]
## [1] 0
##
## [[183]]
## [1] 9
##
## [[184]]
## [1] 3
##
## [[185]]
## [1] 0
##
## [[186]]
## [1] 6
##
## [[187]]
## [1] 6
##
## [[188]]
## [1] 6
##
## [[189]]
## [1] 9
##
## [[190]]
## [1] 6
##
## [[191]]
## [1] 0
##
## [[192]]
## [1] 12
##
## [[193]]
## [1] 6
##
## [[194]]
## [1] 3
##
## [[195]]
## [1] 3
##
## [[196]]
## [1] 3
##
## [[197]]
## [1] 6
##
## [[198]]
## [1] 9
##
## [[199]]
## [1] 6
##
## [[200]]
## [1] 9
##
## [[201]]
## [1] 6
##
## [[202]]
## [1] 3
##
## [[203]]
## [1] 6
##
## [[204]]
## [1] 3
##
## [[205]]
## [1] 0
##
## [[206]]
## [1] 0
##
## [[207]]
## [1] 3
##
## [[208]]
## [1] 0
##
## [[209]]
## [1] 3
##
## [[210]]
## [1] 3
##
## [[211]]
## [1] 0
##
## [[212]]
## [1] 3
##
## [[213]]
## [1] 3
##
## [[214]]
## [1] 6
##
## [[215]]
## [1] 0
##
## [[216]]
## [1] 9
##
## [[217]]
## [1] 3
##
## [[218]]
## [1] 3
##
## [[219]]
## [1] 6
##
## [[220]]
## [1] 3
##
## [[221]]
## [1] 6
##
## [[222]]
## [1] 9
##
## [[223]]
## [1] 6
##
## [[224]]
## [1] 0
##
## [[225]]
## [1] 3
##
## [[226]]
## [1] 0
##
## [[227]]
## [1] 9
##
## [[228]]
## [1] 0
##
## [[229]]
## [1] 0
##
## [[230]]
## [1] 0
##
## [[231]]
## [1] 3
##
## [[232]]
## [1] 0
##
## [[233]]
## [1] 6
##
## [[234]]
## [1] 6
##
## [[235]]
## [1] 3
##
## [[236]]
## [1] 6
##
## [[237]]
## [1] 0
##
## [[238]]
## [1] 0
##
## [[239]]
## [1] 0
##
## [[240]]
## [1] 9
##
## [[241]]
## [1] 6
##
## [[242]]
## [1] 6
##
## [[243]]
## [1] 6
##
## [[244]]
## [1] 6
##
## [[245]]
## [1] 3
##
## [[246]]
## [1] 3
##
## [[247]]
## [1] 18
##
## [[248]]
## [1] 6
##
## [[249]]
## [1] 6
##
## [[250]]
## [1] 0
##
## [[251]]
## [1] 0
##
## [[252]]
## [1] 3
##
## [[253]]
## [1] 0
##
## [[254]]
## [1] 0
##
## [[255]]
## [1] 0
##
## [[256]]
## [1] 3
##
## [[257]]
## [1] 0
##
## [[258]]
## [1] 3
##
## [[259]]
## [1] 12
##
## [[260]]
## [1] 0
##
## [[261]]
## [1] 6
##
## [[262]]
## [1] 3
##
## [[263]]
## [1] 0
##
## [[264]]
## [1] 3
##
## [[265]]
## [1] 6
##
## [[266]]
## [1] 12
##
## [[267]]
## [1] 15
##
## [[268]]
## [1] 3
##
## [[269]]
## [1] 3
##
## [[270]]
## [1] 12
##
## [[271]]
## [1] 0
##
## [[272]]
## [1] 0
##
## [[273]]
## [1] 6
##
## [[274]]
## [1] 9
##
## [[275]]
## [1] 3
##
## [[276]]
## [1] 0
##
## [[277]]
## [1] 6
##
## [[278]]
## [1] 3
##
## [[279]]
## [1] 6
##
## [[280]]
## [1] 6
##
## [[281]]
