Install necessary packages and import appropriate data
pacman::p_load(tidyverse, readxl, raster, vegan, tigris, sf, sjPlot, sp, spOccupancy, ggrepel, lme4, lmerTest, MuMIn, brms, MCMCvis)
# Tree PCQ Data
tree_data <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Tree_PCQ")
# Soil Data
fuel_data <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Fuel_Sampling")
# Veg Data
Veg_Cover <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Veg_Cover")
# Shrub Cover Data
shrub_data <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/05_SharedData/Field_Data_FL_AL_MS.xlsx",
sheet = "Shrub_Cover")
# Site Data
CameraData <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraData.xlsx")
CameraLoc <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "CameraLocations")
# Add effort data
effort_matrix <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "Effort_Matrix_Full") %>%
pivot_longer(cols = matches("^202[4-5]-"), names_to = "week", values_to = "days") %>%
filter(days == "7") %>%
dplyr::select(Plot, week)
I moved this from a later section because the filtering process removed quadrats that did not capture any species. Rows labeled as “None” were removed, suggesting that the number of quadrats sampled per plot is not consistent across all plots.
# Count the total number of quadrats per plot
quadrat_count <- Veg_Cover %>%
group_by(Plot) %>%
summarize(total_quadrats = n_distinct(Quadrat), .groups = "drop")
#Filter tree data to only include trees with "tree" in the growth column
tree_data <- dplyr::filter(tree_data, Growth == "Tree")
#Filter Veg Cover to exclude Shrubs and Trees
Veg_Cover <- dplyr::filter(Veg_Cover, Growth != "Shrub" & Growth != "Tree")
#Filter Shrub Cover to only include Shrubs and Trees
shrub_data <- dplyr::filter(shrub_data, Growth == "Shrub" | Growth == "Tree")
# Calculate the total number of sites
total_sites <- nrow(CameraLoc)
# Function to filter data by frequency
filter_by_frequency <- function(df) {
# Group data by species and calculate the frequency
freq <- df %>%
group_by(Species) %>%
summarise(Frequency = n_distinct(Plot) / nrow(CameraLoc) * 100) %>%
filter(Frequency >= 3)
# Filter the original data to include only species with frequency >= 3%
filtered_df <- df %>%
filter(Species %in% freq$Species)
return(filtered_df)
}
# Filter tree data by frequency
tree_data <- filter_by_frequency(tree_data)
# Filter Veg Cover data by frequency
Veg_Cover <- filter_by_frequency(Veg_Cover)
# Filter Shrub Cover data by frequency
shrub_data <- filter_by_frequency(shrub_data)
# Total length of Shrub cover at a site
shrub_cover <- shrub_data %>%
mutate(Cover = Line_End - Line_Start) %>%
group_by(Species_Name, Plot) %>%
summarise(Shrub_Total_Cover = sum(Cover, na.rm = TRUE), .groups = "drop") %>%
mutate(Shrub_Percent_Cover = Shrub_Total_Cover / 3000 * 100)
# Summed length of shrub over at a site
shrub_cover_summed <- shrub_cover %>%
group_by(Plot) %>%
summarize(total_shrub_cover = sum(Shrub_Total_Cover, na.rm = TRUE), .groups = "drop")
# Combine Plot and Quadrat columns
Veg_Cover <- Veg_Cover %>%
mutate(Plot_Quadrat = paste(Plot, Quadrat, sep = '_'))
# Join with CogonSites to get site information
Veg_Cover <- Veg_Cover %>%
left_join(CameraLoc, by = "Plot")
# Sum species cover across quadrats for each species at each plot
veg_cover_summed <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE), .groups = "drop")
# Calculate average herbaceous species cover
avg_species_cover <- veg_cover_summed %>%
left_join(quadrat_count, by = "Plot") %>%
mutate(avg_cover = total_cover / total_quadrats)
This species matrix includes herbaceous and shrub species
# Merge shrub cover with herbaceous average cover
combined_cover <- avg_species_cover %>%
full_join(
shrub_cover %>%
dplyr::select(Plot, Species_Name, Shrub_Percent_Cover),
by = c("Plot", "Species_Name")
) %>%
mutate(
overlap_flag = ifelse(!is.na(avg_cover) & !is.na(Shrub_Percent_Cover), TRUE, FALSE), # Flag overlaps
final_cover = case_when(
!is.na(avg_cover) & is.na(Shrub_Percent_Cover) ~ avg_cover, # Use herbaceous cover if no shrub data
is.na(avg_cover) & !is.na(Shrub_Percent_Cover) ~ Shrub_Percent_Cover, # Use shrub cover if no herbaceous data
TRUE ~ NA_real_ # Leave as NA where overlaps exist
)
)
# Species Matrix
species_matrix <- combined_cover %>%
dplyr::select(Plot, Species_Name, final_cover) %>%
pivot_wider(
names_from = Species_Name,
values_from = final_cover,
values_fill = 0
)
avg_cogongrass_cover <- species_matrix %>%
group_by(Plot) %>%
summarize(Avg_Cogongrass_Cover = sum(Imperata_cylindrica, na.rm = TRUE) / n(), .groups = "drop")
# Summarize species cover by site
site_species_cover <- Veg_Cover %>%
group_by(Plot, Species_Name) %>%
summarize(total_cover = sum(Cover_Per, na.rm = TRUE)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot'. You can override using the
## `.groups` argument.
# Calculate Shannon diversity per site
Veg_shannon_diversity <- site_species_cover %>%
group_by(Plot) %>%
mutate(proportion = total_cover / sum(total_cover)) %>%
summarize(Veg_shannon_index = -sum(proportion * log(proportion), na.rm = TRUE))
print(Veg_shannon_diversity)
## # A tibble: 174 × 2
## Plot Veg_shannon_index
## <chr> <dbl>
## 1 BI200 2.28
## 2 BI201 2.20
## 3 BI202 1.50
## 4 BI97 1.82
## 5 BI99 3.06
## 6 BN210 2.97
## 7 BN211 2.43
## 8 BN212 2.22
## 9 BN96 3.05
## 10 BN98 2.79
## # ℹ 164 more rows
if (!is.numeric(fuel_data$Height)) {
fuel_data$Height <- as.numeric(as.character(fuel_data$Height))
}
## Warning: NAs introduced by coercion
# Calculate average vegetation height per plot
veg_height <- fuel_data %>%
group_by(Plot) %>%
summarize(avg_veg_height = mean(Height, na.rm = TRUE), .groups = "drop")
# Tree density from point-centered quarter data
if (!is.numeric(tree_data$Distance)) {
tree_data$Distance <- as.numeric(as.character(tree_data$Distance))
}
tree_density_data <- tree_data %>%
group_by(Plot) %>%
summarize(Average_Distance = mean(Distance) / 100, # Convert to meters
Tree_Density = 10000 / (Average_Distance^2)) # Convert to trees per hectare
# Average canopy cover from vegetation quadrats
tree_canopy_data <- Veg_Cover %>%
distinct(Plot, Quadrat, .keep_all = TRUE) %>% # Ensure each quadrat counts once per plot
group_by(Plot) %>%
summarize(Avg_Canopy_Cover = mean(Canopy_Cover, na.rm = TRUE), .groups = "drop") # Calculate the average canopy cover per plot
cor(tree_density_data$Tree_Density, tree_canopy_data$Avg_Canopy_Cover)
## [1] 0.2836106
CameraLoc <- CameraLoc %>%
left_join(Veg_shannon_diversity, by = "Plot") %>%
left_join(avg_cogongrass_cover, by = "Plot") %>%
left_join(shrub_cover_summed %>% dplyr::select(Plot, total_shrub_cover), by = "Plot") %>%
left_join(veg_height, by = "Plot") %>%
left_join(tree_density_data %>% dplyr::select(Plot, Tree_Density), by = "Plot") %>%
left_join(tree_canopy_data %>% dplyr::select(Plot, Avg_Canopy_Cover), by = "Plot") %>%
dplyr::select(-Authority)
# Group by Name and count the number of observations
species_counts <- CameraData %>%
filter(Class == "Mammalia") %>%
group_by(Name) %>%
summarize(count = n(), .groups = "drop")
# Filter for species with count greater than 50
species_subset <- species_counts %>%
filter(count > 2) %>%
pull(Name)
# Filter CameraData to only include species with count > 50
CameraData <- CameraData %>%
filter(Name %in% species_subset)
# Format Data Weekly
observations_weekly <- CameraData %>%
group_by(Plot, week = format(as.Date(Date), "%Y-%U"), Name) %>%
summarise(observations = n(), .groups = 'drop')
# Merge with Effort Matrix to include only valid weeks
observations_weekly <- effort_matrix %>%
left_join(observations_weekly, by = c("Plot" = "Plot", "week")) %>%
replace_na(list(observations = 0))
# Convert to wide format
observations_species <- observations_weekly %>%
pivot_wider(names_from = Name, values_from = observations, values_fill = list(observations = 0)) %>%
dplyr::select(-"NA")
# Create detection array
site_names <- sort(unique(observations_species$Plot))
species_names <- setdiff(colnames(observations_species), c("Plot", "week"))
num_sites <- length(site_names)
num_weeks <- length(unique(observations_species$week))
num_species <- length(species_names)
detection_array <- array(0, dim = c(num_sites, num_weeks, num_species))
dimnames(detection_array) <- list(site_names, unique(observations_species$week), species_names)
for (s in seq_along(species_names)) {
species_col <- species_names[s]
for (i in seq_along(site_names)) {
site <- site_names[i]
for (j in seq_along(unique(observations_species$week))) {
week <- unique(observations_species$week)[j]
detection_array[i, j, s] <- ifelse(
any(observations_species$Plot == site & observations_species$week == week & observations_species[[species_col]] > 0),
1, 0
)
}
}
}
dim(detection_array) # Should be num_sites x num_weeks x num_species
## [1] 32 36 11
# Duplicate CameraLoc to be used in Objective 2
CameraLoc_O2 <- CameraLoc
# Standardize the covariates
CameraLoc <- CameraLoc %>%
dplyr::select(-Plot, -Camera, -Lat, -Long, -Status, - Start_Date)
covariates_matrix <- as.matrix(CameraLoc)
rownames(covariates_matrix) <- site_names
# Standardizing covariates
covariates_matrix <- scale(covariates_matrix)
# Create week matrix for covariate structure [site x week]
week_vals <- unique(observations_species$week)
week_matrix <- matrix(rep(week_vals, each = num_sites), nrow = num_sites, ncol = num_weeks, byrow = FALSE)
# Create detection covariate list
det.covs <- list(
shrub_cover = covariates_matrix[, "total_shrub_cover"],
veg_height = covariates_matrix[, "avg_veg_height"],
week = week_matrix
)
# Remove dash and convert to numeric
week_numeric <- as.numeric(gsub("-", "", det.covs$week))
## Scale and center week_numeric
week_numeric <- scale(week_numeric)
# Reshape into the original 32x36 matrix
det.covs$week <- matrix(week_numeric, nrow = 32, ncol = 36)
str(det.covs)
## List of 3
## $ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## $ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
This requires combining the presence data and the site covariate data into a single list. This also means that the presence data is in a 3-d format.
# Combine into a named list
data_list <- list(
y = detection_array,
occ.covs = covariates_matrix,
det.covs = det.covs
)
str(data_list)
## List of 3
## $ y : num [1:32, 1:36, 1:11] 1 1 0 1 0 0 0 1 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## .. ..$ : chr [1:11] "Odocoileus_virginianus" "Canis_latrans" "Sciurus_niger" "Procyon_lotor" ...
## $ occ.covs: num [1:32, 1:10] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ : chr [1:10] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:center")= Named num [1:10] 458.388 21.875 0.898 2.844 2.264 ...
## .. ..- attr(*, "names")= chr [1:10] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## ..- attr(*, "scaled:scale")= Named num [1:10] 1027.633 6.871 1.232 0.808 0.459 ...
## .. ..- attr(*, "names")= chr [1:10] "Cogon_Patch_Size" "VegetationDiversity" "PostTreatmentDensities" "Auth" ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
I am unsure why I only had an issue with total shrub cover, but this should fix the “cannot find” issue.
# Convert occupancy and detection covariates to a dataframe
data_list[["occ.covs"]] <- as.data.frame(data_list[["occ.covs"]])
data_list[["occ.covs"]]$total_shrub_cover <- as.numeric(data_list[["occ.covs"]]$total_shrub_cover)
#data_list[["det.covs"]] <- as.data.frame(data_list[["det.covs"]])
#data_list[["det.covs"]]$total_shrub_cover <- as.numeric(data_list[["det.covs"]]$total_shrub_cover)
# Make species the first dimension
data_list$y <- aperm(data_list$y, c(3, 1, 2))
dimnames(data_list$y) <- list(species = dimnames(data_list$y)[[1]],
site = dimnames(data_list$y)[[2]],
week = dimnames(data_list$y)[[3]])
str(data_list)
## List of 3
## $ y : num [1:11, 1:32, 1:36] 1 0 0 0 0 0 0 0 0 0 ...
## ..- attr(*, "dimnames")=List of 3
## .. ..$ species: chr [1:11] "Odocoileus_virginianus" "Canis_latrans" "Sciurus_niger" "Procyon_lotor" ...
## .. ..$ site : chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## .. ..$ week : chr [1:36] "2024-29" "2024-30" "2024-31" "2024-32" ...
## $ occ.covs:'data.frame': 32 obs. of 10 variables:
## ..$ Cogon_Patch_Size : num [1:32] -0.237 -0.446 -0.337 -0.308 0.039 ...
## ..$ VegetationDiversity : num [1:32] -0.273 0.455 1.619 -0.273 2.929 ...
## ..$ PostTreatmentDensities: num [1:32] 0.432 -0.729 0.432 2.169 1.13 ...
## ..$ Auth : num [1:32] -2.28 -2.28 -1.04 -1.04 -1.04 ...
## ..$ Veg_shannon_index : num [1:32] -0.143 0.359 0.604 -1.683 0.328 ...
## ..$ Avg_Cogongrass_Cover : num [1:32] -0.154 -0.708 0.308 2.045 1.121 ...
## ..$ total_shrub_cover : num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## ..$ avg_veg_height : num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## ..$ Tree_Density : num [1:32] -0.3629 -0.3564 -0.5111 3.5896 0.0958 ...
## ..$ Avg_Canopy_Cover : num [1:32] 0.1362 -0.0252 -0.9132 0.782 -1.9627 ...
## $ det.covs:List of 3
## ..$ shrub_cover: Named num [1:32] 1.526 0.5 -0.153 -1.003 -0.811 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ veg_height : Named num [1:32] 0.466 -1.044 1.181 0.879 1.684 ...
## .. ..- attr(*, "names")= chr [1:32] "BI201" "BN211" "EI100" "EI102" ...
## ..$ week : num [1:32, 1:36] -0.613 -0.613 -0.613 -0.613 -0.613 ...
# Define formulas
det.null <- ~ 1
det.full <- ~ shrub_cover + veg_height + week
det.cover <- ~ shrub_cover + veg_height
det.week <- ~ week
det.week.quad <- ~ week + I(week^2)
det.full.quad <- ~ shrub_cover + veg_height + week + I(week^2)
occ.null <- ~ 1
occ.full <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover + Avg_Cogongrass_Cover +
Tree_Density + Avg_Canopy_Cover + avg_veg_height + (1 | Auth)
occ.full.quad <- ~ Cogon_Patch_Size + Veg_shannon_index + total_shrub_cover + Avg_Cogongrass_Cover +
Tree_Density + Avg_Canopy_Cover + I(Avg_Cogongrass_Cover^2) + avg_veg_height + (1 | Auth)
occ.cover <- ~ Avg_Cogongrass_Cover + total_shrub_cover + avg_veg_height + (1 | Auth)
occ.canopy <- ~ Tree_Density + Avg_Canopy_Cover + (1 | Auth)
occ.move <- ~ Cogon_Patch_Size + Avg_Cogongrass_Cover + total_shrub_cover + (1 | Auth)
occ.forage <- ~ Veg_shannon_index + Avg_Cogongrass_Cover + (1 | Auth)
occ.cogon <- ~ Avg_Cogongrass_Cover + (1 | Auth)
occ.cogon.quad <- ~ Avg_Cogongrass_Cover + I(Avg_Cogongrass_Cover^2) + (1 | Auth)
ms_null_null <- msPGOcc(
occ.formula = occ.null,
det.formula = det.null,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5213
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2175 0.554 -1.2864 -0.2376 0.9548 1.0008 609
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.1706 2.2768 0.9324 2.5346 8.6764 1.0172 390
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4632 0.3988 -3.2707 -2.4576 -1.6821 1.0009 1383
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.7388 1.0192 0.6213 1.47 4.4107 1.0072 875
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.4392 1.1442 1.7308 3.2466 6.1629
## (Intercept)-Canis_latrans 0.3173 0.4302 -0.4392 0.2887 1.3018
## (Intercept)-Sciurus_niger -0.6755 0.9101 -2.1592 -0.7975 1.5168
## (Intercept)-Procyon_lotor 0.6958 0.3951 -0.0765 0.6789 1.4993
## (Intercept)-Dasypus_novemcinctus -0.6303 0.3791 -1.3901 -0.6197 0.0819
## (Intercept)-Lynx_rufus 0.4177 1.0320 -0.8909 0.2475 2.5991
## (Intercept)-Didelphis_virginiana -1.3682 0.4574 -2.3128 -1.3544 -0.5362
## (Intercept)-Sylvilagus_floridanus -0.3401 0.4963 -1.2176 -0.3605 0.6701
## (Intercept)-Sciurus_carolinensis -1.3305 0.4438 -2.2658 -1.3126 -0.4926
## (Intercept)-Vulpes_vulpes -1.2117 1.1050 -2.8865 -1.3724 1.5706
## (Intercept)-Sus_scrofa -1.8463 0.6388 -3.0930 -1.8252 -0.6436
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0023 521
## (Intercept)-Canis_latrans 1.0075 1093
## (Intercept)-Sciurus_niger 1.0141 174
## (Intercept)-Procyon_lotor 1.0007 1500
## (Intercept)-Dasypus_novemcinctus 1.0107 1500
## (Intercept)-Lynx_rufus 1.0411 163
## (Intercept)-Didelphis_virginiana 1.0009 1500
## (Intercept)-Sylvilagus_floridanus 1.0074 827
## (Intercept)-Sciurus_carolinensis 1.0028 1058
## (Intercept)-Vulpes_vulpes 1.1283 109
## (Intercept)-Sus_scrofa 1.0197 835
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0038 0.0589 -0.1096 0.0039 0.1196
