Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018).
JAX: Composable transformations of Python+NumPy programs (Version 0.3.13) [Computer software].
http://github.com/jax-ml/jax
Branch, M. A., Coleman, T. F., & Li, Y. (1999). A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing, 21(1), 1–23.
Bücker, M. (2006). Automatic differentiation: Applications, theory, and implementations. Springer.
Eissing, T., Kuepfer, L., Becker, C., Block, M., Coboeken, K., Gaub, T., Goerlitz, L., Jaeger, J., Loosen, R., Ludewig, B., et al. (2011). A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks. Frontiers in Physiology, 2, 4.
Elmokadem, A., Zhang, Y., Knab, T., Jordie, E., & Gillespie, W. R. (2023). Bayesian pbpk modeling using r/stan/torsten and julia/sciml/turing. jl. CPT: Pharmacometrics & Systems Pharmacology, 12(3), 300–310.
Fidler, M., Wilkins, J. J., Hooijmaijers, R., Post, T. M., Schoemaker, R., Trame, M. N., Xiong, Y., & Wang, W. (2019). Nonlinear mixed-effects model development and simulation using nlmixr and related r open-source packages. CPT: Pharmacometrics & Systems Pharmacology, 8(9), 621–633.
Kapfer, E.-M., Stapor, P., & Hasenauer, J. (2019). Challenges in the calibration of large-scale ordinary differential equation models. IFAC-PapersOnLine, 52(26), 58–64.
Litwin, T., Timmer, J., & Kreutz, C. (2022). Optimal experimental design based on two-dimensional likelihood profiles. Frontiers in Molecular Biosciences, 9, 800856.
Loh, W.-L. (1996). On latin hypercube sampling. The Annals of Statistics, 24(5), 2058–2080.
Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., & Timmer, J. (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923–1929.
Raue, A., Schilling, M., Bachmann, J., Matteson, A., Schelke, M., Kaschek, D., Hug, S., Kreutz, C., Harms, B. D., Theis, F. J., et al. (2013). Lessons learned from quantitative dynamical modeling in systems biology. PloS One, 8(9), e74335.
Salim, E. L., Kristensen, K., & Sjögren, E. (2025). Whole-body physiologically based pharmacokinetic modeling of GalNAc-conjugated siRNAs. Pharmaceutics, 17(1), 69.
Serban, R., & Hindmarsh, A. C. (2005). CVODES: The sensitivity-enabled ODE solver in SUNDIALS. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 47438, 257–269.
Yang, H., Meijer, H. G., Buitenweg, J. R., & Van Gils, S. A. (2016). Estimation and identifiability of model parameters in human nociceptive processing using yes-no detection responses to electrocutaneous stimulation. Frontiers in Psychology, 7, 1884.
Yang, H., Van der Stel, W., Lee, R., Bauch, C., Bevan, S., Walker, P., Van de Water, B., Danen, E. H., & Beltman, J. B. (2021). Dynamic modeling of mitochondrial membrane potential upon exposure to mitochondrial inhibitors. Frontiers in Pharmacology, 12, 679407.