## [1] 0
##
## [[282]]
## [1] 0
##
## [[283]]
## [1] 0
##
## [[284]]
## [1] 3
##
## [[285]]
## [1] 6
##
## [[286]]
## [1] 0
##
## [[287]]
## [1] 6
##
## [[288]]
## [1] 9
##
## [[289]]
## [1] 6
##
## [[290]]
## [1] 0
##
## [[291]]
## [1] 0
##
## [[292]]
## [1] 3
##
## [[293]]
## [1] 3
##
## [[294]]
## [1] 6
##
## [[295]]
## [1] 3
##
## [[296]]
## [1] 6
##
## [[297]]
## [1] 15
##
## [[298]]
## [1] 9
##
## [[299]]
## [1] 9
##
## [[300]]
## [1] 3
##
## [[301]]
## [1] 3
##
## [[302]]
## [1] 3
##
## [[303]]
## [1] 0
##
## [[304]]
## [1] 0
##
## [[305]]
## [1] 0
##
## [[306]]
## [1] 6
##
## [[307]]
## [1] 6
##
## [[308]]
## [1] 6
##
## [[309]]
## [1] 6
##
## [[310]]
## [1] 0
##
## [[311]]
## [1] 9
##
## [[312]]
## [1] 3
##
## [[313]]
## [1] 3
##
## [[314]]
## [1] 6
##
## [[315]]
## [1] 3
##
## [[316]]
## [1] 12
##
## [[317]]
## [1] 6
##
## [[318]]
## [1] 3
##
## [[319]]
## [1] 3
##
## [[320]]
## [1] 9
##
## [[321]]
## [1] 6
##
## [[322]]
## [1] 9
##
## [[323]]
## [1] 0
##
## [[324]]
## [1] 15
##
## [[325]]
## [1] 0
##
## [[326]]
## [1] 0
##
## [[327]]
## [1] 6
##
## [[328]]
## [1] 3
##
## [[329]]
## [1] 3
##
## [[330]]
## [1] 6
##
## [[331]]
## [1] 0
##
## [[332]]
## [1] 3
##
## [[333]]
## [1] 0
##
## [[334]]
## [1] 6
##
## [[335]]
## [1] 3
##
## [[336]]
## [1] 3
##
## [[337]]
## [1] 0
##
## [[338]]
## [1] 0
##
## [[339]]
## [1] 3
##
## [[340]]
## [1] 9
##
## [[341]]
## [1] 3
##
## [[342]]
## [1] 9
##
## [[343]]
## [1] 9
##
## [[344]]
## [1] 3
##
## [[345]]
## [1] 6
##
## [[346]]
## [1] 3
##
## [[347]]
## [1] 12
##
## [[348]]
## [1] 3
##
## [[349]]
## [1] 6
##
## [[350]]
## [1] 3
##
## [[351]]
## [1] 0
##
## [[352]]
## [1] 15
##
## [[353]]
## [1] 3
##
## [[354]]
## [1] 0
##
## [[355]]
## [1] 9
##
## [[356]]
## [1] 0
##
## [[357]]
## [1] 3
##
## [[358]]
## [1] 9
##
## [[359]]
## [1] 3
##
## [[360]]
## [1] 3
##
## [[361]]
## [1] 3
##
## [[362]]
## [1] 3
##
## [[363]]
## [1] 6
##
## [[364]]
## [1] 3
##
## [[365]]
## [1] 6
##
## [[366]]
## [1] 6
##
## [[367]]
## [1] 3
##
## [[368]]
## [1] 9
##
## [[369]]
## [1] 3
##
## [[370]]
## [1] 3
##
## [[371]]
## [1] 15
##
## [[372]]
## [1] 3
##
## [[373]]
## [1] 9
##
## [[374]]
## [1] 3
##
## [[375]]
## [1] 6
##
## [[376]]
## [1] 3
##
## [[377]]
## [1] 12
##
## [[378]]
## [1] 9
##
## [[379]]
## [1] 9
##
## [[380]]
## [1] 0