## (Intercept)-Canis_latrans -2.6221 0.1773 -2.9855 -2.6103 -2.2918
## (Intercept)-Sciurus_niger -3.8425 0.5768 -5.0817 -3.8019 -2.8307
## (Intercept)-Procyon_lotor -2.2621 0.1302 -2.5210 -2.2585 -2.0006
## (Intercept)-Dasypus_novemcinctus -1.5730 0.1300 -1.8382 -1.5721 -1.3182
## (Intercept)-Lynx_rufus -3.6045 0.3450 -4.2865 -3.5870 -2.9818
## (Intercept)-Didelphis_virginiana -2.3021 0.2483 -2.8355 -2.2928 -1.8338
## (Intercept)-Sylvilagus_floridanus -3.1639 0.3015 -3.7994 -3.1508 -2.6178
## (Intercept)-Sciurus_carolinensis -2.4374 0.2665 -2.9949 -2.4253 -1.9491
## (Intercept)-Vulpes_vulpes -3.9094 0.6891 -5.3475 -3.8713 -2.6936
## (Intercept)-Sus_scrofa -2.9024 0.5025 -3.9880 -2.8511 -2.0458
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0005 1500
## (Intercept)-Canis_latrans 1.0062 913
## (Intercept)-Sciurus_niger 1.0156 174
## (Intercept)-Procyon_lotor 1.0000 1192
## (Intercept)-Dasypus_novemcinctus 1.0044 1500
## (Intercept)-Lynx_rufus 1.0208 277
## (Intercept)-Didelphis_virginiana 1.0075 1147
## (Intercept)-Sylvilagus_floridanus 1.0166 742
## (Intercept)-Sciurus_carolinensis 1.0010 1416
## (Intercept)-Vulpes_vulpes 1.0361 136
## (Intercept)-Sus_scrofa 1.0191 511
# Includes all covariates of detection and occupancy
ms_full_full <- msPGOcc(
occ.formula = occ.full,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7773
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0780 0.9447 -1.9773 -0.0612 1.7443 1.0018 1032
## Cogon_Patch_Size -0.4419 0.6022 -1.7075 -0.4021 0.6773 1.0073 421
## Veg_shannon_index 1.2484 0.6141 0.0381 1.2403 2.4160 1.0409 213
## total_shrub_cover -0.2611 0.4335 -1.1668 -0.2484 0.5817 1.0073 273
## Avg_Cogongrass_Cover 2.5587 0.7325 1.1645 2.5138 4.0081 1.0314 134
## Tree_Density -1.7354 0.6585 -3.0807 -1.6949 -0.4687 1.0063 290
## Avg_Canopy_Cover 1.8756 0.5934 0.7445 1.8515 3.1092 1.0114 334
## avg_veg_height -0.5961 0.4307 -1.4943 -0.5657 0.2018 1.0456 212
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 16.4176 14.8836 3.7525 12.4080 51.1290 1.0119 389
## Cogon_Patch_Size 2.2347 3.2922 0.1100 1.2681 10.2543 1.0415 315
## Veg_shannon_index 1.2883 2.0161 0.0555 0.5867 7.2970 1.0228 169
## total_shrub_cover 0.6380 0.8869 0.0487 0.3484 3.1601 1.0369 313
## Avg_Cogongrass_Cover 0.9542 2.1853 0.0424 0.3859 5.6569 1.3990 121
## Tree_Density 2.5872 4.3349 0.0729 1.1184 14.2194 1.0354 159
## Avg_Canopy_Cover 2.1167 2.6307 0.1389 1.3367 8.6494 1.0325 243
## avg_veg_height 0.3694 0.4668 0.0401 0.2169 1.6729 1.0460 442
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9323 1.121 0.0579 0.5493 4.3032 1.1448 123
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6233 0.4444 -3.4662 -2.6336 -1.7250 1.0079 1500
## shrub_cover 0.2663 0.2542 -0.2555 0.2635 0.8046 1.0052 711
## veg_height 0.0204 0.1585 -0.2970 0.0180 0.3249 1.0037 792
## week -0.0387 0.1192 -0.2873 -0.0369 0.1765 1.0021 792
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2748 1.5500 0.7860 1.9152 6.2937 1.0291 1353
## shrub_cover 0.4594 0.3389 0.0930 0.3766 1.2807 1.0215 780
## veg_height 0.1973 0.2019 0.0558 0.1536 0.5925 1.0618 1182
## week 0.0952 0.0724 0.0248 0.0734 0.2876 1.0174 684
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 7.8728 2.8870 3.7413 7.3923
## (Intercept)-Canis_latrans 0.6649 0.9454 -0.9817 0.5675
## (Intercept)-Sciurus_niger 1.1623 2.0275 -2.1949 0.9523
## (Intercept)-Procyon_lotor 1.0860 0.9300 -0.6423 1.0382
## (Intercept)-Dasypus_novemcinctus -1.3072 0.8668 -3.2255 -1.2557
## (Intercept)-Lynx_rufus 2.2988 2.2528 -1.1691 1.9287
## (Intercept)-Didelphis_virginiana -2.7852 1.0486 -5.0375 -2.7272
## (Intercept)-Sylvilagus_floridanus -1.1627 1.1330 -3.4654 -1.1454
## (Intercept)-Sciurus_carolinensis -2.8345 1.1614 -5.2976 -2.7350
## (Intercept)-Vulpes_vulpes -1.9591 1.9355 -5.0879 -2.1913
## (Intercept)-Sus_scrofa -4.3201 1.8097 -8.4244 -4.1689
## Cogon_Patch_Size-Odocoileus_virginianus -0.3954 1.1689 -2.6842 -0.4311
## Cogon_Patch_Size-Canis_latrans 0.8964 1.0978 -0.7064 0.7014
## Cogon_Patch_Size-Sciurus_niger -1.0394 1.5201 -4.5795 -0.8854
## Cogon_Patch_Size-Procyon_lotor -0.5629 0.5959 -1.8177 -0.5468
## Cogon_Patch_Size-Dasypus_novemcinctus -0.3284 0.6331 -1.5874 -0.3239
## Cogon_Patch_Size-Lynx_rufus -0.4911 1.2256 -2.7577 -0.5321
## Cogon_Patch_Size-Didelphis_virginiana 0.9325 0.8055 -0.4109 0.8496
## Cogon_Patch_Size-Sylvilagus_floridanus -1.3433 1.3367 -4.8130 -1.0901
## Cogon_Patch_Size-Sciurus_carolinensis -1.3426 1.2027 -4.3488 -1.1332
## Cogon_Patch_Size-Vulpes_vulpes -0.8973 1.4749 -3.8947 -0.8780
## Cogon_Patch_Size-Sus_scrofa -0.7723 1.3239 -3.7963 -0.5943
## Veg_shannon_index-Odocoileus_virginianus 1.0391 1.1245 -1.4556 1.0937
## Veg_shannon_index-Canis_latrans 1.5703 0.8317 0.0315 1.5245
## Veg_shannon_index-Sciurus_niger 1.8483 1.4839 -0.3051 1.6250
## Veg_shannon_index-Procyon_lotor 1.3768 0.7375 -0.0381 1.3575
## Veg_shannon_index-Dasypus_novemcinctus 0.9930 0.7024 -0.4621 1.0256
## Veg_shannon_index-Lynx_rufus 0.9074 1.1944 -1.9152 1.0197
## Veg_shannon_index-Didelphis_virginiana 1.2322 0.7824 -0.3296 1.2186
## Veg_shannon_index-Sylvilagus_floridanus 1.7237 0.9020 0.1380 1.6259
## Veg_shannon_index-Sciurus_carolinensis 0.7072 0.8741 -1.2041 0.7858
## Veg_shannon_index-Vulpes_vulpes 0.7488 0.9634 -1.4202 0.8423
## Veg_shannon_index-Sus_scrofa 2.2880 1.2518 0.4762 2.0631
## total_shrub_cover-Odocoileus_virginianus -0.0224 0.7786 -1.4435 -0.0669
## total_shrub_cover-Canis_latrans 0.2497 0.6233 -0.8262 0.1739
## total_shrub_cover-Sciurus_niger -0.3906 0.8699 -2.2466 -0.3113
## total_shrub_cover-Procyon_lotor -0.6981 0.5697 -1.9356 -0.6297
## total_shrub_cover-Dasypus_novemcinctus -0.0881 0.5429 -1.2125 -0.0635
## total_shrub_cover-Lynx_rufus -0.4399 0.9792 -2.7671 -0.3807
## total_shrub_cover-Didelphis_virginiana -0.4229 0.6522 -1.8480 -0.3779
## total_shrub_cover-Sylvilagus_floridanus -0.2928 0.7111 -1.8305 -0.2578
## total_shrub_cover-Sciurus_carolinensis -0.2795 0.6925 -1.7397 -0.2643
## total_shrub_cover-Vulpes_vulpes -0.4621 0.8367 -2.3903 -0.4067
## total_shrub_cover-Sus_scrofa -0.0760 0.7595 -1.5834 -0.1152
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.5334 1.1245 0.5137 2.5085
## Avg_Cogongrass_Cover-Canis_latrans 2.8476 0.9442 1.1787 2.7964
## Avg_Cogongrass_Cover-Sciurus_niger 2.1051 1.2811 -0.8371 2.2561
## Avg_Cogongrass_Cover-Procyon_lotor 2.7254 0.9322 1.0422 2.6811
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.0120 0.9500 1.3938 2.9284
## Avg_Cogongrass_Cover-Lynx_rufus 2.7811 1.0110 0.9611 2.7122
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.6973 0.9239 0.9429 2.6466
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.1567 0.9786 0.1465 2.1787
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.7977 0.9311 1.1506 2.7461
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.9347 1.1286 1.0509 2.8813
## Avg_Cogongrass_Cover-Sus_scrofa 2.3259 1.1736 -0.0434 2.3988
## Tree_Density-Odocoileus_virginianus -0.7644 1.3165 -2.7530 -0.9363
## Tree_Density-Canis_latrans -2.3904 1.1888 -5.1518 -2.2192
## Tree_Density-Sciurus_niger -1.8441 1.4279 -4.7109 -1.7621
## Tree_Density-Procyon_lotor -1.3276 0.7381 -2.7156 -1.3516
## Tree_Density-Dasypus_novemcinctus -3.1851 1.5972 -7.2107 -2.8389
## Tree_Density-Lynx_rufus -0.6365 1.5128 -2.7247 -0.8868
## Tree_Density-Didelphis_virginiana -2.0768 1.0514 -4.5628 -1.9479
## Tree_Density-Sylvilagus_floridanus -2.2530 1.3093 -5.3606 -2.0531
## Tree_Density-Sciurus_carolinensis -2.3456 1.4534 -5.8231 -2.1003
## Tree_Density-Vulpes_vulpes -1.8240 1.4234 -4.7543 -1.7679
## Tree_Density-Sus_scrofa -2.0288 1.3659 -5.3763 -1.8759
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3239 1.2158 -1.1386 1.3772
## Avg_Canopy_Cover-Canis_latrans 0.2617 0.6497 -1.0341 0.2653
## Avg_Canopy_Cover-Sciurus_niger 2.2322 1.3953 -0.5209 2.1410
## Avg_Canopy_Cover-Procyon_lotor 1.7176 0.7378 0.3861 1.7082
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0634 0.7059 0.8255 1.9978
## Avg_Canopy_Cover-Lynx_rufus 1.6335 1.3608 -1.2054 1.5924
## Avg_Canopy_Cover-Didelphis_virginiana 2.7173 0.9640 1.1601 2.6138
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.2679 1.4158 1.1944 3.0234
## Avg_Canopy_Cover-Sciurus_carolinensis 2.5581 1.0618 1.0605 2.3704
## Avg_Canopy_Cover-Vulpes_vulpes 2.1743 1.1778 0.3478 2.0167
## Avg_Canopy_Cover-Sus_scrofa 2.0173 0.8804 0.5228 1.9438
## avg_veg_height-Odocoileus_virginianus -0.6544 0.6980 -2.1681 -0.6072
## avg_veg_height-Canis_latrans -0.6734 0.5429 -1.7709 -0.6654
## avg_veg_height-Sciurus_niger -0.7533 0.7678 -2.4880 -0.7044
## avg_veg_height-Procyon_lotor -0.5571 0.5422 -1.6780 -0.5359
## avg_veg_height-Dasypus_novemcinctus -0.3911 0.5182 -1.4027 -0.4040
## avg_veg_height-Lynx_rufus -0.7333 0.7302 -2.3448 -0.6998
## avg_veg_height-Didelphis_virginiana -0.7419 0.6279 -2.0787 -0.7177
## avg_veg_height-Sylvilagus_floridanus -0.7025 0.6153 -1.9520 -0.7000
## avg_veg_height-Sciurus_carolinensis -0.2847 0.6028 -1.4546 -0.3118
## avg_veg_height-Vulpes_vulpes -0.6021 0.6458 -2.0028 -0.5779
## avg_veg_height-Sus_scrofa -0.6295 0.6462 -1.9563 -0.6258
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 15.3333 1.0236 182
## (Intercept)-Canis_latrans 2.7177 0.9999 481
## (Intercept)-Sciurus_niger 6.0350 1.0375 120
## (Intercept)-Procyon_lotor 2.9971 1.0123 461
## (Intercept)-Dasypus_novemcinctus 0.2886 1.0057 548
## (Intercept)-Lynx_rufus 7.7647 1.0493 105
## (Intercept)-Didelphis_virginiana -0.9382 1.0311 696
## (Intercept)-Sylvilagus_floridanus 1.0503 1.0145 426
## (Intercept)-Sciurus_carolinensis -0.8454 1.0363 204
## (Intercept)-Vulpes_vulpes 2.8811 1.0233 151
## (Intercept)-Sus_scrofa -1.2414 1.0128 160
## Cogon_Patch_Size-Odocoileus_virginianus 2.1365 1.0141 701
## Cogon_Patch_Size-Canis_latrans 3.6288 1.0191 633
## Cogon_Patch_Size-Sciurus_niger 1.6520 1.0626 267
## Cogon_Patch_Size-Procyon_lotor 0.5478 1.0097 641
## Cogon_Patch_Size-Dasypus_novemcinctus 0.9789 1.0059 831
## Cogon_Patch_Size-Lynx_rufus 1.9787 1.0047 315
## Cogon_Patch_Size-Didelphis_virginiana 2.7281 1.0450 539
## Cogon_Patch_Size-Sylvilagus_floridanus 0.6709 1.0161 266
## Cogon_Patch_Size-Sciurus_carolinensis 0.3617 1.0771 304
## Cogon_Patch_Size-Vulpes_vulpes 2.0188 1.0169 264
## Cogon_Patch_Size-Sus_scrofa 1.3397 1.0127 400
## Veg_shannon_index-Odocoileus_virginianus 3.1752 1.0359 533
## Veg_shannon_index-Canis_latrans 3.3284 1.0005 279
## Veg_shannon_index-Sciurus_niger 5.9390 1.0077 152
## Veg_shannon_index-Procyon_lotor 2.8858 1.0396 241
## Veg_shannon_index-Dasypus_novemcinctus 2.3051 1.0191 411
## Veg_shannon_index-Lynx_rufus 2.9890 1.0740 280
## Veg_shannon_index-Didelphis_virginiana 2.8492 1.0068 505
## Veg_shannon_index-Sylvilagus_floridanus 3.7212 1.0077 261
## Veg_shannon_index-Sciurus_carolinensis 2.3096 1.0626 397
## Veg_shannon_index-Vulpes_vulpes 2.4788 1.0541 364
## Veg_shannon_index-Sus_scrofa 5.2548 1.0076 226
## total_shrub_cover-Odocoileus_virginianus 1.7224 1.0057 526
## total_shrub_cover-Canis_latrans 1.7559 1.0177 443
## total_shrub_cover-Sciurus_niger 1.1902 1.0083 338
## total_shrub_cover-Procyon_lotor 0.2933 1.0074 533
## total_shrub_cover-Dasypus_novemcinctus 0.9555 1.0099 512
## total_shrub_cover-Lynx_rufus 1.3977 1.0164 253
## total_shrub_cover-Didelphis_virginiana 0.8172 1.0194 486
## total_shrub_cover-Sylvilagus_floridanus 1.0803 1.0087 353
## total_shrub_cover-Sciurus_carolinensis 1.0462 1.0039 478
## total_shrub_cover-Vulpes_vulpes 1.0182 1.0022 397
## total_shrub_cover-Sus_scrofa 1.5061 1.0119 462
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.6929 1.0160 274
## Avg_Cogongrass_Cover-Canis_latrans 4.8016 1.0254 186
## Avg_Cogongrass_Cover-Sciurus_niger 4.1523 1.0363 188
## Avg_Cogongrass_Cover-Procyon_lotor 4.6406 1.0226 197
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.0870 1.0166 154
## Avg_Cogongrass_Cover-Lynx_rufus 4.9434 1.0262 220
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.5444 1.0242 186
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 4.0074 1.0359 182
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.8669 1.0356 164
## Avg_Cogongrass_Cover-Vulpes_vulpes 5.2267 1.0523 158
## Avg_Cogongrass_Cover-Sus_scrofa 4.2720 1.0208 236
## Tree_Density-Odocoileus_virginianus 2.5146 1.0301 195
## Tree_Density-Canis_latrans -0.6077 1.0017 203
## Tree_Density-Sciurus_niger 1.3519 1.0452 259
## Tree_Density-Procyon_lotor 0.1662 1.0096 612
## Tree_Density-Dasypus_novemcinctus -1.1773 1.0127 189
## Tree_Density-Lynx_rufus 3.5904 1.0996 168
## Tree_Density-Didelphis_virginiana -0.2882 1.0111 501
## Tree_Density-Sylvilagus_floridanus -0.1941 1.0015 358
## Tree_Density-Sciurus_carolinensis -0.0919 1.0034 162
## Tree_Density-Vulpes_vulpes 1.0185 1.0355 240
## Tree_Density-Sus_scrofa 0.4432 1.0126 520
## Avg_Canopy_Cover-Odocoileus_virginianus 3.7399 1.0042 554
## Avg_Canopy_Cover-Canis_latrans 1.5153 1.0117 597
## Avg_Canopy_Cover-Sciurus_niger 5.3627 1.0195 253
## Avg_Canopy_Cover-Procyon_lotor 3.3090 1.0065 713
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.7330 1.0088 384
## Avg_Canopy_Cover-Lynx_rufus 4.5387 1.0066 268
## Avg_Canopy_Cover-Didelphis_virginiana 5.0351 1.0244 376
## Avg_Canopy_Cover-Sylvilagus_floridanus 6.6266 1.0215 294
## Avg_Canopy_Cover-Sciurus_carolinensis 5.3524 1.0306 209
## Avg_Canopy_Cover-Vulpes_vulpes 5.1149 1.0181 253
## Avg_Canopy_Cover-Sus_scrofa 4.1071 1.0005 608
## avg_veg_height-Odocoileus_virginianus 0.5757 1.0442 450
## avg_veg_height-Canis_latrans 0.3805 1.0292 544
## avg_veg_height-Sciurus_niger 0.5583 1.0326 428
## avg_veg_height-Procyon_lotor 0.4731 1.0261 447
## avg_veg_height-Dasypus_novemcinctus 0.7002 1.0160 304
## avg_veg_height-Lynx_rufus 0.5477 1.0310 332
## avg_veg_height-Didelphis_virginiana 0.4308 1.0479 360
## avg_veg_height-Sylvilagus_floridanus 0.4397 1.0045 383
## avg_veg_height-Sciurus_carolinensis 1.0040 1.0165 380
## avg_veg_height-Vulpes_vulpes 0.6223 1.0185 391
## avg_veg_height-Sus_scrofa 0.6338 1.0201 452
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0074 0.0590 -0.1079 0.0053 0.1278
## (Intercept)-Canis_latrans -2.7443 0.1810 -3.1042 -2.7434 -2.3893
## (Intercept)-Sciurus_niger -4.6896 0.4633 -5.5946 -4.6854 -3.7537
## (Intercept)-Procyon_lotor -2.3100 0.1452 -2.6141 -2.3050 -2.0390
## (Intercept)-Dasypus_novemcinctus -1.7443 0.1544 -2.0444 -1.7381 -1.4601
## (Intercept)-Lynx_rufus -3.9446 0.3537 -4.6075 -3.9583 -3.1641
## (Intercept)-Didelphis_virginiana -2.5165 0.2755 -3.0458 -2.5036 -1.9981
## (Intercept)-Sylvilagus_floridanus -3.1524 0.2636 -3.6765 -3.1430 -2.6242
## (Intercept)-Sciurus_carolinensis -2.6454 0.3251 -3.3066 -2.6315 -2.0515
## (Intercept)-Vulpes_vulpes -4.2308 0.6995 -5.6985 -4.2015 -2.9590
## (Intercept)-Sus_scrofa -3.1691 0.5894 -4.4161 -3.1520 -2.0838
## shrub_cover-Odocoileus_virginianus -0.0547 0.0632 -0.1793 -0.0555 0.0724
## shrub_cover-Canis_latrans -0.2919 0.2149 -0.7212 -0.2863 0.1121
## shrub_cover-Sciurus_niger -0.3121 0.4585 -1.3362 -0.3014 0.5736
## shrub_cover-Procyon_lotor 0.2649 0.1634 -0.0747 0.2651 0.5810
## shrub_cover-Dasypus_novemcinctus 0.8549 0.2949 0.2953 0.8526 1.4162
## shrub_cover-Lynx_rufus -0.2248 0.3413 -0.9160 -0.2300 0.4567
## shrub_cover-Didelphis_virginiana 0.8639 0.3457 0.2223 0.8495 1.5680
## shrub_cover-Sylvilagus_floridanus 0.4296 0.3818 -0.3597 0.4149 1.1720
## shrub_cover-Sciurus_carolinensis 0.8221 0.4056 0.0546 0.8065 1.6558
## shrub_cover-Vulpes_vulpes 0.0683 0.5335 -1.0301 0.0822 1.0509
## shrub_cover-Sus_scrofa 0.5042 0.6957 -0.8307 0.4878 1.9203
## veg_height-Odocoileus_virginianus -0.2953 0.0620 -0.4197 -0.2932 -0.1764
## veg_height-Canis_latrans -0.5635 0.1821 -0.9235 -0.5628 -0.2095
## veg_height-Sciurus_niger 0.0112 0.3584 -0.7086 -0.0019 0.7514
## veg_height-Procyon_lotor 0.3443 0.1215 0.1123 0.3450 0.5761
## veg_height-Dasypus_novemcinctus 0.2402 0.1282 -0.0124 0.2388 0.4936
## veg_height-Lynx_rufus 0.0930 0.2380 -0.3978 0.0968 0.5324
## veg_height-Didelphis_virginiana 0.4118 0.2438 -0.0310 0.4014 0.9214
## veg_height-Sylvilagus_floridanus 0.1536 0.2272 -0.2860 0.1519 0.6111
## veg_height-Sciurus_carolinensis 0.0806 0.2129 -0.3021 0.0758 0.5216
## veg_height-Vulpes_vulpes -0.1704 0.3255 -0.8816 -0.1528 0.4275
## veg_height-Sus_scrofa -0.1162 0.3275 -0.7687 -0.1156 0.5032
## week-Odocoileus_virginianus 0.2116 0.0611 0.0891 0.2104 0.3302
## week-Canis_latrans 0.0791 0.1289 -0.1882 0.0798 0.3292
## week-Sciurus_niger -0.2801 0.2861 -0.9385 -0.2507 0.2035
## week-Procyon_lotor -0.0453 0.1199 -0.3002 -0.0383 0.1809
## week-Dasypus_novemcinctus -0.1585 0.1354 -0.4338 -0.1554 0.0931
## week-Lynx_rufus -0.0393 0.1864 -0.4404 -0.0267 0.2850
## week-Didelphis_virginiana -0.1906 0.2158 -0.6452 -0.1740 0.1830
## week-Sylvilagus_floridanus -0.1352 0.1945 -0.5309 -0.1264 0.2085
## week-Sciurus_carolinensis 0.1398 0.1781 -0.2266 0.1404 0.4841
## week-Vulpes_vulpes -0.1011 0.2673 -0.6917 -0.0814 0.3819
## week-Sus_scrofa 0.1033 0.2276 -0.3365 0.1010 0.5712
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0013 1500
## (Intercept)-Canis_latrans 1.0213 641
## (Intercept)-Sciurus_niger 1.0060 222
## (Intercept)-Procyon_lotor 1.0053 951
## (Intercept)-Dasypus_novemcinctus 1.0072 1072
## (Intercept)-Lynx_rufus 1.0184 166
## (Intercept)-Didelphis_virginiana 1.0239 814
## (Intercept)-Sylvilagus_floridanus 1.0013 547
## (Intercept)-Sciurus_carolinensis 1.0113 531
## (Intercept)-Vulpes_vulpes 1.0256 97
## (Intercept)-Sus_scrofa 1.0080 444
## shrub_cover-Odocoileus_virginianus 1.0047 1130
## shrub_cover-Canis_latrans 1.0045 673
## shrub_cover-Sciurus_niger 1.0019 308
## shrub_cover-Procyon_lotor 0.9996 1182
## shrub_cover-Dasypus_novemcinctus 1.0040 843
## shrub_cover-Lynx_rufus 1.0209 247
## shrub_cover-Didelphis_virginiana 1.0189 723
## shrub_cover-Sylvilagus_floridanus 1.0045 446
## shrub_cover-Sciurus_carolinensis 1.0041 560
## shrub_cover-Vulpes_vulpes 1.0113 624
## shrub_cover-Sus_scrofa 1.0006 561
## veg_height-Odocoileus_virginianus 1.0053 1500
## veg_height-Canis_latrans 1.0100 656
## veg_height-Sciurus_niger 1.0230 370
## veg_height-Procyon_lotor 1.0067 1219
## veg_height-Dasypus_novemcinctus 0.9999 1500
## veg_height-Lynx_rufus 1.0365 558
## veg_height-Didelphis_virginiana 1.0080 1027
## veg_height-Sylvilagus_floridanus 1.0016 882
## veg_height-Sciurus_carolinensis 1.0267 780
## veg_height-Vulpes_vulpes 1.0109 553
## veg_height-Sus_scrofa 1.0001 741
## week-Odocoileus_virginianus 1.0064 1500
## week-Canis_latrans 1.0118 1124
## week-Sciurus_niger 1.0015 478
## week-Procyon_lotor 1.0074 1153
## week-Dasypus_novemcinctus 1.0044 1270
## week-Lynx_rufus 1.0198 571
## week-Didelphis_virginiana 1.0008 1011
## week-Sylvilagus_floridanus 1.0022 1039
## week-Sciurus_carolinensis 1.0002 1384
## week-Vulpes_vulpes 1.0037 839
## week-Sus_scrofa 1.0033 1269
#Includes all covariates of detection and only null for occupancy
ms_full_null <- msPGOcc(
occ.formula = occ.null,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7185
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0867 0.5482 -1.185 -0.0933 1.0401 1.0357 695
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.0595 2.3046 0.7647 2.4199 9.6917 1.0148 622
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6057 0.4312 -3.4069 -2.6149 -1.7179 1.0346 1306
## shrub_cover 0.1984 0.2362 -0.2614 0.1877 0.6821 1.0037 971
## veg_height -0.0062 0.1519 -0.3279 -0.0079 0.2955 1.0025 990
## week -0.0313 0.1181 -0.2854 -0.0245 0.1802 1.0100 769
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0734 1.2413 0.7406 1.7705 5.5918 1.0280 609
## shrub_cover 0.4513 0.3522 0.0853 0.3535 1.3656 1.0290 573
## veg_height 0.1848 0.1262 0.0520 0.1506 0.5118 1.0042 1081
## week 0.0973 0.0795 0.0248 0.0733 0.2868 1.0033 860
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.4022 1.1047 1.7391 3.2459 5.9885
## (Intercept)-Canis_latrans 0.3960 0.4294 -0.4058 0.4004 1.2498
## (Intercept)-Sciurus_niger -0.3925 1.0501 -2.0416 -0.5382 2.2192
## (Intercept)-Procyon_lotor 0.7472 0.3967 0.0052 0.7333 1.5512
## (Intercept)-Dasypus_novemcinctus -0.5706 0.3751 -1.3358 -0.5757 0.1531
## (Intercept)-Lynx_rufus 0.6754 1.0017 -0.8002 0.4894 3.3631
## (Intercept)-Didelphis_virginiana -1.1997 0.4630 -2.1348 -1.1866 -0.3482
## (Intercept)-Sylvilagus_floridanus -0.3157 0.4870 -1.2594 -0.3271 0.7112
## (Intercept)-Sciurus_carolinensis -1.2164 0.4732 -2.2166 -1.2161 -0.3151
## (Intercept)-Vulpes_vulpes -0.8035 1.2103 -2.7069 -0.9874 2.1468
## (Intercept)-Sus_scrofa -1.6516 0.6624 -2.9968 -1.6264 -0.3384
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0107 512
## (Intercept)-Canis_latrans 0.9999 1207
## (Intercept)-Sciurus_niger 1.0531 171
## (Intercept)-Procyon_lotor 1.0047 1968
## (Intercept)-Dasypus_novemcinctus 1.0005 1500
## (Intercept)-Lynx_rufus 1.0147 269
## (Intercept)-Didelphis_virginiana 1.0038 1376
## (Intercept)-Sylvilagus_floridanus 1.0065 915
## (Intercept)-Sciurus_carolinensis 1.0147 1500
## (Intercept)-Vulpes_vulpes 1.1183 105
## (Intercept)-Sus_scrofa 1.0103 841
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0062 0.0612 -0.1164 0.0053 0.1224
## (Intercept)-Canis_latrans -2.7444 0.1926 -3.1290 -2.7437 -2.3879
## (Intercept)-Sciurus_niger -4.1983 0.6698 -5.4359 -4.1802 -2.9141
## (Intercept)-Procyon_lotor -2.2878 0.1432 -2.5959 -2.2805 -2.0297
## (Intercept)-Dasypus_novemcinctus -1.7174 0.1590 -2.0389 -1.7156 -1.4215
## (Intercept)-Lynx_rufus -3.8267 0.3824 -4.5620 -3.8243 -3.0584
## (Intercept)-Didelphis_virginiana -2.5291 0.2799 -3.0866 -2.5146 -2.0170
## (Intercept)-Sylvilagus_floridanus -3.1888 0.2941 -3.8004 -3.1704 -2.6576
## (Intercept)-Sciurus_carolinensis -2.5909 0.3020 -3.2048 -2.5862 -2.0261
## (Intercept)-Vulpes_vulpes -4.2955 0.8099 -5.9056 -4.2594 -2.8577
## (Intercept)-Sus_scrofa -3.3006 0.6009 -4.5144 -3.2979 -2.1116
## shrub_cover-Odocoileus_virginianus -0.0538 0.0626 -0.1809 -0.0526 0.0657
## shrub_cover-Canis_latrans -0.2776 0.2210 -0.7262 -0.2763 0.1402
## shrub_cover-Sciurus_niger -0.3439 0.4580 -1.2978 -0.3345 0.5794
## shrub_cover-Procyon_lotor 0.2499 0.1600 -0.0752 0.2529 0.5599
## shrub_cover-Dasypus_novemcinctus 0.7687 0.2904 0.2158 0.7615 1.3488
## shrub_cover-Lynx_rufus -0.3384 0.3409 -1.0437 -0.3235 0.3110
## shrub_cover-Didelphis_virginiana 0.8657 0.3401 0.2046 0.8620 1.5485
## shrub_cover-Sylvilagus_floridanus 0.2487 0.3862 -0.4809 0.2400 1.0453
## shrub_cover-Sciurus_carolinensis 0.7300 0.3729 0.0044 0.7177 1.5316
## shrub_cover-Vulpes_vulpes -0.0937 0.5132 -1.1735 -0.0774 0.8904
## shrub_cover-Sus_scrofa 0.5243 0.7213 -0.8104 0.5126 2.0262
## veg_height-Odocoileus_virginianus -0.2974 0.0651 -0.4220 -0.2983 -0.1692
## veg_height-Canis_latrans -0.5745 0.1790 -0.9376 -0.5698 -0.2430
## veg_height-Sciurus_niger -0.0755 0.3903 -0.8767 -0.0786 0.7156
## veg_height-Procyon_lotor 0.3333 0.1210 0.0975 0.3358 0.5759
## veg_height-Dasypus_novemcinctus 0.2264 0.1302 -0.0185 0.2209 0.4845
## veg_height-Lynx_rufus 0.0548 0.2358 -0.4062 0.0560 0.5089
## veg_height-Didelphis_virginiana 0.3936 0.2339 -0.0503 0.3814 0.9000
## veg_height-Sylvilagus_floridanus 0.0843 0.2398 -0.3852 0.0763 0.5670
## veg_height-Sciurus_carolinensis 0.0471 0.2034 -0.3482 0.0453 0.4482
## veg_height-Vulpes_vulpes -0.1144 0.3044 -0.7561 -0.0917 0.4705
## veg_height-Sus_scrofa -0.1225 0.3195 -0.7859 -0.1097 0.4591
## week-Odocoileus_virginianus 0.2131 0.0597 0.0954 0.2129 0.3285
## week-Canis_latrans 0.0821 0.1281 -0.1750 0.0893 0.3099
## week-Sciurus_niger -0.2622 0.2895 -0.9667 -0.2306 0.2200
## week-Procyon_lotor -0.0439 0.1171 -0.2718 -0.0422 0.1746
## week-Dasypus_novemcinctus -0.1550 0.1352 -0.4392 -0.1551 0.0878
## week-Lynx_rufus -0.0075 0.1839 -0.3800 -0.0026 0.3456
## week-Didelphis_virginiana -0.1908 0.2060 -0.6348 -0.1793 0.1755
## week-Sylvilagus_floridanus -0.1291 0.2027 -0.5447 -0.1183 0.2306
## week-Sciurus_carolinensis 0.1449 0.1774 -0.2247 0.1459 0.4812
## week-Vulpes_vulpes -0.0910 0.2704 -0.7169 -0.0783 0.3925
## week-Sus_scrofa 0.1145 0.2304 -0.3250 0.1166 0.5809
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0069 1335
## (Intercept)-Canis_latrans 1.0165 726
## (Intercept)-Sciurus_niger 1.1527 118
## (Intercept)-Procyon_lotor 1.0041 985
## (Intercept)-Dasypus_novemcinctus 1.0073 1215
## (Intercept)-Lynx_rufus 1.0048 236
## (Intercept)-Didelphis_virginiana 1.0037 830
## (Intercept)-Sylvilagus_floridanus 1.0125 523
## (Intercept)-Sciurus_carolinensis 1.0099 736
## (Intercept)-Vulpes_vulpes 1.1032 111
## (Intercept)-Sus_scrofa 1.0193 569
## shrub_cover-Odocoileus_virginianus 1.0013 1500
## shrub_cover-Canis_latrans 1.0463 800
## shrub_cover-Sciurus_niger 1.0455 386
## shrub_cover-Procyon_lotor 1.0024 1221
## shrub_cover-Dasypus_novemcinctus 1.0022 1175
## shrub_cover-Lynx_rufus 1.0316 394
## shrub_cover-Didelphis_virginiana 1.0235 734
## shrub_cover-Sylvilagus_floridanus 1.0016 499
## shrub_cover-Sciurus_carolinensis 1.0014 688
## shrub_cover-Vulpes_vulpes 1.0019 560
## shrub_cover-Sus_scrofa 1.0249 614
## veg_height-Odocoileus_virginianus 1.0100 1500
## veg_height-Canis_latrans 1.0007 792
## veg_height-Sciurus_niger 1.0247 633
## veg_height-Procyon_lotor 1.0070 1071
## veg_height-Dasypus_novemcinctus 1.0124 1372
## veg_height-Lynx_rufus 1.0054 562
## veg_height-Didelphis_virginiana 1.0020 1053
## veg_height-Sylvilagus_floridanus 1.0068 794
## veg_height-Sciurus_carolinensis 1.0047 1032
## veg_height-Vulpes_vulpes 1.0149 620
## veg_height-Sus_scrofa 1.0168 895
## week-Odocoileus_virginianus 1.0017 1500
## week-Canis_latrans 1.0004 1465
## week-Sciurus_niger 1.0023 514
## week-Procyon_lotor 1.0027 1435
## week-Dasypus_novemcinctus 1.0063 1484
## week-Lynx_rufus 1.0047 925
## week-Didelphis_virginiana 1.0082 944
## week-Sylvilagus_floridanus 1.0218 819
## week-Sciurus_carolinensis 1.0051 1320
## week-Vulpes_vulpes 1.0035 847
## week-Sus_scrofa 1.0025 1230
#Includes all covariates of detection and only cover for occupancy
ms_full_cover <- msPGOcc(
occ.formula = occ.cover,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.778
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.0933 0.6726 -1.1570 0.0676 1.5406 1.0078 294
## Avg_Cogongrass_Cover 0.0196 0.3444 -0.6523 0.0236 0.6677 1.0123 426
## total_shrub_cover -0.7391 0.4450 -1.7495 -0.7008 0.0178 1.0305 155
## avg_veg_height 0.1706 0.3459 -0.4549 0.1587 0.8741 1.0352 265
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.4536 3.2221 0.2794 2.5291 11.9193 1.0857 221
## Avg_Cogongrass_Cover 0.3683 0.4677 0.0372 0.2248 1.6872 1.0286 433
## total_shrub_cover 0.8684 1.0739 0.0590 0.4848 3.7122 1.0098 195
## avg_veg_height 0.2540 0.2552 0.0357 0.1747 0.9785 1.0082 609
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.5043 1.6117 0.0798 0.984 6.3037 1.1526 127
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6722 0.4486 -3.5562 -2.6791 -1.7586 1.0041 1274
## shrub_cover 0.4930 0.2969 -0.0755 0.4765 1.0930 1.0129 301
## veg_height -0.0098 0.1657 -0.3309 -0.0084 0.3151 0.9994 645
## week -0.0425 0.1223 -0.3008 -0.0404 0.1865 1.0064 763
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1193 1.4400 0.7083 1.7491 5.5021 1.0048 450
## shrub_cover 0.6478 0.5337 0.1296 0.5000 2.0591 1.0288 220
## veg_height 0.2071 0.1526 0.0587 0.1684 0.5802 1.0024 950
## week 0.1014 0.0877 0.0257 0.0769 0.3162 1.0403 538
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.5444 1.6665 0.7430 3.3714
## (Intercept)-Canis_latrans 0.6112 0.8159 -1.0330 0.6039
## (Intercept)-Sciurus_niger -0.4625 1.1410 -2.4648 -0.5741
## (Intercept)-Procyon_lotor 0.7880 0.7671 -0.7165 0.7589
## (Intercept)-Dasypus_novemcinctus -0.4106 0.7645 -1.8231 -0.4197
## (Intercept)-Lynx_rufus 0.1967 1.2117 -1.5994 0.0531
## (Intercept)-Didelphis_virginiana -0.9452 0.8710 -2.6431 -0.9673
## (Intercept)-Sylvilagus_floridanus 0.3245 1.0466 -1.4079 0.2479
## (Intercept)-Sciurus_carolinensis -0.9417 0.9293 -2.7073 -0.9789
## (Intercept)-Vulpes_vulpes -0.5690 1.3860 -3.0472 -0.6423
## (Intercept)-Sus_scrofa -1.1932 1.2321 -3.5297 -1.2534
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.0120 0.5936 -1.0927 0.0292
## Avg_Cogongrass_Cover-Canis_latrans 0.3423 0.5108 -0.5579 0.3067
## Avg_Cogongrass_Cover-Sciurus_niger -0.3425 0.6676 -1.9246 -0.2777
## Avg_Cogongrass_Cover-Procyon_lotor -0.0810 0.4723 -0.9748 -0.0904
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.1704 0.4393 -0.6373 0.1599
## Avg_Cogongrass_Cover-Lynx_rufus 0.3411 0.5668 -0.6670 0.2880
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1740 0.4650 -0.7535 0.1649
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.3439 0.5646 -1.5600 -0.3071
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0492 0.4633 -0.9123 0.0709
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.1971 0.6012 -0.8304 0.1703
## Avg_Cogongrass_Cover-Sus_scrofa -0.2088 0.6504 -1.5744 -0.1588
## total_shrub_cover-Odocoileus_virginianus -0.4018 0.6955 -1.7386 -0.4238
## total_shrub_cover-Canis_latrans 0.1352 0.6942 -1.0365 0.0529
## total_shrub_cover-Sciurus_niger -0.8868 0.7725 -2.6762 -0.8374
## total_shrub_cover-Procyon_lotor -1.2157 0.6126 -2.6224 -1.1355
## total_shrub_cover-Dasypus_novemcinctus -0.4237 0.6353 -2.0444 -0.3480
## total_shrub_cover-Lynx_rufus -1.1616 0.8401 -3.0972 -1.0569
## total_shrub_cover-Didelphis_virginiana -0.7558 0.6455 -2.3065 -0.6766
## total_shrub_cover-Sylvilagus_floridanus -1.2888 0.9194 -3.5085 -1.1352
## total_shrub_cover-Sciurus_carolinensis -0.8341 0.7472 -2.5850 -0.7086
## total_shrub_cover-Vulpes_vulpes -0.8840 0.9805 -3.3004 -0.7664
## total_shrub_cover-Sus_scrofa -0.6393 0.9235 -2.7924 -0.5454
## avg_veg_height-Odocoileus_virginianus 0.1411 0.5403 -0.8888 0.1433
## avg_veg_height-Canis_latrans 0.1772 0.4686 -0.7226 0.1557
## avg_veg_height-Sciurus_niger -0.0867 0.5817 -1.3165 -0.0578
## avg_veg_height-Procyon_lotor 0.1848 0.4566 -0.6821 0.1613
## avg_veg_height-Dasypus_novemcinctus 0.3436 0.4432 -0.4493 0.3332
## avg_veg_height-Lynx_rufus 0.1310 0.5261 -0.8996 0.1260
## avg_veg_height-Didelphis_virginiana 0.0908 0.4825 -0.8046 0.0817
## avg_veg_height-Sylvilagus_floridanus 0.1200 0.5161 -0.8275 0.0936
## avg_veg_height-Sciurus_carolinensis 0.4717 0.5021 -0.4488 0.4426
## avg_veg_height-Vulpes_vulpes 0.1331 0.5255 -0.9243 0.1199
## avg_veg_height-Sus_scrofa 0.1936 0.5194 -0.7639 0.1810
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.5006 1.0787 239
## (Intercept)-Canis_latrans 2.2005 1.0089 549
## (Intercept)-Sciurus_niger 1.9860 1.0335 206
## (Intercept)-Procyon_lotor 2.2899 1.0236 588
## (Intercept)-Dasypus_novemcinctus 1.1089 1.0065 458
## (Intercept)-Lynx_rufus 3.0821 1.1598 155
## (Intercept)-Didelphis_virginiana 0.8582 1.0457 322
## (Intercept)-Sylvilagus_floridanus 2.5814 1.0231 225
## (Intercept)-Sciurus_carolinensis 1.0562 1.0561 258
## (Intercept)-Vulpes_vulpes 2.5001 1.0078 163
## (Intercept)-Sus_scrofa 1.3717 1.0233 117
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2244 1.0340 842
## Avg_Cogongrass_Cover-Canis_latrans 1.4829 1.0174 628
## Avg_Cogongrass_Cover-Sciurus_niger 0.7915 1.0076 449
## Avg_Cogongrass_Cover-Procyon_lotor 0.8194 1.0099 693
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0439 1.0089 719
## Avg_Cogongrass_Cover-Lynx_rufus 1.6198 0.9996 661
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0690 1.0098 775
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6273 1.0140 598
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.9425 1.0028 642
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.4801 1.0200 630
## Avg_Cogongrass_Cover-Sus_scrofa 0.8272 1.0212 459
## total_shrub_cover-Odocoileus_virginianus 1.0024 1.0027 800
## total_shrub_cover-Canis_latrans 1.6993 1.0929 257
## total_shrub_cover-Sciurus_niger 0.5278 1.0222 375
## total_shrub_cover-Procyon_lotor -0.2401 1.0034 338
## total_shrub_cover-Dasypus_novemcinctus 0.6031 1.0050 289
## total_shrub_cover-Lynx_rufus 0.2889 1.0366 261
## total_shrub_cover-Didelphis_virginiana 0.2550 1.0442 220
## total_shrub_cover-Sylvilagus_floridanus 0.1455 1.0308 154
## total_shrub_cover-Sciurus_carolinensis 0.3673 1.0233 175
## total_shrub_cover-Vulpes_vulpes 0.7400 1.0287 208
## total_shrub_cover-Sus_scrofa 0.9648 1.0201 122
## avg_veg_height-Odocoileus_virginianus 1.2721 1.0252 624
## avg_veg_height-Canis_latrans 1.1943 1.0137 451
## avg_veg_height-Sciurus_niger 1.0046 1.0288 408
## avg_veg_height-Procyon_lotor 1.1481 1.0048 489
## avg_veg_height-Dasypus_novemcinctus 1.2788 1.0462 560
## avg_veg_height-Lynx_rufus 1.2350 1.0080 508
## avg_veg_height-Didelphis_virginiana 1.0937 1.0130 429
## avg_veg_height-Sylvilagus_floridanus 1.2334 1.0299 503
## avg_veg_height-Sciurus_carolinensis 1.5013 1.0073 595
## avg_veg_height-Vulpes_vulpes 1.1609 1.0075 590
## avg_veg_height-Sus_scrofa 1.2479 1.0302 442
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0085 0.0604 -0.1092 0.0092 0.1313
## (Intercept)-Canis_latrans -2.7985 0.2014 -3.2199 -2.7869 -2.4141
## (Intercept)-Sciurus_niger -4.0723 0.6390 -5.3164 -4.0686 -2.8435
## (Intercept)-Procyon_lotor -2.3010 0.1403 -2.5905 -2.2993 -2.0434
## (Intercept)-Dasypus_novemcinctus -1.8066 0.1776 -2.1591 -1.8021 -1.4625
## (Intercept)-Lynx_rufus -3.6542 0.3632 -4.3891 -3.6471 -2.9621
## (Intercept)-Didelphis_virginiana -2.6997 0.3245 -3.3675 -2.6760 -2.1129
## (Intercept)-Sylvilagus_floridanus -3.3550 0.2999 -3.9984 -3.3403 -2.8018
## (Intercept)-Sciurus_carolinensis -2.8261 0.3646 -3.5506 -2.8101 -2.1542
## (Intercept)-Vulpes_vulpes -4.3541 0.7349 -5.7864 -4.3600 -2.9488
## (Intercept)-Sus_scrofa -3.6416 0.6751 -4.9988 -3.6579 -2.3258
## shrub_cover-Odocoileus_virginianus -0.0513 0.0653 -0.1779 -0.0508 0.0754
## shrub_cover-Canis_latrans -0.2600 0.2503 -0.7370 -0.2635 0.2308
## shrub_cover-Sciurus_niger -0.0627 0.5202 -1.0961 -0.0677 0.9330
## shrub_cover-Procyon_lotor 0.3162 0.1612 -0.0061 0.3196 0.6219
## shrub_cover-Dasypus_novemcinctus 1.0220 0.3643 0.3563 1.0049 1.7612
## shrub_cover-Lynx_rufus 0.0746 0.3830 -0.7147 0.0904 0.7762
## shrub_cover-Didelphis_virginiana 1.1854 0.4266 0.4579 1.1517 2.1213
## shrub_cover-Sylvilagus_floridanus 0.7621 0.4148 -0.0454 0.7626 1.5900
## shrub_cover-Sciurus_carolinensis 1.1768 0.4537 0.3544 1.1643 2.1123
## shrub_cover-Vulpes_vulpes 0.2881 0.6191 -0.8995 0.2758 1.5300
## shrub_cover-Sus_scrofa 1.0982 0.8531 -0.6028 1.0789 2.8520
## veg_height-Odocoileus_virginianus -0.2958 0.0647 -0.4246 -0.2944 -0.1708
## veg_height-Canis_latrans -0.6049 0.1798 -0.9749 -0.6029 -0.2649
## veg_height-Sciurus_niger 0.0090 0.4259 -0.7427 -0.0067 0.9314
## veg_height-Procyon_lotor 0.3343 0.1246 0.0898 0.3384 0.5793
## veg_height-Dasypus_novemcinctus 0.2482 0.1380 -0.0249 0.2506 0.5113
## veg_height-Lynx_rufus 0.0403 0.2424 -0.4367 0.0379 0.5074
## veg_height-Didelphis_virginiana 0.3861 0.2498 -0.0720 0.3838 0.9065
## veg_height-Sylvilagus_floridanus 0.0178 0.2435 -0.4414 0.0145 0.5089
## veg_height-Sciurus_carolinensis 0.0880 0.2289 -0.3376 0.0849 0.5692
## veg_height-Vulpes_vulpes -0.1600 0.3410 -0.8924 -0.1424 0.4608
## veg_height-Sus_scrofa -0.1753 0.3301 -0.8571 -0.1645 0.4606
## week-Odocoileus_virginianus 0.2098 0.0611 0.0933 0.2083 0.3306
## week-Canis_latrans 0.0720 0.1298 -0.2084 0.0772 0.3145
## week-Sciurus_niger -0.3110 0.3092 -1.0029 -0.2761 0.1601
## week-Procyon_lotor -0.0447 0.1174 -0.2795 -0.0397 0.1812
## week-Dasypus_novemcinctus -0.1575 0.1410 -0.4452 -0.1506 0.1003
## week-Lynx_rufus -0.0356 0.1901 -0.4296 -0.0284 0.3211
## week-Didelphis_virginiana -0.1978 0.2150 -0.6817 -0.1758 0.1880
## week-Sylvilagus_floridanus -0.1368 0.1981 -0.5606 -0.1224 0.2193
## week-Sciurus_carolinensis 0.1478 0.1742 -0.1807 0.1496 0.4822
## week-Vulpes_vulpes -0.1152 0.2652 -0.7126 -0.0995 0.3832
## week-Sus_scrofa 0.0915 0.2349 -0.3682 0.0946 0.5684
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0079 1500
## (Intercept)-Canis_latrans 1.0004 506
## (Intercept)-Sciurus_niger 1.0753 149
## (Intercept)-Procyon_lotor 1.0100 995
## (Intercept)-Dasypus_novemcinctus 1.0189 453
## (Intercept)-Lynx_rufus 1.0218 344
## (Intercept)-Didelphis_virginiana 1.0350 216
## (Intercept)-Sylvilagus_floridanus 1.0140 308
## (Intercept)-Sciurus_carolinensis 1.0057 276
## (Intercept)-Vulpes_vulpes 1.0256 101
## (Intercept)-Sus_scrofa 1.0235 138
## shrub_cover-Odocoileus_virginianus 1.0075 1500
## shrub_cover-Canis_latrans 1.0395 383
## shrub_cover-Sciurus_niger 1.0105 304
## shrub_cover-Procyon_lotor 1.0075 1196
## shrub_cover-Dasypus_novemcinctus 1.0096 289
## shrub_cover-Lynx_rufus 1.0449 279
## shrub_cover-Didelphis_virginiana 1.0393 206
## shrub_cover-Sylvilagus_floridanus 1.0106 319
## shrub_cover-Sciurus_carolinensis 1.0132 226
## shrub_cover-Vulpes_vulpes 1.0785 321
## shrub_cover-Sus_scrofa 1.0309 131
## veg_height-Odocoileus_virginianus 1.0004 1500
## veg_height-Canis_latrans 1.0009 698
## veg_height-Sciurus_niger 1.0239 393
## veg_height-Procyon_lotor 1.0034 1226
## veg_height-Dasypus_novemcinctus 1.0072 966
## veg_height-Lynx_rufus 1.0085 507
## veg_height-Didelphis_virginiana 1.0136 753
## veg_height-Sylvilagus_floridanus 1.0027 637
## veg_height-Sciurus_carolinensis 1.0086 708
## veg_height-Vulpes_vulpes 1.0026 503
## veg_height-Sus_scrofa 1.0171 638
## week-Odocoileus_virginianus 1.0036 1500
## week-Canis_latrans 1.0153 1363
## week-Sciurus_niger 1.0249 471
## week-Procyon_lotor 1.0005 1287
## week-Dasypus_novemcinctus 1.0074 1165
## week-Lynx_rufus 1.0055 699
## week-Didelphis_virginiana 1.0039 1000
## week-Sylvilagus_floridanus 1.0177 742
## week-Sciurus_carolinensis 1.0071 1030
## week-Vulpes_vulpes 1.0047 684
## week-Sus_scrofa 1.0006 965
#Includes all covariates of detection and only canopy for occupancy
ms_full_canopy <- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7543
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1273 0.7568 -1.4979 -0.1827 1.5234 1.0005 347
## Tree_Density -0.7774 0.4284 -1.7873 -0.7281 -0.0516 1.0239 336
## Avg_Canopy_Cover 1.1058 0.3735 0.4328 1.0969 1.8880 1.0100 420
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 6.5853 5.5780 1.5129 5.0343 22.1075 1.0041 258
## Tree_Density 0.7895 1.1827 0.0427 0.3706 3.9528 1.0241 324
## Avg_Canopy_Cover 0.7040 0.7403 0.0827 0.4992 2.7188 1.0417 392
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4428 0.5026 0.0427 0.2652 1.6815 1.1321 148
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6418 0.4503 -3.4793 -2.6508 -1.6759 1.0084 1190
## shrub_cover 0.2427 0.2430 -0.2397 0.2353 0.7410 1.0066 595
## veg_height 0.0205 0.1617 -0.2875 0.0190 0.3331 1.0069 1173
## week -0.0441 0.1244 -0.2907 -0.0349 0.1924 1.0015 1044
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1355 1.3030 0.7260 1.8076 5.6288 1.0117 334
## shrub_cover 0.4655 0.3542 0.1018 0.3789 1.3467 1.0073 627
## veg_height 0.1863 0.1252 0.0567 0.1562 0.5245 1.0092 1070
## week 0.1033 0.0893 0.0263 0.0805 0.3129 1.0146 920
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.6462 1.6277 2.2213 4.3771 8.5154
## (Intercept)-Canis_latrans 0.4215 0.6574 -0.7695 0.3948 1.7744
## (Intercept)-Sciurus_niger 0.0901 1.4932 -2.2755 -0.0823 3.5324
## (Intercept)-Procyon_lotor 0.8154 0.6271 -0.3617 0.7894 2.1003
## (Intercept)-Dasypus_novemcinctus -0.9729 0.6371 -2.3271 -0.9217 0.1563
## (Intercept)-Lynx_rufus 1.5058 2.0898 -1.1935 1.0605 7.0724
## (Intercept)-Didelphis_virginiana -1.7524 0.7293 -3.2908 -1.7022 -0.4691
## (Intercept)-Sylvilagus_floridanus -0.6349 0.7459 -2.0416 -0.6230 0.9100
## (Intercept)-Sciurus_carolinensis -1.7848 0.7624 -3.3492 -1.7492 -0.3066
## (Intercept)-Vulpes_vulpes -1.1040 2.0345 -3.6054 -1.5607 4.4292
## (Intercept)-Sus_scrofa -2.5967 0.9970 -4.7463 -2.5405 -0.8173
## Tree_Density-Odocoileus_virginianus -0.3853 0.6778 -1.5890 -0.4469 1.2424
## Tree_Density-Canis_latrans -0.9380 0.6010 -2.3519 -0.8657 0.0078
## Tree_Density-Sciurus_niger -0.8506 0.7608 -2.7179 -0.7678 0.4744
## Tree_Density-Procyon_lotor -0.4956 0.4284 -1.3998 -0.4921 0.3534
## Tree_Density-Dasypus_novemcinctus -1.3730 0.9446 -3.8084 -1.1489 -0.1317
## Tree_Density-Lynx_rufus -0.0032 0.8652 -1.4325 -0.1250 2.0546
## Tree_Density-Didelphis_virginiana -1.0370 0.7854 -2.8583 -0.9007 0.1692
## Tree_Density-Sylvilagus_floridanus -1.0732 0.7861 -2.9923 -0.9272 0.1266
## Tree_Density-Sciurus_carolinensis -0.9273 0.7600 -2.8020 -0.7988 0.2873
## Tree_Density-Vulpes_vulpes -0.7158 0.8704 -2.6289 -0.6786 0.8368
## Tree_Density-Sus_scrofa -0.9931 0.8626 -3.2768 -0.8432 0.3213
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8278 0.7313 -0.6099 0.8352 2.2755
## Avg_Canopy_Cover-Canis_latrans 0.0377 0.4807 -0.9311 0.0436 0.9817
## Avg_Canopy_Cover-Sciurus_niger 1.1055 0.8564 -0.3261 1.0153 3.0842
## Avg_Canopy_Cover-Procyon_lotor 1.0706 0.4667 0.2075 1.0409 2.0838
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0823 0.4576 0.2635 1.0497 2.1201
## Avg_Canopy_Cover-Lynx_rufus 0.9874 0.7862 -0.5064 0.9421 2.7886
## Avg_Canopy_Cover-Didelphis_virginiana 1.4428 0.5790 0.5524 1.3631 2.8343
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.8627 0.8260 0.6326 1.7259 3.8766
## Avg_Canopy_Cover-Sciurus_carolinensis 1.3879 0.5684 0.4725 1.3274 2.7532
## Avg_Canopy_Cover-Vulpes_vulpes 1.1597 0.6748 0.0004 1.1080 2.6383
## Avg_Canopy_Cover-Sus_scrofa 1.3163 0.5657 0.3369 1.2767 2.5505
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0123 201
## (Intercept)-Canis_latrans 1.0095 1035
## (Intercept)-Sciurus_niger 1.0307 108
## (Intercept)-Procyon_lotor 1.0248 832
## (Intercept)-Dasypus_novemcinctus 1.0012 762
## (Intercept)-Lynx_rufus 1.0297 89
## (Intercept)-Didelphis_virginiana 1.0033 743
## (Intercept)-Sylvilagus_floridanus 1.0018 763
## (Intercept)-Sciurus_carolinensis 1.0236 786
## (Intercept)-Vulpes_vulpes 1.0201 67
## (Intercept)-Sus_scrofa 1.0075 542
## Tree_Density-Odocoileus_virginianus 1.0016 632
## Tree_Density-Canis_latrans 1.0098 686
## Tree_Density-Sciurus_niger 1.0109 426
## Tree_Density-Procyon_lotor 1.0017 739
## Tree_Density-Dasypus_novemcinctus 1.0075 363
## Tree_Density-Lynx_rufus 1.0304 221
## Tree_Density-Didelphis_virginiana 1.0145 395
## Tree_Density-Sylvilagus_floridanus 1.0290 406
## Tree_Density-Sciurus_carolinensis 1.0045 295
## Tree_Density-Vulpes_vulpes 1.0255 455
## Tree_Density-Sus_scrofa 1.0147 481
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0039 973
## Avg_Canopy_Cover-Canis_latrans 1.0023 975
## Avg_Canopy_Cover-Sciurus_niger 1.0219 386
## Avg_Canopy_Cover-Procyon_lotor 1.0306 927
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0033 1010
## Avg_Canopy_Cover-Lynx_rufus 1.0153 400
## Avg_Canopy_Cover-Didelphis_virginiana 1.0002 812
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0097 375
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0301 651
## Avg_Canopy_Cover-Vulpes_vulpes 1.0085 582
## Avg_Canopy_Cover-Sus_scrofa 1.0156 836
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0045 0.0584 -0.1054 0.0018 0.1215
## (Intercept)-Canis_latrans -2.7618 0.1937 -3.1581 -2.7551 -2.4034
## (Intercept)-Sciurus_niger -4.4241 0.6311 -5.5298 -4.4754 -3.1118
## (Intercept)-Procyon_lotor -2.3044 0.1464 -2.6020 -2.2975 -2.0371
## (Intercept)-Dasypus_novemcinctus -1.7333 0.1556 -2.0575 -1.7270 -1.4379
## (Intercept)-Lynx_rufus -3.9088 0.3692 -4.5935 -3.9300 -3.1580
## (Intercept)-Didelphis_virginiana -2.5802 0.2808 -3.1780 -2.5723 -2.0778
## (Intercept)-Sylvilagus_floridanus -3.1592 0.2757 -3.7273 -3.1497 -2.6316
## (Intercept)-Sciurus_carolinensis -2.6376 0.3232 -3.3133 -2.6253 -2.0338
## (Intercept)-Vulpes_vulpes -4.2763 0.8480 -6.0939 -4.2197 -2.8223
## (Intercept)-Sus_scrofa -3.1745 0.5526 -4.2583 -3.1668 -2.0875
## shrub_cover-Odocoileus_virginianus -0.0522 0.0641 -0.1787 -0.0504 0.0700
## shrub_cover-Canis_latrans -0.2582 0.2189 -0.6925 -0.2555 0.1748
## shrub_cover-Sciurus_niger -0.3601 0.4485 -1.2626 -0.3349 0.4591
## shrub_cover-Procyon_lotor 0.2455 0.1569 -0.0655 0.2485 0.5404
## shrub_cover-Dasypus_novemcinctus 0.8174 0.2856 0.2655 0.8158 1.3857
## shrub_cover-Lynx_rufus -0.3135 0.3128 -0.9253 -0.2967 0.3046
## shrub_cover-Didelphis_virginiana 0.9218 0.3301 0.2960 0.9158 1.5616
## shrub_cover-Sylvilagus_floridanus 0.3797 0.3590 -0.3424 0.3761 1.0955
## shrub_cover-Sciurus_carolinensis 0.7961 0.3896 0.0733 0.7789 1.6073
## shrub_cover-Vulpes_vulpes -0.0017 0.5294 -1.1068 0.0118 1.0201
## shrub_cover-Sus_scrofa 0.4570 0.6697 -0.9173 0.4568 1.7889
## veg_height-Odocoileus_virginianus -0.2941 0.0653 -0.4273 -0.2923 -0.1722
## veg_height-Canis_latrans -0.5634 0.1773 -0.9469 -0.5586 -0.2180
## veg_height-Sciurus_niger -0.0207 0.3535 -0.6848 -0.0314 0.6841
## veg_height-Procyon_lotor 0.3423 0.1196 0.1086 0.3416 0.5782
## veg_height-Dasypus_novemcinctus 0.2405 0.1332 -0.0152 0.2351 0.4988
## veg_height-Lynx_rufus 0.0813 0.2270 -0.3752 0.0893 0.5002
## veg_height-Didelphis_virginiana 0.4339 0.2362 -0.0035 0.4222 0.9278
## veg_height-Sylvilagus_floridanus 0.1560 0.2404 -0.3109 0.1565 0.6290
## veg_height-Sciurus_carolinensis 0.0866 0.2067 -0.3035 0.0880 0.5132
## veg_height-Vulpes_vulpes -0.1113 0.3093 -0.7511 -0.0860 0.4829
## veg_height-Sus_scrofa -0.0853 0.3209 -0.7365 -0.0847 0.5673
## week-Odocoileus_virginianus 0.2126 0.0614 0.0968 0.2112 0.3364
## week-Canis_latrans 0.0756 0.1324 -0.2032 0.0788 0.3176
## week-Sciurus_niger -0.3035 0.3082 -1.0058 -0.2671 0.2045
## week-Procyon_lotor -0.0490 0.1168 -0.2841 -0.0450 0.1610
## week-Dasypus_novemcinctus -0.1595 0.1320 -0.4214 -0.1571 0.0926
## week-Lynx_rufus -0.0259 0.1887 -0.4138 -0.0207 0.3416
## week-Didelphis_virginiana -0.2121 0.2137 -0.6800 -0.1941 0.1795
## week-Sylvilagus_floridanus -0.1508 0.2027 -0.5854 -0.1380 0.2249
## week-Sciurus_carolinensis 0.1456 0.1774 -0.2128 0.1495 0.4828
## week-Vulpes_vulpes -0.1160 0.2831 -0.7516 -0.0949 0.3778
## week-Sus_scrofa 0.1055 0.2410 -0.3714 0.1069 0.5795
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0103 1500
## (Intercept)-Canis_latrans 1.0167 614
## (Intercept)-Sciurus_niger 1.0889 124
## (Intercept)-Procyon_lotor 1.0078 909
## (Intercept)-Dasypus_novemcinctus 1.0033 1261
## (Intercept)-Lynx_rufus 1.0056 184
## (Intercept)-Didelphis_virginiana 1.0060 740
## (Intercept)-Sylvilagus_floridanus 1.0461 727
## (Intercept)-Sciurus_carolinensis 1.0285 727
## (Intercept)-Vulpes_vulpes 1.0671 73
## (Intercept)-Sus_scrofa 1.0108 782
## shrub_cover-Odocoileus_virginianus 1.0033 1392
## shrub_cover-Canis_latrans 1.0013 864
## shrub_cover-Sciurus_niger 1.0649 353
## shrub_cover-Procyon_lotor 1.0077 1150
## shrub_cover-Dasypus_novemcinctus 1.0034 1111
## shrub_cover-Lynx_rufus 1.0062 418
## shrub_cover-Didelphis_virginiana 0.9997 645
## shrub_cover-Sylvilagus_floridanus 1.0006 765
## shrub_cover-Sciurus_carolinensis 1.0085 696
## shrub_cover-Vulpes_vulpes 1.0045 546
## shrub_cover-Sus_scrofa 1.0067 869
## veg_height-Odocoileus_virginianus 1.0005 1500
## veg_height-Canis_latrans 1.0286 770
## veg_height-Sciurus_niger 1.0156 638
## veg_height-Procyon_lotor 1.0063 1253
## veg_height-Dasypus_novemcinctus 1.0024 1340
## veg_height-Lynx_rufus 1.0145 606
## veg_height-Didelphis_virginiana 1.0008 941
## veg_height-Sylvilagus_floridanus 1.0016 978
## veg_height-Sciurus_carolinensis 1.0052 1023
## veg_height-Vulpes_vulpes 1.0226 700
## veg_height-Sus_scrofa 0.9993 1262
## week-Odocoileus_virginianus 1.0001 1500
## week-Canis_latrans 1.0068 1153
## week-Sciurus_niger 1.0018 444
## week-Procyon_lotor 1.0018 1352
## week-Dasypus_novemcinctus 1.0064 1312
## week-Lynx_rufus 1.0151 686
## week-Didelphis_virginiana 1.0104 1173
## week-Sylvilagus_floridanus 1.0024 922
## week-Sciurus_carolinensis 1.0038 1500
## week-Vulpes_vulpes 1.0130 803
## week-Sus_scrofa 1.0074 1444
#Includes all covariates of detection and only movement for occupancy
ms_full_move <- msPGOcc(
occ.formula = occ.move,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7557
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0922 0.6570 -1.3697 -0.1023 1.2667 1.0318 264
## Cogon_Patch_Size -0.2291 0.3781 -1.0127 -0.1993 0.4844 1.0031 466
## Avg_Cogongrass_Cover 0.2083 0.3114 -0.3997 0.2048 0.8398 1.0352 398
## total_shrub_cover -0.5430 0.3647 -1.3359 -0.5304 0.1024 1.0173 300
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.7046 3.0355 0.5997 2.9194 11.7382 1.0625 684
## Cogon_Patch_Size 0.7610 0.9574 0.0593 0.4375 3.4031 1.0464 353
## Avg_Cogongrass_Cover 0.3161 0.4220 0.0374 0.1877 1.3979 1.1597 425
## total_shrub_cover 0.5470 0.7745 0.0497 0.2904 2.4041 1.1127 228
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.3571 1.4035 0.0736 0.9417 5.3255 1.0489 105
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6287 0.4319 -3.4580 -2.6313 -1.7026 1.0099 1102
## shrub_cover 0.4053 0.2574 -0.1106 0.3985 0.9073 1.0121 669
## veg_height 0.0014 0.1555 -0.3005 0.0003 0.3050 1.0029 911
## week -0.0403 0.1212 -0.3117 -0.0349 0.1773 1.0344 1072
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9360 1.1318 0.6664 1.6788 4.7522 1.0389 437
## shrub_cover 0.4962 0.4166 0.0939 0.3842 1.5280 1.0325 382
## veg_height 0.1875 0.1296 0.0538 0.1543 0.5414 1.0108 1123
## week 0.0967 0.0855 0.0268 0.0729 0.3092 1.0097 907
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.6205 1.5168 0.9073 3.4874
## (Intercept)-Canis_latrans 0.5866 0.8149 -0.8732 0.5393
## (Intercept)-Sciurus_niger -0.6155 1.2751 -2.7953 -0.7526
## (Intercept)-Procyon_lotor 0.7492 0.7788 -0.8167 0.7330
## (Intercept)-Dasypus_novemcinctus -0.5497 0.7021 -1.9371 -0.5636
## (Intercept)-Lynx_rufus -0.0380 1.0025 -1.7963 -0.0921
## (Intercept)-Didelphis_virginiana -1.1495 0.7608 -2.6415 -1.1551
## (Intercept)-Sylvilagus_floridanus -0.0406 0.9112 -1.7048 -0.0832
## (Intercept)-Sciurus_carolinensis -1.2805 0.8160 -3.0375 -1.2600
## (Intercept)-Vulpes_vulpes -1.0586 1.2805 -3.3215 -1.1713
## (Intercept)-Sus_scrofa -1.5655 1.0804 -3.7359 -1.5532
## Cogon_Patch_Size-Odocoileus_virginianus -0.0950 0.6465 -1.2668 -0.1366
## Cogon_Patch_Size-Canis_latrans 0.5672 0.6406 -0.4001 0.4629
## Cogon_Patch_Size-Sciurus_niger -0.5188 0.8058 -2.3383 -0.4210
## Cogon_Patch_Size-Procyon_lotor -0.2547 0.4597 -1.1935 -0.2432
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1148 0.4409 -1.0034 -0.1139
## Cogon_Patch_Size-Lynx_rufus -0.2133 0.7304 -1.6294 -0.2318
## Cogon_Patch_Size-Didelphis_virginiana 0.5020 0.4899 -0.3959 0.4796
## Cogon_Patch_Size-Sylvilagus_floridanus -0.7994 0.7693 -2.5543 -0.6789
## Cogon_Patch_Size-Sciurus_carolinensis -0.6964 0.7150 -2.4755 -0.5671
## Cogon_Patch_Size-Vulpes_vulpes -0.5005 0.8148 -2.3146 -0.4268
## Cogon_Patch_Size-Sus_scrofa -0.4970 0.7952 -2.3363 -0.3808
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1902 0.5296 -0.8420 0.1973
## Avg_Cogongrass_Cover-Canis_latrans 0.3555 0.4383 -0.4092 0.3193
## Avg_Cogongrass_Cover-Sciurus_niger -0.1214 0.6493 -1.5411 -0.0762
## Avg_Cogongrass_Cover-Procyon_lotor 0.1924 0.4257 -0.6667 0.1862
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3741 0.4066 -0.3533 0.3467
## Avg_Cogongrass_Cover-Lynx_rufus 0.4928 0.4896 -0.3111 0.4404
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1972 0.4327 -0.6768 0.1979
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0792 0.5215 -1.1857 -0.0594
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4231 0.4244 -0.3531 0.4028
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3274 0.5182 -0.6666 0.3168
## Avg_Cogongrass_Cover-Sus_scrofa 0.0118 0.5886 -1.2253 0.0307
## total_shrub_cover-Odocoileus_virginianus -0.3531 0.6061 -1.5637 -0.3748
## total_shrub_cover-Canis_latrans 0.0530 0.5967 -0.9393 -0.0026
## total_shrub_cover-Sciurus_niger -0.6865 0.6777 -2.2317 -0.6536
## total_shrub_cover-Procyon_lotor -0.9710 0.5623 -2.3085 -0.8911
## total_shrub_cover-Dasypus_novemcinctus -0.2827 0.4481 -1.1620 -0.2689
## total_shrub_cover-Lynx_rufus -0.8972 0.6916 -2.5519 -0.7912
## total_shrub_cover-Didelphis_virginiana -0.6213 0.5336 -1.8150 -0.5814
## total_shrub_cover-Sylvilagus_floridanus -0.8504 0.7468 -2.5888 -0.7322
## total_shrub_cover-Sciurus_carolinensis -0.4933 0.5464 -1.7707 -0.4544
## total_shrub_cover-Vulpes_vulpes -0.5936 0.7226 -2.1513 -0.5703
## total_shrub_cover-Sus_scrofa -0.3869 0.7368 -1.8438 -0.3648
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.9069 1.0207 352
## (Intercept)-Canis_latrans 2.5212 1.0159 527
## (Intercept)-Sciurus_niger 2.5701 1.1593 142
## (Intercept)-Procyon_lotor 2.3141 1.0051 659
## (Intercept)-Dasypus_novemcinctus 0.9160 1.0136 593
## (Intercept)-Lynx_rufus 2.1974 1.0027 295
## (Intercept)-Didelphis_virginiana 0.4062 1.0332 598
## (Intercept)-Sylvilagus_floridanus 1.8766 1.0385 358
## (Intercept)-Sciurus_carolinensis 0.2734 1.0251 481
## (Intercept)-Vulpes_vulpes 1.9911 1.1731 147
## (Intercept)-Sus_scrofa 0.4682 1.1554 286
## Cogon_Patch_Size-Odocoileus_virginianus 1.3786 1.0005 1128
## Cogon_Patch_Size-Canis_latrans 2.1564 1.0360 683
## Cogon_Patch_Size-Sciurus_niger 0.8023 1.0214 498
## Cogon_Patch_Size-Procyon_lotor 0.6485 1.0073 715
## Cogon_Patch_Size-Dasypus_novemcinctus 0.7574 1.0059 1121
## Cogon_Patch_Size-Lynx_rufus 1.3658 1.0163 700
## Cogon_Patch_Size-Didelphis_virginiana 1.5103 1.0019 653
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3516 1.0136 401
## Cogon_Patch_Size-Sciurus_carolinensis 0.3552 1.0149 563
## Cogon_Patch_Size-Vulpes_vulpes 0.8652 1.0279 453
## Cogon_Patch_Size-Sus_scrofa 0.6821 1.0117 697
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2648 1.0038 767
## Avg_Cogongrass_Cover-Canis_latrans 1.3263 1.0110 764
## Avg_Cogongrass_Cover-Sciurus_niger 1.0468 1.0173 389
## Avg_Cogongrass_Cover-Procyon_lotor 0.9880 1.0130 790
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2687 1.0155 666
## Avg_Cogongrass_Cover-Lynx_rufus 1.6253 1.0332 565
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0589 1.0072 885
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.9233 1.0119 489
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2646 1.0254 836
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3349 1.0333 738
## Avg_Cogongrass_Cover-Sus_scrofa 1.0930 1.0120 539
## total_shrub_cover-Odocoileus_virginianus 0.9165 1.0035 737
## total_shrub_cover-Canis_latrans 1.4615 1.0550 470
## total_shrub_cover-Sciurus_niger 0.5550 1.0204 522
## total_shrub_cover-Procyon_lotor -0.0738 1.0072 401
## total_shrub_cover-Dasypus_novemcinctus 0.5152 1.0668 571
## total_shrub_cover-Lynx_rufus 0.1929 1.0259 275
## total_shrub_cover-Didelphis_virginiana 0.3047 1.0131 472
## total_shrub_cover-Sylvilagus_floridanus 0.3367 1.0626 224
## total_shrub_cover-Sciurus_carolinensis 0.4581 1.0057 287
## total_shrub_cover-Vulpes_vulpes 0.7322 1.0408 308
## total_shrub_cover-Sus_scrofa 1.0217 1.0894 240
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0054 0.0594 -0.1043 0.0068 0.1169
## (Intercept)-Canis_latrans -2.7675 0.1955 -3.1604 -2.7543 -2.4138
## (Intercept)-Sciurus_niger -4.0554 0.7101 -5.5150 -4.0212 -2.7360
## (Intercept)-Procyon_lotor -2.3016 0.1437 -2.5874 -2.3022 -2.0124
## (Intercept)-Dasypus_novemcinctus -1.7582 0.1635 -2.1024 -1.7540 -1.4550
## (Intercept)-Lynx_rufus -3.5502 0.3455 -4.2600 -3.5424 -2.9309
## (Intercept)-Didelphis_virginiana -2.6093 0.3116 -3.2702 -2.5891 -2.0460
## (Intercept)-Sylvilagus_floridanus -3.2758 0.2847 -3.8364 -3.2589 -2.7454
## (Intercept)-Sciurus_carolinensis -2.7082 0.3319 -3.4118 -2.6977 -2.1062
## (Intercept)-Vulpes_vulpes -4.1949 0.7124 -5.6022 -4.1752 -2.8987
## (Intercept)-Sus_scrofa -3.4642 0.6038 -4.6665 -3.4612 -2.3253
## shrub_cover-Odocoileus_virginianus -0.0529 0.0642 -0.1847 -0.0506 0.0670
## shrub_cover-Canis_latrans -0.2595 0.2418 -0.7392 -0.2508 0.1920
## shrub_cover-Sciurus_niger -0.1068 0.5133 -1.2117 -0.0766 0.8558
## shrub_cover-Procyon_lotor 0.3074 0.1638 -0.0119 0.3069 0.6310
## shrub_cover-Dasypus_novemcinctus 0.9109 0.3116 0.3385 0.9057 1.5308
## shrub_cover-Lynx_rufus 0.0686 0.3522 -0.6585 0.0710 0.7401
## shrub_cover-Didelphis_virginiana 1.0266 0.3965 0.3323 1.0083 1.9077
## shrub_cover-Sylvilagus_floridanus 0.6471 0.4015 -0.1439 0.6500 1.4357
## shrub_cover-Sciurus_carolinensis 0.9479 0.3992 0.1812 0.9337 1.7857
## shrub_cover-Vulpes_vulpes 0.1967 0.5929 -1.0950 0.2114 1.3380
## shrub_cover-Sus_scrofa 0.8071 0.7636 -0.6446 0.7969 2.3029
## veg_height-Odocoileus_virginianus -0.2995 0.0660 -0.4302 -0.2992 -0.1720
## veg_height-Canis_latrans -0.5780 0.1866 -0.9399 -0.5725 -0.2385
## veg_height-Sciurus_niger -0.0126 0.3915 -0.7275 -0.0319 0.7926
## veg_height-Procyon_lotor 0.3362 0.1213 0.1084 0.3365 0.5811
## veg_height-Dasypus_novemcinctus 0.2329 0.1359 -0.0308 0.2330 0.4924
## veg_height-Lynx_rufus 0.0328 0.2381 -0.4465 0.0340 0.5015
## veg_height-Didelphis_virginiana 0.3952 0.2330 -0.0427 0.3871 0.8753
## veg_height-Sylvilagus_floridanus 0.0680 0.2389 -0.4084 0.0657 0.5393
## veg_height-Sciurus_carolinensis 0.0807 0.2161 -0.3582 0.0814 0.5031
## veg_height-Vulpes_vulpes -0.1512 0.3201 -0.8264 -0.1345 0.4307
## veg_height-Sus_scrofa -0.1335 0.3274 -0.8036 -0.1022 0.4950
## week-Odocoileus_virginianus 0.2135 0.0610 0.0978 0.2139 0.3323
## week-Canis_latrans 0.0729 0.1299 -0.1850 0.0775 0.3275
## week-Sciurus_niger -0.2903 0.3177 -1.0689 -0.2509 0.2100
## week-Procyon_lotor -0.0441 0.1161 -0.2742 -0.0410 0.1758
## week-Dasypus_novemcinctus -0.1605 0.1364 -0.4411 -0.1575 0.0886
## week-Lynx_rufus -0.0263 0.1880 -0.4341 -0.0179 0.3201
## week-Didelphis_virginiana -0.1899 0.2114 -0.6602 -0.1694 0.1853
## week-Sylvilagus_floridanus -0.1436 0.1954 -0.5724 -0.1328 0.2080
## week-Sciurus_carolinensis 0.1434 0.1794 -0.2237 0.1474 0.4866
## week-Vulpes_vulpes -0.1083 0.2715 -0.7002 -0.0946 0.3820
## week-Sus_scrofa 0.1038 0.2261 -0.3315 0.1099 0.5512
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0012 1248
## (Intercept)-Canis_latrans 1.0022 624
## (Intercept)-Sciurus_niger 1.0969 88
## (Intercept)-Procyon_lotor 1.0014 1026
## (Intercept)-Dasypus_novemcinctus 1.0309 1004
## (Intercept)-Lynx_rufus 1.0073 402
## (Intercept)-Didelphis_virginiana 1.0216 283
## (Intercept)-Sylvilagus_floridanus 1.0165 438
## (Intercept)-Sciurus_carolinensis 1.0211 481
## (Intercept)-Vulpes_vulpes 1.1349 162
## (Intercept)-Sus_scrofa 1.0746 324
## shrub_cover-Odocoileus_virginianus 1.0223 1500
## shrub_cover-Canis_latrans 1.0049 491
## shrub_cover-Sciurus_niger 1.0553 202
## shrub_cover-Procyon_lotor 1.0016 1190
## shrub_cover-Dasypus_novemcinctus 1.0384 641
## shrub_cover-Lynx_rufus 1.0462 359
## shrub_cover-Didelphis_virginiana 1.0354 311
## shrub_cover-Sylvilagus_floridanus 1.0156 281
## shrub_cover-Sciurus_carolinensis 1.0034 429
## shrub_cover-Vulpes_vulpes 1.0137 311
## shrub_cover-Sus_scrofa 1.0473 295
## veg_height-Odocoileus_virginianus 1.0073 1500
## veg_height-Canis_latrans 1.0026 1179
## veg_height-Sciurus_niger 1.0032 593
## veg_height-Procyon_lotor 1.0022 1246
## veg_height-Dasypus_novemcinctus 1.0008 1238
## veg_height-Lynx_rufus 1.0036 612
## veg_height-Didelphis_virginiana 0.9996 938
## veg_height-Sylvilagus_floridanus 1.0028 565
## veg_height-Sciurus_carolinensis 1.0630 935
## veg_height-Vulpes_vulpes 1.0356 429
## veg_height-Sus_scrofa 1.0101 1000
## week-Odocoileus_virginianus 1.0047 1500
## week-Canis_latrans 1.0013 1115
## week-Sciurus_niger 1.0206 563
## week-Procyon_lotor 1.0013 1290
## week-Dasypus_novemcinctus 1.0046 1096
## week-Lynx_rufus 1.0113 778
## week-Didelphis_virginiana 1.0133 1137
## week-Sylvilagus_floridanus 1.0155 779
## week-Sciurus_carolinensis 1.0041 1199
## week-Vulpes_vulpes 1.0677 735
## week-Sus_scrofa 1.0083 1174
#Includes all covariates of detection and only foraging for occupancy
ms_full_forage <- msPGOcc(
occ.formula = occ.forage,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7437
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1703 0.6366 -1.3695 -0.1821 1.1103 1.0317 627
## Veg_shannon_index 0.7948 0.3494 0.1343 0.7827 1.5292 1.0113 362
## Avg_Cogongrass_Cover 0.7974 0.3506 0.1311 0.7978 1.4915 1.0147 323
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.9313 3.1918 0.7420 3.0653 11.9891 1.0766 247
## Veg_shannon_index 0.3404 0.4799 0.0380 0.2007 1.4899 1.0799 508
## Avg_Cogongrass_Cover 0.2991 0.3940 0.0363 0.1786 1.2832 1.0860 577
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.6032 0.6397 0.052 0.3933 2.3921 1.0911 142
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6070 0.4386 -3.4953 -2.6061 -1.7518 1.0078 1500
## shrub_cover 0.2223 0.2370 -0.2462 0.2219 0.7276 1.0063 1043
## veg_height -0.0098 0.1561 -0.3294 -0.0125 0.2920 1.0012 811
## week -0.0409 0.1217 -0.2961 -0.0372 0.1880 1.0604 659
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0940 1.3080 0.7000 1.7885 5.4713 1.0311 606
## shrub_cover 0.4511 0.3700 0.0849 0.3491 1.3875 1.0576 566
## veg_height 0.1865 0.1347 0.0556 0.1533 0.4932 1.0071 1266
## week 0.1012 0.0828 0.0260 0.0796 0.3235 1.1265 390
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.6519 1.3614 1.3672 3.4827
## (Intercept)-Canis_latrans 0.3902 0.6385 -0.8846 0.3852
## (Intercept)-Sciurus_niger 0.0278 1.6339 -2.2553 -0.2698
## (Intercept)-Procyon_lotor 0.5547 0.6081 -0.7386 0.5583
## (Intercept)-Dasypus_novemcinctus -0.6847 0.5634 -1.8536 -0.6868
## (Intercept)-Lynx_rufus 0.2619 1.0829 -1.4508 0.0951
## (Intercept)-Didelphis_virginiana -1.3421 0.6432 -2.6335 -1.3643
## (Intercept)-Sylvilagus_floridanus -0.4164 0.6737 -1.6961 -0.4258
## (Intercept)-Sciurus_carolinensis -1.3659 0.6520 -2.7779 -1.3275
## (Intercept)-Vulpes_vulpes -0.9643 1.3322 -3.0437 -1.1596
## (Intercept)-Sus_scrofa -2.1322 0.9025 -3.9788 -2.0871
## Veg_shannon_index-Odocoileus_virginianus 0.7138 0.5677 -0.4740 0.7298
## Veg_shannon_index-Canis_latrans 0.8522 0.4605 -0.0113 0.8351
## Veg_shannon_index-Sciurus_niger 0.9396 0.6969 -0.2069 0.8853
## Veg_shannon_index-Procyon_lotor 0.8395 0.4596 -0.0092 0.8241
## Veg_shannon_index-Dasypus_novemcinctus 0.6501 0.4377 -0.1519 0.6487
## Veg_shannon_index-Lynx_rufus 0.5333 0.5718 -0.7058 0.5653
## Veg_shannon_index-Didelphis_virginiana 0.6617 0.4673 -0.2627 0.6786
## Veg_shannon_index-Sylvilagus_floridanus 1.0255 0.5281 0.1054 1.0025
## Veg_shannon_index-Sciurus_carolinensis 0.6002 0.4799 -0.3888 0.5999
## Veg_shannon_index-Vulpes_vulpes 0.6916 0.5457 -0.4663 0.6987
## Veg_shannon_index-Sus_scrofa 1.2858 0.6639 0.2475 1.1952
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.7848 0.5487 -0.2898 0.7910
## Avg_Cogongrass_Cover-Canis_latrans 1.0528 0.4609 0.2302 1.0315
## Avg_Cogongrass_Cover-Sciurus_niger 0.5327 0.6472 -0.7835 0.5710
## Avg_Cogongrass_Cover-Procyon_lotor 0.8601 0.4381 0.0486 0.8527
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9018 0.4363 0.0941 0.8959
## Avg_Cogongrass_Cover-Lynx_rufus 0.9618 0.5106 0.0254 0.9514
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8880 0.4698 0.0009 0.8920
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5018 0.5251 -0.6823 0.5230
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.8908 0.4615 -0.0079 0.8876
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.9115 0.5574 -0.1059 0.8852
## Avg_Cogongrass_Cover-Sus_scrofa 0.6125 0.5758 -0.6500 0.6345
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.6994 1.0974 421
## (Intercept)-Canis_latrans 1.6401 1.0020 986
## (Intercept)-Sciurus_niger 3.7647 1.1516 91
## (Intercept)-Procyon_lotor 1.7104 1.0246 803
## (Intercept)-Dasypus_novemcinctus 0.3942 1.0034 999
## (Intercept)-Lynx_rufus 2.7738 1.0337 241
## (Intercept)-Didelphis_virginiana -0.0602 1.0109 766
## (Intercept)-Sylvilagus_floridanus 0.9606 1.0030 746
## (Intercept)-Sciurus_carolinensis -0.1258 1.0053 705
## (Intercept)-Vulpes_vulpes 2.3527 1.1272 173
## (Intercept)-Sus_scrofa -0.4075 1.0383 343
## Veg_shannon_index-Odocoileus_virginianus 1.7743 1.0114 679
## Veg_shannon_index-Canis_latrans 1.8122 0.9998 509
## Veg_shannon_index-Sciurus_niger 2.5682 1.0356 397
## Veg_shannon_index-Procyon_lotor 1.7540 1.0068 632
## Veg_shannon_index-Dasypus_novemcinctus 1.4829 1.0059 553
## Veg_shannon_index-Lynx_rufus 1.5685 1.0040 483
## Veg_shannon_index-Didelphis_virginiana 1.6084 1.0107 519
## Veg_shannon_index-Sylvilagus_floridanus 2.1769 1.0061 715
## Veg_shannon_index-Sciurus_carolinensis 1.5118 1.0075 579
## Veg_shannon_index-Vulpes_vulpes 1.7870 1.0154 679
## Veg_shannon_index-Sus_scrofa 2.9267 1.0141 455
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.9201 1.0024 734
## Avg_Cogongrass_Cover-Canis_latrans 2.0302 1.0073 615
## Avg_Cogongrass_Cover-Sciurus_niger 1.7160 1.0060 306
## Avg_Cogongrass_Cover-Procyon_lotor 1.7538 1.0040 587
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.7308 1.0180 491
## Avg_Cogongrass_Cover-Lynx_rufus 2.0457 1.0237 539
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.8322 1.0323 422
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.4662 1.0039 576
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.8262 1.0008 504
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.1408 1.0356 495
## Avg_Cogongrass_Cover-Sus_scrofa 1.6714 1.0223 464
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0051 0.0604 -0.1217 0.0061 0.1215
## (Intercept)-Canis_latrans -2.7592 0.1818 -3.1403 -2.7571 -2.4170
## (Intercept)-Sciurus_niger -4.3586 0.6339 -5.5406 -4.3723 -3.0647
## (Intercept)-Procyon_lotor -2.2882 0.1406 -2.5798 -2.2817 -2.0293
## (Intercept)-Dasypus_novemcinctus -1.7266 0.1610 -2.0321 -1.7194 -1.4233
## (Intercept)-Lynx_rufus -3.7030 0.3699 -4.4625 -3.6810 -3.0540
## (Intercept)-Didelphis_virginiana -2.5411 0.2929 -3.1629 -2.5300 -2.0109
## (Intercept)-Sylvilagus_floridanus -3.1968 0.2994 -3.8257 -3.1877 -2.6879
## (Intercept)-Sciurus_carolinensis -2.5984 0.3078 -3.2705 -2.5868 -2.0362
## (Intercept)-Vulpes_vulpes -4.2580 0.7550 -5.7543 -4.2277 -2.9107
## (Intercept)-Sus_scrofa -3.1702 0.5865 -4.3619 -3.1443 -2.0711
## shrub_cover-Odocoileus_virginianus -0.0523 0.0627 -0.1794 -0.0509 0.0710
## shrub_cover-Canis_latrans -0.2504 0.2112 -0.6698 -0.2441 0.1603
## shrub_cover-Sciurus_niger -0.3792 0.4403 -1.2995 -0.3694 0.4643
## shrub_cover-Procyon_lotor 0.2536 0.1655 -0.0807 0.2569 0.5738
## shrub_cover-Dasypus_novemcinctus 0.7989 0.2914 0.2396 0.7899 1.3861
## shrub_cover-Lynx_rufus -0.2247 0.3396 -0.8974 -0.2158 0.4329
## shrub_cover-Didelphis_virginiana 0.8779 0.3548 0.2472 0.8615 1.6367
## shrub_cover-Sylvilagus_floridanus 0.2626 0.3805 -0.4709 0.2614 1.0318
## shrub_cover-Sciurus_carolinensis 0.7553 0.3932 0.0037 0.7441 1.5209
## shrub_cover-Vulpes_vulpes -0.0234 0.4909 -1.0184 -0.0257 0.9643
## shrub_cover-Sus_scrofa 0.4514 0.6850 -0.9072 0.4460 1.8796
## veg_height-Odocoileus_virginianus -0.2988 0.0647 -0.4225 -0.2985 -0.1766
## veg_height-Canis_latrans -0.5872 0.1816 -0.9601 -0.5855 -0.2276
## veg_height-Sciurus_niger -0.0746 0.3763 -0.8066 -0.0707 0.6993
## veg_height-Procyon_lotor 0.3285 0.1214 0.0908 0.3245 0.5681
## veg_height-Dasypus_novemcinctus 0.2242 0.1346 -0.0253 0.2191 0.4929
## veg_height-Lynx_rufus 0.0134 0.2380 -0.4609 0.0171 0.4670
## veg_height-Didelphis_virginiana 0.3896 0.2403 -0.0553 0.3811 0.8983
## veg_height-Sylvilagus_floridanus 0.0906 0.2457 -0.4039 0.0945 0.5515
## veg_height-Sciurus_carolinensis 0.0574 0.2077 -0.3428 0.0543 0.4828
## veg_height-Vulpes_vulpes -0.1593 0.3010 -0.7673 -0.1539 0.4089
## veg_height-Sus_scrofa -0.1282 0.3222 -0.7902 -0.1235 0.4668
## week-Odocoileus_virginianus 0.2131 0.0612 0.0904 0.2142 0.3276
## week-Canis_latrans 0.0739 0.1333 -0.1919 0.0779 0.3155
## week-Sciurus_niger -0.3044 0.3094 -0.9591 -0.2761 0.1900
## week-Procyon_lotor -0.0433 0.1187 -0.2894 -0.0380 0.1704
## week-Dasypus_novemcinctus -0.1607 0.1335 -0.4539 -0.1547 0.0790
## week-Lynx_rufus -0.0190 0.1882 -0.4261 -0.0139 0.3248
## week-Didelphis_virginiana -0.1984 0.2143 -0.6359 -0.1819 0.1772
## week-Sylvilagus_floridanus -0.1455 0.2003 -0.5581 -0.1399 0.2211
## week-Sciurus_carolinensis 0.1411 0.1815 -0.2353 0.1483 0.4847
## week-Vulpes_vulpes -0.1048 0.2639 -0.6674 -0.0917 0.3736
## week-Sus_scrofa 0.0978 0.2321 -0.3353 0.0931 0.5372
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0088 1500
## (Intercept)-Canis_latrans 1.0115 682
## (Intercept)-Sciurus_niger 1.1267 125
## (Intercept)-Procyon_lotor 1.0073 957
## (Intercept)-Dasypus_novemcinctus 1.0022 1137
## (Intercept)-Lynx_rufus 1.0352 188
## (Intercept)-Didelphis_virginiana 1.0370 847
## (Intercept)-Sylvilagus_floridanus 1.0071 464
## (Intercept)-Sciurus_carolinensis 1.0024 837
## (Intercept)-Vulpes_vulpes 1.0608 126
## (Intercept)-Sus_scrofa 1.0142 590
## shrub_cover-Odocoileus_virginianus 1.0000 1500
## shrub_cover-Canis_latrans 1.0028 826
## shrub_cover-Sciurus_niger 1.0157 393
## shrub_cover-Procyon_lotor 1.0055 1246
## shrub_cover-Dasypus_novemcinctus 1.0042 1062
## shrub_cover-Lynx_rufus 1.0104 413
## shrub_cover-Didelphis_virginiana 1.0013 539
## shrub_cover-Sylvilagus_floridanus 1.0089 581
## shrub_cover-Sciurus_carolinensis 1.0024 759
## shrub_cover-Vulpes_vulpes 1.0004 463
## shrub_cover-Sus_scrofa 1.0056 828
## veg_height-Odocoileus_virginianus 1.0000 1641
## veg_height-Canis_latrans 1.0133 813
## veg_height-Sciurus_niger 1.0049 480
## veg_height-Procyon_lotor 1.0003 1189
## veg_height-Dasypus_novemcinctus 1.0104 1324
## veg_height-Lynx_rufus 1.0205 569
## veg_height-Didelphis_virginiana 1.0217 991
## veg_height-Sylvilagus_floridanus 1.0081 775
## veg_height-Sciurus_carolinensis 1.0086 850
## veg_height-Vulpes_vulpes 1.0439 598
## veg_height-Sus_scrofa 1.0006 1084
## week-Odocoileus_virginianus 1.0011 1375
## week-Canis_latrans 1.0011 1377
## week-Sciurus_niger 1.1117 351
## week-Procyon_lotor 1.0011 1229
## week-Dasypus_novemcinctus 1.0041 1331
## week-Lynx_rufus 1.0010 865
## week-Didelphis_virginiana 1.0198 1045
## week-Sylvilagus_floridanus 1.0021 829
## week-Sciurus_carolinensis 1.0021 1500
## week-Vulpes_vulpes 1.0447 845
## week-Sus_scrofa 1.0040 1322
#Includes all covariates of detection and only quadratic cogongrass cover for occupancy
ms_full_cogonQ <- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.full,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7187
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9069 0.5965 -2.0342 -0.8986 0.3604 1.0141 853
## Avg_Cogongrass_Cover -0.7705 0.3919 -1.5815 -0.7522 -0.0227 1.0197 310
## I(Avg_Cogongrass_Cover^2) 0.8522 0.3406 0.2605 0.8224 1.5854 1.0826 246
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.3861 2.4707 0.7598 2.6853 10.1919 1.0087 699
## Avg_Cogongrass_Cover 0.3633 0.3898 0.0395 0.2362 1.4057 1.0938 518
## I(Avg_Cogongrass_Cover^2) 0.4102 0.8612 0.0389 0.1975 1.8653 1.2388 322
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5016 0.493 0.047 0.3367 1.8825 1.1168 161
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6107 0.4159 -3.4205 -2.6295 -1.7249 1.0021 1151
## shrub_cover 0.2278 0.2354 -0.2528 0.2286 0.7070 1.0005 976
## veg_height 0.0169 0.1586 -0.3040 0.0150 0.3257 1.0083 845
## week -0.0432 0.1307 -0.3298 -0.0341 0.1837 1.0046 1039
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0117 1.2644 0.6825 1.6924 5.1194 1.0080 421
## shrub_cover 0.4538 0.3914 0.0840 0.3503 1.4426 1.0067 419
## veg_height 0.1836 0.1253 0.0501 0.1484 0.5276 1.0152 917
## week 0.1019 0.0851 0.0249 0.0786 0.3238 1.0068 704
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.7257 1.2811 0.6455 2.5934
## (Intercept)-Canis_latrans -0.4185 0.6490 -1.7009 -0.4266
## (Intercept)-Sciurus_niger -0.9365 1.0609 -2.7652 -1.0218
## (Intercept)-Procyon_lotor -0.1438 0.6548 -1.3553 -0.1738
## (Intercept)-Dasypus_novemcinctus -1.3302 0.6232 -2.6401 -1.3035
## (Intercept)-Lynx_rufus -0.9600 0.9464 -2.7506 -1.0213
## (Intercept)-Didelphis_virginiana -1.8355 0.7220 -3.2809 -1.8274
## (Intercept)-Sylvilagus_floridanus -1.0345 0.7630 -2.5611 -1.0524
## (Intercept)-Sciurus_carolinensis -2.3233 0.7727 -3.8983 -2.3054
## (Intercept)-Vulpes_vulpes -2.1553 1.1879 -4.3844 -2.1945
## (Intercept)-Sus_scrofa -2.3929 0.8780 -4.2849 -2.3368
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7624 0.6104 -1.9940 -0.7500
## Avg_Cogongrass_Cover-Canis_latrans -0.4026 0.5373 -1.4175 -0.4337
## Avg_Cogongrass_Cover-Sciurus_niger -1.0327 0.6683 -2.4525 -0.9697
## Avg_Cogongrass_Cover-Procyon_lotor -0.6891 0.5062 -1.6801 -0.6846
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5642 0.4833 -1.5349 -0.5545
## Avg_Cogongrass_Cover-Lynx_rufus -0.7212 0.5829 -1.9155 -0.7192
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.5218 0.5351 -1.5019 -0.5418
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.1512 0.6267 -2.5543 -1.0902
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8205 0.5501 -1.9175 -0.7957
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8017 0.6345 -2.1154 -0.7804
## Avg_Cogongrass_Cover-Sus_scrofa -1.0328 0.6551 -2.4427 -0.9922
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.1424 0.8036 0.0870 1.0088
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.1770 0.6510 0.2508 1.0472
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.4585 0.6830 -1.0609 0.4801
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.0400 0.6073 0.1874 0.9459
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7526 0.3587 0.0980 0.7375
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.1519 0.5135 0.3035 1.0877
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.6248 0.4190 -0.1043 0.5949
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.7735 0.5359 -0.0629 0.7151
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.9955 0.4115 0.3004 0.9696
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 0.9639 0.5078 0.0971 0.9175
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.5248 0.5502 -0.6416 0.5530
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 5.7371 1.0532 345
## (Intercept)-Canis_latrans 0.8935 1.0424 687
## (Intercept)-Sciurus_niger 1.3663 1.0012 265
## (Intercept)-Procyon_lotor 1.1743 1.0045 1228
## (Intercept)-Dasypus_novemcinctus -0.1928 1.0112 880
## (Intercept)-Lynx_rufus 1.0302 1.0548 372
## (Intercept)-Didelphis_virginiana -0.4667 1.0085 701
## (Intercept)-Sylvilagus_floridanus 0.4672 1.0109 570
## (Intercept)-Sciurus_carolinensis -0.9322 1.0025 693
## (Intercept)-Vulpes_vulpes 0.3700 1.0086 220
## (Intercept)-Sus_scrofa -0.7771 1.0134 600
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.4288 1.0171 527
## Avg_Cogongrass_Cover-Canis_latrans 0.8123 1.0249 549
## Avg_Cogongrass_Cover-Sciurus_niger 0.1118 1.0207 457
## Avg_Cogongrass_Cover-Procyon_lotor 0.3705 1.0170 528
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3799 1.0055 613
## Avg_Cogongrass_Cover-Lynx_rufus 0.3801 1.0239 520
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5791 1.0133 640
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0508 1.0538 456
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2024 1.0157 647
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.4004 1.0040 563
## Avg_Cogongrass_Cover-Sus_scrofa 0.1122 1.0187 541
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 3.0153 1.1316 235
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.7805 1.0615 291
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.8021 1.0123 190
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.4718 1.0763 371
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5110 1.0151 549
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.2899 1.0571 409
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.6061 1.0270 591
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.9447 1.0677 254
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.8478 1.0231 490
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.1379 1.0696 288
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.6026 1.0293 550
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0050 0.0590 -0.1102 0.0037 0.1191
## (Intercept)-Canis_latrans -2.7489 0.1904 -3.1346 -2.7418 -2.4012
## (Intercept)-Sciurus_niger -4.1720 0.6605 -5.5117 -4.1405 -2.9794
## (Intercept)-Procyon_lotor -2.3126 0.1468 -2.6057 -2.3059 -2.0391
## (Intercept)-Dasypus_novemcinctus -1.7300 0.1533 -2.0299 -1.7261 -1.4405
## (Intercept)-Lynx_rufus -3.6332 0.3639 -4.3451 -3.6311 -2.9668
## (Intercept)-Didelphis_virginiana -2.5817 0.2948 -3.1638 -2.5713 -2.0303
## (Intercept)-Sylvilagus_floridanus -3.2344 0.3074 -3.9122 -3.2213 -2.6896
## (Intercept)-Sciurus_carolinensis -2.5848 0.3129 -3.2065 -2.5748 -2.0003
## (Intercept)-Vulpes_vulpes -4.0945 0.7239 -5.6046 -4.0356 -2.8112
## (Intercept)-Sus_scrofa -3.2754 0.5659 -4.3804 -3.2569 -2.2188
## shrub_cover-Odocoileus_virginianus -0.0550 0.0654 -0.1853 -0.0536 0.0741
## shrub_cover-Canis_latrans -0.2389 0.2150 -0.6596 -0.2393 0.1650
## shrub_cover-Sciurus_niger -0.3633 0.4586 -1.3233 -0.3479 0.5367
## shrub_cover-Procyon_lotor 0.2282 0.1678 -0.1017 0.2262 0.5446
## shrub_cover-Dasypus_novemcinctus 0.7967 0.2889 0.2830 0.7831 1.3738
## shrub_cover-Lynx_rufus -0.2358 0.3529 -0.9028 -0.2480 0.4640
## shrub_cover-Didelphis_virginiana 0.9151 0.3799 0.2299 0.8971 1.7395
## shrub_cover-Sylvilagus_floridanus 0.2460 0.3768 -0.4483 0.2349 1.0107
## shrub_cover-Sciurus_carolinensis 0.7462 0.3889 0.0261 0.7363 1.5420
## shrub_cover-Vulpes_vulpes -0.0417 0.5315 -1.0938 -0.0228 1.0099
## shrub_cover-Sus_scrofa 0.5287 0.6967 -0.7945 0.5102 1.9894
## veg_height-Odocoileus_virginianus -0.2949 0.0652 -0.4205 -0.2951 -0.1682
## veg_height-Canis_latrans -0.5724 0.1826 -0.9456 -0.5655 -0.2481
## veg_height-Sciurus_niger 0.0161 0.3897 -0.7572 -0.0015 0.8762
## veg_height-Procyon_lotor 0.3395 0.1241 0.1106 0.3372 0.5826
## veg_height-Dasypus_novemcinctus 0.2260 0.1336 -0.0340 0.2232 0.4966
## veg_height-Lynx_rufus 0.0788 0.2348 -0.3922 0.0854 0.5371
## veg_height-Didelphis_virginiana 0.3889 0.2468 -0.0688 0.3813 0.8865
## veg_height-Sylvilagus_floridanus 0.1247 0.2471 -0.3311 0.1207 0.6320
## veg_height-Sciurus_carolinensis 0.0628 0.2145 -0.3479 0.0611 0.4803
## veg_height-Vulpes_vulpes -0.1021 0.3069 -0.7229 -0.0881 0.4537
## veg_height-Sus_scrofa -0.1151 0.3419 -0.7811 -0.1104 0.5790
## week-Odocoileus_virginianus 0.2121 0.0589 0.0997 0.2121 0.3288
## week-Canis_latrans 0.0689 0.1273 -0.1907 0.0729 0.2984
## week-Sciurus_niger -0.3063 0.3036 -0.9826 -0.2712 0.2058
## week-Procyon_lotor -0.0465 0.1179 -0.2909 -0.0439 0.1775
## week-Dasypus_novemcinctus -0.1615 0.1329 -0.4347 -0.1647 0.0950
## week-Lynx_rufus -0.0376 0.1942 -0.4314 -0.0283 0.3399
## week-Didelphis_virginiana -0.2094 0.2162 -0.6743 -0.1946 0.1525
## week-Sylvilagus_floridanus -0.1509 0.2140 -0.5931 -0.1375 0.2232
## week-Sciurus_carolinensis 0.1487 0.1764 -0.1934 0.1560 0.4880
## week-Vulpes_vulpes -0.1074 0.2877 -0.7343 -0.0975 0.3999
## week-Sus_scrofa 0.1096 0.2313 -0.3731 0.1048 0.5641
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0008 2486
## (Intercept)-Canis_latrans 1.0164 583
## (Intercept)-Sciurus_niger 1.0234 118
## (Intercept)-Procyon_lotor 1.0230 1041
## (Intercept)-Dasypus_novemcinctus 1.0023 1329
## (Intercept)-Lynx_rufus 1.0617 288
## (Intercept)-Didelphis_virginiana 1.0162 790
## (Intercept)-Sylvilagus_floridanus 1.0083 428
## (Intercept)-Sciurus_carolinensis 1.0092 645
## (Intercept)-Vulpes_vulpes 1.0349 137
## (Intercept)-Sus_scrofa 1.0069 522
## shrub_cover-Odocoileus_virginianus 1.0063 1500
## shrub_cover-Canis_latrans 1.0188 790
## shrub_cover-Sciurus_niger 1.0030 227
## shrub_cover-Procyon_lotor 1.0156 1066
## shrub_cover-Dasypus_novemcinctus 1.0096 1149
## shrub_cover-Lynx_rufus 1.0082 394
## shrub_cover-Didelphis_virginiana 1.0015 550
## shrub_cover-Sylvilagus_floridanus 1.0113 555
## shrub_cover-Sciurus_carolinensis 1.0098 732
## shrub_cover-Vulpes_vulpes 1.0144 650
## shrub_cover-Sus_scrofa 1.0191 586
## veg_height-Odocoileus_virginianus 1.0075 1500
## veg_height-Canis_latrans 1.0026 722
## veg_height-Sciurus_niger 1.0070 458
## veg_height-Procyon_lotor 1.0025 1262
## veg_height-Dasypus_novemcinctus 1.0010 1500
## veg_height-Lynx_rufus 1.0052 731
## veg_height-Didelphis_virginiana 1.0052 850
## veg_height-Sylvilagus_floridanus 1.0107 698
## veg_height-Sciurus_carolinensis 1.0115 889
## veg_height-Vulpes_vulpes 1.0093 621
## veg_height-Sus_scrofa 1.0225 909
## week-Odocoileus_virginianus 1.0014 1772
## week-Canis_latrans 0.9998 1152
## week-Sciurus_niger 1.0076 461
## week-Procyon_lotor 1.0069 1149
## week-Dasypus_novemcinctus 1.0105 1354
## week-Lynx_rufus 1.0021 831
## week-Didelphis_virginiana 1.0057 987
## week-Sylvilagus_floridanus 0.9999 821
## week-Sciurus_carolinensis 1.0032 1345
## week-Vulpes_vulpes 1.0003 806
## week-Sus_scrofa 1.0157 1500
## Includes all covariates of detection and all covariates and quadratic cogongrass cover for occupancy
ms_full_fullQ <- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.full,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.full,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7825
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9406 1.1389 -2.9884 -1.0142 1.5506 1.0170 477
## Cogon_Patch_Size 0.0320 0.7448 -1.5407 0.0594 1.4443 1.0043 355
## Veg_shannon_index 1.4541 0.6270 0.3006 1.4301 2.7824 1.0117 349
## total_shrub_cover -0.3920 0.5097 -1.4921 -0.3608 0.4964 1.0708 262
## Avg_Cogongrass_Cover 0.4257 1.0160 -1.4868 0.3939 2.4050 1.1031 146
## Tree_Density -1.8551 0.7711 -3.4062 -1.8520 -0.3769 1.0165 301
## Avg_Canopy_Cover 1.9749 0.7069 0.6557 1.9551 3.4006 1.0042 265
## I(Avg_Cogongrass_Cover^2) 1.6901 0.6044 0.6014 1.6664 3.0143 1.1876 121
## avg_veg_height -0.2438 0.5268 -1.2936 -0.2158 0.7724 1.0631 177
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 24.3330 28.9992 4.7375 16.7032 89.5900 1.1888 98
## Cogon_Patch_Size 3.3437 4.1103 0.1301 1.9616 14.2942 1.0147 214
## Veg_shannon_index 1.2957 2.0253 0.0568 0.6101 6.3234 1.0734 371
## total_shrub_cover 0.8032 1.2213 0.0540 0.4547 3.7399 1.2648 239
## Avg_Cogongrass_Cover 1.3143 2.2051 0.0604 0.5784 7.3276 1.0470 276
## Tree_Density 3.5563 6.4979 0.0647 1.4504 21.1480 1.3276 166
## Avg_Canopy_Cover 3.1664 3.8916 0.1541 1.9280 14.1504 1.0249 243
## I(Avg_Cogongrass_Cover^2) 0.9005 1.4547 0.0524 0.4283 5.0278 1.0246 243
## avg_veg_height 0.5354 0.6994 0.0418 0.3011 2.3328 1.0161 383
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.0747 1.5512 0.0512 0.49 5.5642 1.4588 58
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6699 0.4710 -3.5378 -2.6776 -1.6371 1.0181 1005
## shrub_cover 0.2952 0.2597 -0.2487 0.2974 0.8093 1.0285 526
## veg_height 0.0287 0.1493 -0.2702 0.0267 0.3154 1.0011 908
## week -0.0387 0.1251 -0.3052 -0.0341 0.1944 1.0212 756
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.3053 1.6068 0.8047 1.9203 5.7415 1.0378 639
## shrub_cover 0.5168 0.4246 0.1084 0.4031 1.5962 1.0153 331
## veg_height 0.1768 0.1107 0.0490 0.1514 0.4778 1.0019 1097
## week 0.0955 0.0693 0.0243 0.0748 0.2917 1.0035 884
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 8.0267 4.6742 2.9056
## (Intercept)-Canis_latrans -1.0399 1.1158 -3.2179
## (Intercept)-Sciurus_niger 0.8572 2.3454 -3.0715
## (Intercept)-Procyon_lotor -0.1845 1.1217 -2.4180
## (Intercept)-Dasypus_novemcinctus -2.5694 1.1221 -5.0419
## (Intercept)-Lynx_rufus 0.9142 2.8514 -3.1603
## (Intercept)-Didelphis_virginiana -4.2969 1.5168 -7.4965
## (Intercept)-Sylvilagus_floridanus -2.4203 1.4561 -5.5382
## (Intercept)-Sciurus_carolinensis -4.7451 1.5814 -8.2649
## (Intercept)-Vulpes_vulpes -4.4129 2.7500 -8.9643
## (Intercept)-Sus_scrofa -6.0676 2.1908 -11.3882
## Cogon_Patch_Size-Odocoileus_virginianus 0.1752 1.4240 -2.5481
## Cogon_Patch_Size-Canis_latrans 1.9158 1.4517 -0.1511
## Cogon_Patch_Size-Sciurus_niger -0.7527 2.0035 -5.3929
## Cogon_Patch_Size-Procyon_lotor -0.1373 0.7104 -1.5735
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2035 0.7526 -1.3176
## Cogon_Patch_Size-Lynx_rufus -0.1714 1.4197 -2.9826
## Cogon_Patch_Size-Didelphis_virginiana 1.8758 1.0255 0.0509
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0131 1.6836 -5.2839
## Cogon_Patch_Size-Sciurus_carolinensis -0.9482 1.4642 -4.7489
## Cogon_Patch_Size-Vulpes_vulpes -0.6161 1.7241 -5.0294
## Cogon_Patch_Size-Sus_scrofa -0.4062 1.5403 -4.2453
## Veg_shannon_index-Odocoileus_virginianus 1.2810 1.1447 -1.0132
## Veg_shannon_index-Canis_latrans 1.7818 0.9158 0.2711
## Veg_shannon_index-Sciurus_niger 1.8636 1.2468 -0.1422
## Veg_shannon_index-Procyon_lotor 1.5059 0.7853 -0.0196
## Veg_shannon_index-Dasypus_novemcinctus 1.0204 0.7779 -0.5639
## Veg_shannon_index-Lynx_rufus 1.4760 1.1505 -0.7141
## Veg_shannon_index-Didelphis_virginiana 1.3696 0.9197 -0.4878
## Veg_shannon_index-Sylvilagus_floridanus 1.8562 1.0643 0.1915
## Veg_shannon_index-Sciurus_carolinensis 0.9755 0.9685 -1.2966
## Veg_shannon_index-Vulpes_vulpes 1.1458 1.1361 -1.4488
## Veg_shannon_index-Sus_scrofa 2.3835 1.2754 0.5936
## total_shrub_cover-Odocoileus_virginianus -0.2033 0.8939 -1.9832
## total_shrub_cover-Canis_latrans 0.1591 0.6236 -0.9156
## total_shrub_cover-Sciurus_niger -0.5779 1.0140 -2.9559
## total_shrub_cover-Procyon_lotor -0.9577 0.6579 -2.4115
## total_shrub_cover-Dasypus_novemcinctus -0.1325 0.6250 -1.4750
## total_shrub_cover-Lynx_rufus -0.5564 1.0077 -2.6623
## total_shrub_cover-Didelphis_virginiana -0.6354 0.7556 -2.2768
## total_shrub_cover-Sylvilagus_floridanus -0.4670 0.8338 -2.3184
## total_shrub_cover-Sciurus_carolinensis -0.3289 0.8545 -2.3004
## total_shrub_cover-Vulpes_vulpes -0.6020 1.0280 -2.7427
## total_shrub_cover-Sus_scrofa -0.1751 0.9182 -2.1376
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.3386 1.3667 -2.3856
## Avg_Cogongrass_Cover-Canis_latrans 0.6594 1.2526 -1.5963
## Avg_Cogongrass_Cover-Sciurus_niger -0.0099 1.6108 -3.6283
## Avg_Cogongrass_Cover-Procyon_lotor 0.5989 1.2441 -1.7388
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1048 1.3831 -1.3893
## Avg_Cogongrass_Cover-Lynx_rufus 0.4593 1.3732 -2.1551
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5714 1.3027 -1.9882
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0934 1.3460 -2.9212
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4218 1.3049 -2.0970
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.5684 1.3575 -1.9750
## Avg_Cogongrass_Cover-Sus_scrofa 0.2173 1.3528 -2.5783
## Tree_Density-Odocoileus_virginianus -0.8564 1.4785 -2.8932
## Tree_Density-Canis_latrans -2.6570 1.3762 -6.0187
## Tree_Density-Sciurus_niger -1.6660 1.6957 -4.6596
## Tree_Density-Procyon_lotor -1.8150 0.9096 -3.6042
## Tree_Density-Dasypus_novemcinctus -3.8239 2.1071 -9.3471
## Tree_Density-Lynx_rufus -0.6067 1.6603 -2.9981
## Tree_Density-Didelphis_virginiana -2.2336 1.2581 -5.3857
## Tree_Density-Sylvilagus_floridanus -2.4548 1.4728 -6.0200
## Tree_Density-Sciurus_carolinensis -2.4843 1.4331 -6.0252
## Tree_Density-Vulpes_vulpes -1.7494 1.5561 -4.8899
## Tree_Density-Sus_scrofa -2.2151 1.5555 -5.7161
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3701 1.5366 -1.7418
## Avg_Canopy_Cover-Canis_latrans 0.1362 0.6966 -1.2130
## Avg_Canopy_Cover-Sciurus_niger 2.6101 1.9303 -0.5624
## Avg_Canopy_Cover-Procyon_lotor 1.6594 0.7962 0.2200
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.1706 0.8543 0.8146
## Avg_Canopy_Cover-Lynx_rufus 2.0145 1.5212 -0.8156
## Avg_Canopy_Cover-Didelphis_virginiana 3.0133 1.2196 1.1733
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.8027 1.7789 1.3854
## Avg_Canopy_Cover-Sciurus_carolinensis 2.8603 1.3845 0.9020
## Avg_Canopy_Cover-Vulpes_vulpes 2.5571 1.3843 0.4076
## Avg_Canopy_Cover-Sus_scrofa 2.1092 0.9869 0.5358
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.9587 1.1467 0.1522
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.0706 0.9147 0.6260
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3524 1.1519 -1.0711
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.0266 0.8949 0.5287
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5470 0.7559 0.1939
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.2224 1.0541 0.6634
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2957 0.7400 -0.1330
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.4726 0.8181 -0.0201
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.8270 0.7754 0.5672
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.9551 0.8575 0.5367
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.3098 1.0364 -0.9176
## avg_veg_height-Odocoileus_virginianus -0.2605 0.8085 -1.9396
## avg_veg_height-Canis_latrans -0.3509 0.6553 -1.7476
## avg_veg_height-Sciurus_niger -0.4263 0.9665 -2.5781
## avg_veg_height-Procyon_lotor -0.0342 0.6595 -1.3480
## avg_veg_height-Dasypus_novemcinctus 0.0944 0.6695 -1.1978
## avg_veg_height-Lynx_rufus -0.4744 0.8708 -2.4209
## avg_veg_height-Didelphis_virginiana -0.4319 0.7258 -1.9448
## avg_veg_height-Sylvilagus_floridanus -0.2845 0.7461 -1.8508
## avg_veg_height-Sciurus_carolinensis 0.0848 0.7149 -1.3200
## avg_veg_height-Vulpes_vulpes -0.3968 0.8616 -2.3162
## avg_veg_height-Sus_scrofa -0.2408 0.7640 -1.7627
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.0738 17.4956 1.1763 77
## (Intercept)-Canis_latrans -1.0588 1.3866 1.0197 372
## (Intercept)-Sciurus_niger 0.5879 6.2352 1.1275 152
## (Intercept)-Procyon_lotor -0.2175 2.0693 1.0208 432
## (Intercept)-Dasypus_novemcinctus -2.4712 -0.6466 1.1234 239
## (Intercept)-Lynx_rufus 0.4761 6.7974 1.5150 65
## (Intercept)-Didelphis_virginiana -4.2284 -1.5890 1.0539 276
## (Intercept)-Sylvilagus_floridanus -2.3684 0.2886 1.0723 377
## (Intercept)-Sciurus_carolinensis -4.6248 -2.0165 1.0671 265
## (Intercept)-Vulpes_vulpes -4.6567 3.0821 1.3582 67
## (Intercept)-Sus_scrofa -5.8445 -2.3580 1.0635 182
## Cogon_Patch_Size-Odocoileus_virginianus 0.1379 3.2939 1.0023 618
## Cogon_Patch_Size-Canis_latrans 1.6689 5.5386 1.0126 256
## Cogon_Patch_Size-Sciurus_niger -0.5244 2.6679 1.0510 199
## Cogon_Patch_Size-Procyon_lotor -0.1374 1.2847 1.0204 627
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2092 1.6936 1.0075 362
## Cogon_Patch_Size-Lynx_rufus -0.2094 2.8163 1.0667 188
## Cogon_Patch_Size-Didelphis_virginiana 1.8200 4.2098 1.0507 180
## Cogon_Patch_Size-Sylvilagus_floridanus -0.6560 1.3843 1.0053 263
## Cogon_Patch_Size-Sciurus_carolinensis -0.6827 1.1028 1.0102 311
## Cogon_Patch_Size-Vulpes_vulpes -0.3983 2.1537 1.0059 272
## Cogon_Patch_Size-Sus_scrofa -0.1860 2.0224 1.0066 399
## Veg_shannon_index-Odocoileus_virginianus 1.2888 3.5523 1.0079 410
## Veg_shannon_index-Canis_latrans 1.6565 3.9737 1.0258 476
## Veg_shannon_index-Sciurus_niger 1.7221 4.8324 1.0522 363
## Veg_shannon_index-Procyon_lotor 1.4709 3.0617 1.0084 342
## Veg_shannon_index-Dasypus_novemcinctus 1.0559 2.4994 1.0025 509
## Veg_shannon_index-Lynx_rufus 1.4381 4.0347 1.0624 413
## Veg_shannon_index-Didelphis_virginiana 1.3715 3.2250 1.0075 501
## Veg_shannon_index-Sylvilagus_floridanus 1.7308 4.4075 1.0006 385
## Veg_shannon_index-Sciurus_carolinensis 1.0503 2.7808 1.0038 483
## Veg_shannon_index-Vulpes_vulpes 1.2104 3.3685 1.0035 409
## Veg_shannon_index-Sus_scrofa 2.1510 5.7652 1.0061 255
## total_shrub_cover-Odocoileus_virginianus -0.2141 1.7132 1.0254 582
## total_shrub_cover-Canis_latrans 0.1189 1.4743 1.0112 635
## total_shrub_cover-Sciurus_niger -0.4636 1.1582 1.0932 275
## total_shrub_cover-Procyon_lotor -0.8855 0.1184 1.0092 500
## total_shrub_cover-Dasypus_novemcinctus -0.1190 1.0344 1.0053 692
## total_shrub_cover-Lynx_rufus -0.5017 1.2348 1.0278 333
## total_shrub_cover-Didelphis_virginiana -0.5712 0.6379 1.0327 410
## total_shrub_cover-Sylvilagus_floridanus -0.4022 1.0210 1.1350 419
## total_shrub_cover-Sciurus_carolinensis -0.2810 1.2282 1.0918 414
## total_shrub_cover-Vulpes_vulpes -0.4860 1.0550 1.1407 301
## total_shrub_cover-Sus_scrofa -0.1671 1.6601 1.0204 475
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2893 2.9672 1.0413 224
## Avg_Cogongrass_Cover-Canis_latrans 0.6097 3.3426 1.0611 192
## Avg_Cogongrass_Cover-Sciurus_niger 0.0934 2.8203 1.0774 189
## Avg_Cogongrass_Cover-Procyon_lotor 0.5264 3.1384 1.0963 175
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9772 4.1050 1.0225 167
## Avg_Cogongrass_Cover-Lynx_rufus 0.4130 3.2760 1.0937 185
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5472 3.2843 1.0774 209
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0563 2.4414 1.0512 217
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3781 2.9107 1.0765 183
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.4659 3.3280 1.0655 177
## Avg_Cogongrass_Cover-Sus_scrofa 0.1877 2.7748 1.0398 233
## Tree_Density-Odocoileus_virginianus -1.0324 2.7868 1.0494 324
## Tree_Density-Canis_latrans -2.4061 -0.6900 1.0910 165
## Tree_Density-Sciurus_niger -1.7691 2.2756 1.0816 171
## Tree_Density-Procyon_lotor -1.8058 0.0117 1.0086 350
## Tree_Density-Dasypus_novemcinctus -3.2229 -1.3463 1.1796 122
## Tree_Density-Lynx_rufus -0.9165 3.4499 1.2642 157
## Tree_Density-Didelphis_virginiana -2.1014 -0.1796 1.0523 498
## Tree_Density-Sylvilagus_floridanus -2.2623 -0.0785 1.0686 341
## Tree_Density-Sciurus_carolinensis -2.2946 -0.2283 1.0794 311
## Tree_Density-Vulpes_vulpes -1.8095 1.8911 1.0543 297
## Tree_Density-Sus_scrofa -2.1242 0.7270 1.0292 432
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3710 4.5109 1.0059 268
## Avg_Canopy_Cover-Canis_latrans 0.1294 1.4682 1.0346 439
## Avg_Canopy_Cover-Sciurus_niger 2.3486 7.1865 1.0093 201
## Avg_Canopy_Cover-Procyon_lotor 1.6137 3.4266 1.0166 527
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0580 4.2286 1.0488 279
## Avg_Canopy_Cover-Lynx_rufus 1.9102 5.2662 1.1031 122
## Avg_Canopy_Cover-Didelphis_virginiana 2.8036 6.0783 1.0061 237
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.4664 8.2127 1.0356 267
## Avg_Canopy_Cover-Sciurus_carolinensis 2.6032 6.2328 1.0281 145
## Avg_Canopy_Cover-Vulpes_vulpes 2.2997 5.8831 1.0318 207
## Avg_Canopy_Cover-Sus_scrofa 1.9888 4.3956 1.0334 550
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.8000 4.6473 1.0631 210
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.9625 4.2626 1.0724 164
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3833 3.5676 1.0179 171
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.9313 4.1182 1.1561 211
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4861 3.2155 1.1300 164
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.0325 4.8336 1.1268 175
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2808 2.7826 1.0603 148
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.4495 3.1855 1.0944 215
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7658 3.5104 1.1402 265
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.8817 3.8720 1.0566 157
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.3283 3.1991 1.0786 191
## avg_veg_height-Odocoileus_virginianus -0.2511 1.3164 1.0510 370
## avg_veg_height-Canis_latrans -0.3297 0.9135 1.0464 289
## avg_veg_height-Sciurus_niger -0.3452 1.2167 1.0199 301
## avg_veg_height-Procyon_lotor -0.0215 1.2955 1.0306 407
## avg_veg_height-Dasypus_novemcinctus 0.0992 1.4363 1.0079 376
## avg_veg_height-Lynx_rufus -0.3704 0.9601 1.0207 265
## avg_veg_height-Didelphis_virginiana -0.3933 0.8923 1.0302 328
## avg_veg_height-Sylvilagus_floridanus -0.2589 1.2384 1.0587 357
## avg_veg_height-Sciurus_carolinensis 0.0788 1.5714 1.0179 471
## avg_veg_height-Vulpes_vulpes -0.3411 1.1638 1.0673 279
## avg_veg_height-Sus_scrofa -0.2249 1.2802 1.0313 306
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0045 0.0608 -0.1154 0.0056 0.1195
## (Intercept)-Canis_latrans -2.6946 0.1844 -3.0850 -2.6877 -2.3617
## (Intercept)-Sciurus_niger -4.7444 0.4513 -5.5974 -4.7249 -3.9187
## (Intercept)-Procyon_lotor -2.3119 0.1485 -2.6181 -2.3103 -2.0278
## (Intercept)-Dasypus_novemcinctus -1.7556 0.1651 -2.0918 -1.7473 -1.4383
## (Intercept)-Lynx_rufus -3.9686 0.3656 -4.7373 -3.9605 -3.2661
## (Intercept)-Didelphis_virginiana -2.5533 0.2791 -3.1496 -2.5336 -2.0539
## (Intercept)-Sylvilagus_floridanus -3.2236 0.2761 -3.7793 -3.2210 -2.6755
## (Intercept)-Sciurus_carolinensis -2.6605 0.3117 -3.2949 -2.6541 -2.0811
## (Intercept)-Vulpes_vulpes -4.1994 0.7078 -5.7820 -4.1326 -2.9741
## (Intercept)-Sus_scrofa -3.2440 0.5903 -4.4410 -3.2282 -2.1183
## shrub_cover-Odocoileus_virginianus -0.0529 0.0648 -0.1756 -0.0527 0.0748
## shrub_cover-Canis_latrans -0.2705 0.2193 -0.7077 -0.2654 0.1590
## shrub_cover-Sciurus_niger -0.3380 0.4349 -1.2366 -0.3248 0.4910
## shrub_cover-Procyon_lotor 0.2572 0.1583 -0.0764 0.2633 0.5516
## shrub_cover-Dasypus_novemcinctus 0.8806 0.3047 0.3059 0.8747 1.4784
## shrub_cover-Lynx_rufus -0.2445 0.3625 -0.9958 -0.2364 0.4393
## shrub_cover-Didelphis_virginiana 0.9201 0.3664 0.2635 0.8974 1.6781
## shrub_cover-Sylvilagus_floridanus 0.5099 0.3865 -0.2146 0.4909 1.3154
## shrub_cover-Sciurus_carolinensis 0.8780 0.4068 0.1189 0.8746 1.6953
## shrub_cover-Vulpes_vulpes 0.1161 0.5499 -0.9931 0.1439 1.1683
## shrub_cover-Sus_scrofa 0.6376 0.7514 -0.7290 0.6035 2.2070
## veg_height-Odocoileus_virginianus -0.2961 0.0655 -0.4258 -0.2953 -0.1665
## veg_height-Canis_latrans -0.5198 0.1798 -0.8909 -0.5135 -0.1644
## veg_height-Sciurus_niger 0.0167 0.3298 -0.5908 0.0067 0.7167
## veg_height-Procyon_lotor 0.3452 0.1245 0.1009 0.3435 0.5903
## veg_height-Dasypus_novemcinctus 0.2441 0.1321 -0.0109 0.2433 0.5095
## veg_height-Lynx_rufus 0.1573 0.2255 -0.2873 0.1615 0.5754
## veg_height-Didelphis_virginiana 0.4032 0.2389 -0.0280 0.3918 0.9000
## veg_height-Sylvilagus_floridanus 0.1400 0.2455 -0.3281 0.1391 0.6055
## veg_height-Sciurus_carolinensis 0.0896 0.2042 -0.2786 0.0862 0.5040
## veg_height-Vulpes_vulpes -0.1425 0.3011 -0.7704 -0.1339 0.4058
## veg_height-Sus_scrofa -0.1244 0.3140 -0.7600 -0.1135 0.4546
## week-Odocoileus_virginianus 0.2123 0.0605 0.0944 0.2125 0.3389
## week-Canis_latrans 0.0828 0.1313 -0.1906 0.0877 0.3200
## week-Sciurus_niger -0.2747 0.3013 -1.0014 -0.2356 0.2220
## week-Procyon_lotor -0.0441 0.1167 -0.2818 -0.0408 0.1758
## week-Dasypus_novemcinctus -0.1591 0.1388 -0.4495 -0.1545 0.0982
## week-Lynx_rufus -0.0150 0.1922 -0.4181 -0.0103 0.3445
## week-Didelphis_virginiana -0.1985 0.2146 -0.6637 -0.1856 0.1767
## week-Sylvilagus_floridanus -0.1528 0.2010 -0.5725 -0.1399 0.1966
## week-Sciurus_carolinensis 0.1466 0.1730 -0.1947 0.1578 0.4836
## week-Vulpes_vulpes -0.1028 0.2737 -0.6965 -0.0907 0.3856
## week-Sus_scrofa 0.0874 0.2334 -0.3836 0.0888 0.5456
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 0.9998 1395
## (Intercept)-Canis_latrans 1.0023 711
## (Intercept)-Sciurus_niger 1.0197 169
## (Intercept)-Procyon_lotor 1.0113 824
## (Intercept)-Dasypus_novemcinctus 1.0024 1244
## (Intercept)-Lynx_rufus 1.2080 152
## (Intercept)-Didelphis_virginiana 1.0039 567
## (Intercept)-Sylvilagus_floridanus 1.0291 475
## (Intercept)-Sciurus_carolinensis 1.0139 518
## (Intercept)-Vulpes_vulpes 1.2248 91
## (Intercept)-Sus_scrofa 1.0171 222
## shrub_cover-Odocoileus_virginianus 1.0005 1378
## shrub_cover-Canis_latrans 1.0177 666
## shrub_cover-Sciurus_niger 1.0026 306
## shrub_cover-Procyon_lotor 0.9999 968
## shrub_cover-Dasypus_novemcinctus 1.0105 781
## shrub_cover-Lynx_rufus 1.0250 266
## shrub_cover-Didelphis_virginiana 1.0089 379
## shrub_cover-Sylvilagus_floridanus 1.0397 466
## shrub_cover-Sciurus_carolinensis 1.0293 461
## shrub_cover-Vulpes_vulpes 1.0311 465
## shrub_cover-Sus_scrofa 1.0138 209
## veg_height-Odocoileus_virginianus 1.0019 1500
## veg_height-Canis_latrans 1.0027 738
## veg_height-Sciurus_niger 1.0344 304
## veg_height-Procyon_lotor 1.0052 1046
## veg_height-Dasypus_novemcinctus 1.0022 1339
## veg_height-Lynx_rufus 1.0152 524
## veg_height-Didelphis_virginiana 1.0027 813
## veg_height-Sylvilagus_floridanus 1.0174 606
## veg_height-Sciurus_carolinensis 1.0169 867
## veg_height-Vulpes_vulpes 1.0087 596
## veg_height-Sus_scrofa 1.0079 947
## week-Odocoileus_virginianus 1.0024 1500
## week-Canis_latrans 1.0016 1345
## week-Sciurus_niger 1.0340 352
## week-Procyon_lotor 1.0033 1365
## week-Dasypus_novemcinctus 1.0039 1500
## week-Lynx_rufus 1.0081 794
## week-Didelphis_virginiana 1.0152 976
## week-Sylvilagus_floridanus 1.0072 1043
## week-Sciurus_carolinensis 1.0144 1305
## week-Vulpes_vulpes 1.0364 789
## week-Sus_scrofa 1.0026 1339
# Includes all covariates of occupancy and null for detection
ms_null_full <- msPGOcc(
occ.formula = occ.full,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5975
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0829 1.0615 -2.0798 -0.1252 2.2081 1.0311 283
## Cogon_Patch_Size -0.4548 0.5674 -1.5933 -0.4280 0.6581 1.0280 417
## Veg_shannon_index 1.2828 0.5250 0.2840 1.2956 2.3132 1.0142 270
## total_shrub_cover -0.1141 0.3694 -0.8193 -0.1208 0.6364 1.0281 331
## Avg_Cogongrass_Cover 2.6207 0.7037 1.2927 2.6414 4.0641 1.0028 136
## Tree_Density -1.7256 0.6287 -3.0529 -1.6982 -0.6051 1.0037 315
## Avg_Canopy_Cover 1.7637 0.4993 0.7978 1.7398 2.7875 1.0074 347
## avg_veg_height -0.6526 0.4219 -1.4872 -0.6556 0.2042 1.0010 276
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 18.0608 18.1276 4.0239 13.0483 61.6122 1.0525 81
## Cogon_Patch_Size 2.1905 3.0305 0.0943 1.2013 10.7620 1.0150 242
## Veg_shannon_index 0.9459 1.3061 0.0593 0.5134 4.5335 1.0192 267
## total_shrub_cover 0.4351 0.5644 0.0422 0.2536 1.8348 1.0368 506
## Avg_Cogongrass_Cover 0.6352 0.9723 0.0468 0.3373 2.9434 1.0479 709
## Tree_Density 1.6856 2.4732 0.0658 0.8038 8.4272 1.1120 199
## Avg_Canopy_Cover 1.3430 1.8456 0.0992 0.8049 5.6401 1.1165 274
## avg_veg_height 0.3537 0.4403 0.0382 0.2183 1.5138 1.0061 835
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.8353 1.0862 0.057 0.466 3.7957 1.2366 61
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5166 0.4516 -3.3703 -2.5206 -1.5952 1 1232
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1826 1.2408 0.7782 1.8669 5.4875 1.013 923
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 7.9055 2.8480 3.6982 7.4410
## (Intercept)-Canis_latrans 0.4803 0.8454 -1.0282 0.4261
## (Intercept)-Sciurus_niger 1.6674 2.6016 -2.1311 1.2770
## (Intercept)-Procyon_lotor 0.9762 0.8060 -0.6038 0.9745
## (Intercept)-Dasypus_novemcinctus -1.4093 0.7788 -3.2218 -1.3358
## (Intercept)-Lynx_rufus 2.7422 3.2451 -1.3716 2.1133
## (Intercept)-Didelphis_virginiana -2.8550 0.9690 -4.9305 -2.7933
## (Intercept)-Sylvilagus_floridanus -1.2552 1.0334 -3.4320 -1.1965
## (Intercept)-Sciurus_carolinensis -2.9844 1.0406 -5.2847 -2.9144
## (Intercept)-Vulpes_vulpes -1.9211 2.0221 -5.0918 -2.2295
## (Intercept)-Sus_scrofa -4.6201 1.4476 -7.8229 -4.5184
## Cogon_Patch_Size-Odocoileus_virginianus -0.3399 1.2187 -2.5356 -0.3843
## Cogon_Patch_Size-Canis_latrans 0.8690 1.0895 -0.6529 0.6694
## Cogon_Patch_Size-Sciurus_niger -1.0481 1.5493 -4.6414 -0.8870
## Cogon_Patch_Size-Procyon_lotor -0.5193 0.5907 -1.6629 -0.5214
## Cogon_Patch_Size-Dasypus_novemcinctus -0.4632 0.5389 -1.5795 -0.4543
## Cogon_Patch_Size-Lynx_rufus -0.4319 1.2095 -2.5116 -0.5353
## Cogon_Patch_Size-Didelphis_virginiana 0.9316 0.7952 -0.3366 0.8387
## Cogon_Patch_Size-Sylvilagus_floridanus -1.4031 1.3219 -4.8493 -1.1524
## Cogon_Patch_Size-Sciurus_carolinensis -1.3576 1.1616 -4.1425 -1.1397
## Cogon_Patch_Size-Vulpes_vulpes -1.0182 1.3044 -4.1862 -0.9008
## Cogon_Patch_Size-Sus_scrofa -0.7137 1.2423 -3.8641 -0.5061
## Veg_shannon_index-Odocoileus_virginianus 1.1493 1.0140 -1.1285 1.1902
## Veg_shannon_index-Canis_latrans 1.5906 0.7445 0.1966 1.5420
## Veg_shannon_index-Sciurus_niger 1.6758 1.1441 -0.2826 1.5715
## Veg_shannon_index-Procyon_lotor 1.3571 0.6880 0.0726 1.3391
## Veg_shannon_index-Dasypus_novemcinctus 1.0437 0.6388 -0.2322 1.0700
## Veg_shannon_index-Lynx_rufus 1.0357 1.0515 -1.1948 1.1123
## Veg_shannon_index-Didelphis_virginiana 1.2258 0.7298 -0.2399 1.2370
## Veg_shannon_index-Sylvilagus_floridanus 1.6708 0.7908 0.2763 1.6152
## Veg_shannon_index-Sciurus_carolinensis 0.8070 0.7666 -0.9007 0.8716
## Veg_shannon_index-Vulpes_vulpes 0.8446 0.8657 -0.9917 0.9187
## Veg_shannon_index-Sus_scrofa 2.2402 1.0399 0.6400 2.0498
## total_shrub_cover-Odocoileus_virginianus 0.0549 0.6756 -1.1154 0.0157
## total_shrub_cover-Canis_latrans 0.1451 0.5065 -0.7823 0.1150
## total_shrub_cover-Sciurus_niger -0.2833 0.7263 -1.8635 -0.2395
## total_shrub_cover-Procyon_lotor -0.5203 0.4940 -1.5664 -0.5063
## total_shrub_cover-Dasypus_novemcinctus 0.0901 0.4527 -0.7920 0.0764
## total_shrub_cover-Lynx_rufus -0.3519 0.7289 -1.9923 -0.2891
## total_shrub_cover-Didelphis_virginiana -0.2270 0.5527 -1.4123 -0.2087
## total_shrub_cover-Sylvilagus_floridanus -0.0682 0.5503 -1.1762 -0.0688
## total_shrub_cover-Sciurus_carolinensis 0.0143 0.5524 -1.1234 0.0190
## total_shrub_cover-Vulpes_vulpes -0.2274 0.7074 -1.7438 -0.1903
## total_shrub_cover-Sus_scrofa 0.1181 0.6448 -1.0798 0.0924
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.5847 0.9874 0.5315 2.5693
## Avg_Cogongrass_Cover-Canis_latrans 2.8204 0.8672 1.2577 2.7858
## Avg_Cogongrass_Cover-Sciurus_niger 2.3642 1.1039 -0.0201 2.4013
## Avg_Cogongrass_Cover-Procyon_lotor 2.7610 0.8673 1.1606 2.7448
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 2.9768 0.8879 1.3632 2.9446
## Avg_Cogongrass_Cover-Lynx_rufus 2.8007 0.9093 1.0921 2.7732
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.7178 0.8332 1.1043 2.7061
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.3240 0.8975 0.5101 2.3863
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.8382 0.8973 1.1914 2.8303
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.8865 0.9571 1.1066 2.8563
## Avg_Cogongrass_Cover-Sus_scrofa 2.3743 0.9541 0.2594 2.4658
## Tree_Density-Odocoileus_virginianus -0.8740 1.0226 -2.6152 -0.9929
## Tree_Density-Canis_latrans -2.0711 0.9867 -4.4193 -1.9315
## Tree_Density-Sciurus_niger -1.8284 1.2830 -4.7034 -1.7120
## Tree_Density-Procyon_lotor -1.3187 0.7090 -2.6723 -1.3257
## Tree_Density-Dasypus_novemcinctus -2.8312 1.3374 -6.0927 -2.5666
## Tree_Density-Lynx_rufus -0.9056 1.1878 -2.9700 -1.0159
## Tree_Density-Didelphis_virginiana -2.0651 1.0267 -4.6341 -1.8851
## Tree_Density-Sylvilagus_floridanus -2.1541 1.1072 -4.7320 -1.9952
## Tree_Density-Sciurus_carolinensis -2.2419 1.1988 -5.4307 -2.0322
## Tree_Density-Vulpes_vulpes -1.7699 1.1484 -4.4653 -1.7298
## Tree_Density-Sus_scrofa -2.0407 1.2772 -5.0598 -1.8391
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3881 1.0809 -0.8951 1.4754
## Avg_Canopy_Cover-Canis_latrans 0.4690 0.6603 -0.8154 0.4564
## Avg_Canopy_Cover-Sciurus_niger 2.1107 1.3286 -0.0713 1.9744
## Avg_Canopy_Cover-Procyon_lotor 1.7243 0.6449 0.5494 1.6771
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.8683 0.5992 0.7701 1.8151
## Avg_Canopy_Cover-Lynx_rufus 1.4969 1.1675 -0.7607 1.4698
## Avg_Canopy_Cover-Didelphis_virginiana 2.3834 0.7545 1.1125 2.2804
## Avg_Canopy_Cover-Sylvilagus_floridanus 2.7468 1.1470 1.1288 2.5566
## Avg_Canopy_Cover-Sciurus_carolinensis 2.1196 0.7105 0.9427 2.0559
## Avg_Canopy_Cover-Vulpes_vulpes 1.9988 1.0309 0.3690 1.8968
## Avg_Canopy_Cover-Sus_scrofa 1.9040 0.7309 0.6946 1.8278
## avg_veg_height-Odocoileus_virginianus -0.6902 0.6890 -2.1138 -0.6867
## avg_veg_height-Canis_latrans -0.8526 0.5350 -1.9531 -0.8321
## avg_veg_height-Sciurus_niger -0.7865 0.6613 -2.1717 -0.7509
## avg_veg_height-Procyon_lotor -0.5074 0.5371 -1.5432 -0.5337
## avg_veg_height-Dasypus_novemcinctus -0.4595 0.5309 -1.4606 -0.4819
## avg_veg_height-Lynx_rufus -0.6904 0.6751 -1.9866 -0.7001
## avg_veg_height-Didelphis_virginiana -0.7524 0.5673 -1.9536 -0.7381
## avg_veg_height-Sylvilagus_floridanus -0.8008 0.5840 -2.0421 -0.7675
## avg_veg_height-Sciurus_carolinensis -0.3417 0.6190 -1.4457 -0.3731
## avg_veg_height-Vulpes_vulpes -0.6700 0.6544 -1.9699 -0.6769
## avg_veg_height-Sus_scrofa -0.7008 0.6234 -1.9863 -0.6848
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 14.7295 1.1223 115
## (Intercept)-Canis_latrans 2.2487 1.0215 541
## (Intercept)-Sciurus_niger 8.1636 1.0151 70
## (Intercept)-Procyon_lotor 2.6452 1.0318 469
## (Intercept)-Dasypus_novemcinctus -0.0821 1.0082 515
## (Intercept)-Lynx_rufus 10.3588 1.2476 47
## (Intercept)-Didelphis_virginiana -1.1268 1.0038 745
## (Intercept)-Sylvilagus_floridanus 0.6450 1.0100 508
## (Intercept)-Sciurus_carolinensis -1.2174 1.0023 450
## (Intercept)-Vulpes_vulpes 3.1401 1.3026 76
## (Intercept)-Sus_scrofa -2.2295 1.0299 121
## Cogon_Patch_Size-Odocoileus_virginianus 2.3177 1.0116 489
## Cogon_Patch_Size-Canis_latrans 3.6597 1.0152 328
## Cogon_Patch_Size-Sciurus_niger 1.7588 1.1059 192
## Cogon_Patch_Size-Procyon_lotor 0.6473 1.0048 954
## Cogon_Patch_Size-Dasypus_novemcinctus 0.5573 1.0000 935
## Cogon_Patch_Size-Lynx_rufus 2.2996 1.0270 425
## Cogon_Patch_Size-Didelphis_virginiana 2.7306 1.0060 368
## Cogon_Patch_Size-Sylvilagus_floridanus 0.4080 1.0447 284
## Cogon_Patch_Size-Sciurus_carolinensis 0.2740 1.0189 407
## Cogon_Patch_Size-Vulpes_vulpes 1.2042 1.0159 241
## Cogon_Patch_Size-Sus_scrofa 1.1887 1.0098 492
## Veg_shannon_index-Odocoileus_virginianus 3.1855 1.0152 528
## Veg_shannon_index-Canis_latrans 3.2595 1.0316 446
## Veg_shannon_index-Sciurus_niger 4.3744 1.0169 314
## Veg_shannon_index-Procyon_lotor 2.7948 1.0392 253
## Veg_shannon_index-Dasypus_novemcinctus 2.2752 1.0088 657
## Veg_shannon_index-Lynx_rufus 2.9805 1.0060 365
## Veg_shannon_index-Didelphis_virginiana 2.6886 1.0051 390
## Veg_shannon_index-Sylvilagus_floridanus 3.4227 1.0230 418
## Veg_shannon_index-Sciurus_carolinensis 2.1695 1.0016 610
## Veg_shannon_index-Vulpes_vulpes 2.2829 1.0063 559
## Veg_shannon_index-Sus_scrofa 4.6668 1.0351 286
## total_shrub_cover-Odocoileus_virginianus 1.6086 1.0157 606
## total_shrub_cover-Canis_latrans 1.1932 1.0165 709
## total_shrub_cover-Sciurus_niger 1.0669 1.0189 478
## total_shrub_cover-Procyon_lotor 0.3723 1.0127 615
## total_shrub_cover-Dasypus_novemcinctus 1.0528 1.0062 865
## total_shrub_cover-Lynx_rufus 0.9077 1.0458 405
## total_shrub_cover-Didelphis_virginiana 0.7884 1.0028 707
## total_shrub_cover-Sylvilagus_floridanus 1.0737 1.0040 680
## total_shrub_cover-Sciurus_carolinensis 1.0853 1.0115 709
## total_shrub_cover-Vulpes_vulpes 1.0800 1.0183 519
## total_shrub_cover-Sus_scrofa 1.5524 1.0348 749
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.4682 1.0040 295
## Avg_Cogongrass_Cover-Canis_latrans 4.6118 1.0056 174
## Avg_Cogongrass_Cover-Sciurus_niger 4.4278 1.0022 212
## Avg_Cogongrass_Cover-Procyon_lotor 4.4800 1.0077 167
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 4.7643 1.0082 166
## Avg_Cogongrass_Cover-Lynx_rufus 4.6566 1.0072 149
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.4363 1.0044 222
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 3.9847 1.0022 218
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.7217 1.0025 200
## Avg_Cogongrass_Cover-Vulpes_vulpes 4.8994 1.0062 218
## Avg_Cogongrass_Cover-Sus_scrofa 4.0635 0.9996 218
## Tree_Density-Odocoileus_virginianus 1.5582 1.0571 340
## Tree_Density-Canis_latrans -0.5360 1.0118 339
## Tree_Density-Sciurus_niger 0.5348 1.0282 339
## Tree_Density-Procyon_lotor 0.0690 1.0182 465
## Tree_Density-Dasypus_novemcinctus -0.9423 1.0820 210
## Tree_Density-Lynx_rufus 1.6452 1.1079 141
## Tree_Density-Didelphis_virginiana -0.4850 1.0517 402
## Tree_Density-Sylvilagus_floridanus -0.3115 1.0334 348
## Tree_Density-Sciurus_carolinensis -0.5133 1.0171 336
## Tree_Density-Vulpes_vulpes 0.3395 1.0076 310
## Tree_Density-Sus_scrofa 0.0383 1.0223 389
## Avg_Canopy_Cover-Odocoileus_virginianus 3.5171 1.0513 576
## Avg_Canopy_Cover-Canis_latrans 1.7951 1.0763 463
## Avg_Canopy_Cover-Sciurus_niger 5.1281 1.0388 334
## Avg_Canopy_Cover-Procyon_lotor 3.1041 1.0037 414
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.2413 1.0048 641
## Avg_Canopy_Cover-Lynx_rufus 3.8168 1.0846 310
## Avg_Canopy_Cover-Didelphis_virginiana 4.1882 1.0097 395
## Avg_Canopy_Cover-Sylvilagus_floridanus 5.4959 1.0461 343
## Avg_Canopy_Cover-Sciurus_carolinensis 3.7196 1.0147 655
## Avg_Canopy_Cover-Vulpes_vulpes 4.3134 1.0428 307
## Avg_Canopy_Cover-Sus_scrofa 3.5318 1.0024 477
## avg_veg_height-Odocoileus_virginianus 0.6255 1.0009 522
## avg_veg_height-Canis_latrans 0.1856 1.0007 430
## avg_veg_height-Sciurus_niger 0.4816 1.0058 418
## avg_veg_height-Procyon_lotor 0.5453 1.0009 430
## avg_veg_height-Dasypus_novemcinctus 0.6244 1.0070 520
## avg_veg_height-Lynx_rufus 0.6875 1.0011 458
## avg_veg_height-Didelphis_virginiana 0.3526 1.0016 459
## avg_veg_height-Sylvilagus_floridanus 0.3066 1.0011 494
## avg_veg_height-Sciurus_carolinensis 1.0245 1.0070 488
## avg_veg_height-Vulpes_vulpes 0.7293 1.0041 435
## avg_veg_height-Sus_scrofa 0.4688 1.0059 443
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0061 0.0578 -0.1132 0.0056 0.1196
## (Intercept)-Canis_latrans -2.6082 0.1764 -2.9597 -2.6029 -2.2891
## (Intercept)-Sciurus_niger -4.5712 0.4751 -5.5159 -4.5636 -3.6771
## (Intercept)-Procyon_lotor -2.2739 0.1347 -2.5453 -2.2718 -2.0356
## (Intercept)-Dasypus_novemcinctus -1.5681 0.1408 -1.8491 -1.5648 -1.3122
## (Intercept)-Lynx_rufus -3.8204 0.3340 -4.4236 -3.8449 -3.1389
## (Intercept)-Didelphis_virginiana -2.2842 0.2478 -2.7713 -2.2677 -1.8036
## (Intercept)-Sylvilagus_floridanus -3.1522 0.2781 -3.7112 -3.1391 -2.6248
## (Intercept)-Sciurus_carolinensis -2.4226 0.2527 -2.9519 -2.4057 -1.9832
## (Intercept)-Vulpes_vulpes -4.2054 0.7072 -5.5721 -4.1711 -2.8964
## (Intercept)-Sus_scrofa -2.7962 0.4005 -3.6384 -2.7849 -2.0550
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0032 1500
## (Intercept)-Canis_latrans 1.0362 520
## (Intercept)-Sciurus_niger 1.0117 121
## (Intercept)-Procyon_lotor 1.0117 1075
## (Intercept)-Dasypus_novemcinctus 1.0014 1328
## (Intercept)-Lynx_rufus 1.1113 92
## (Intercept)-Didelphis_virginiana 1.0063 1324
## (Intercept)-Sylvilagus_floridanus 1.0453 565
## (Intercept)-Sciurus_carolinensis 1.0076 938
## (Intercept)-Vulpes_vulpes 1.2275 126
## (Intercept)-Sus_scrofa 1.0064 874
# Includes cover covariates of occupancy and null for detection
ms_null_cover <- msPGOcc(
occ.formula = occ.cover,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5482
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1628 0.6879 -1.4204 -0.1874 1.2924 1.0081 326
## Avg_Cogongrass_Cover 0.1139 0.3135 -0.4988 0.1176 0.7383 1.0015 432
## total_shrub_cover -0.2697 0.2729 -0.7991 -0.2573 0.2636 1.0057 857
## avg_veg_height 0.0434 0.3019 -0.5662 0.0505 0.6143 1.0002 315
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.2562 3.5053 0.9024 3.2562 14.1241 1.0357 289
## Avg_Cogongrass_Cover 0.3222 0.3689 0.0400 0.2047 1.2882 1.0456 607
## total_shrub_cover 0.3473 0.3689 0.0387 0.2350 1.2815 1.0125 534
## avg_veg_height 0.2071 0.2260 0.0347 0.1355 0.7953 1.0086 871
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9114 0.8495 0.0773 0.6719 3.0534 1.0296 142
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4814 0.4225 -3.3105 -2.4737 -1.6006 1.0005 1500
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9611 1.2042 0.6728 1.6508 5.1485 1.0064 628
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.8308 1.5671 1.4657 3.5777
## (Intercept)-Canis_latrans 0.3571 0.6878 -0.8440 0.3366
## (Intercept)-Sciurus_niger -0.1807 1.7027 -2.4177 -0.5671
## (Intercept)-Procyon_lotor 0.6443 0.6809 -0.7575 0.6557
## (Intercept)-Dasypus_novemcinctus -0.7391 0.6266 -2.0321 -0.7382
## (Intercept)-Lynx_rufus 0.1331 1.2435 -1.7146 -0.0369
## (Intercept)-Didelphis_virginiana -1.4580 0.6756 -2.9208 -1.4497
## (Intercept)-Sylvilagus_floridanus -0.2066 0.8167 -1.6966 -0.2808
## (Intercept)-Sciurus_carolinensis -1.5373 0.6985 -2.9940 -1.5265
## (Intercept)-Vulpes_vulpes -0.9713 1.5270 -3.3622 -1.1761
## (Intercept)-Sus_scrofa -2.0043 0.8609 -3.8737 -2.0062
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1004 0.5525 -1.0543 0.1162
## Avg_Cogongrass_Cover-Canis_latrans 0.3601 0.4642 -0.4717 0.3390
## Avg_Cogongrass_Cover-Sciurus_niger -0.2224 0.6363 -1.6196 -0.1648
## Avg_Cogongrass_Cover-Procyon_lotor 0.0933 0.4223 -0.7084 0.0879
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.2420 0.3922 -0.5231 0.2488
## Avg_Cogongrass_Cover-Lynx_rufus 0.3925 0.5058 -0.4657 0.3589
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3050 0.4262 -0.5448 0.3023
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.2502 0.5058 -1.2969 -0.2272
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2145 0.4179 -0.5829 0.2086
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2284 0.5419 -0.7806 0.2079
## Avg_Cogongrass_Cover-Sus_scrofa -0.2088 0.6051 -1.6214 -0.1467
## total_shrub_cover-Odocoileus_virginianus -0.1860 0.5362 -1.2030 -0.2040
## total_shrub_cover-Canis_latrans 0.0874 0.4158 -0.6844 0.0636
## total_shrub_cover-Sciurus_niger -0.4896 0.5544 -1.6473 -0.4441
## total_shrub_cover-Procyon_lotor -0.7279 0.4605 -1.8017 -0.6817
## total_shrub_cover-Dasypus_novemcinctus -0.0606 0.3441 -0.7341 -0.0616
## total_shrub_cover-Lynx_rufus -0.6438 0.5531 -1.9463 -0.5748
## total_shrub_cover-Didelphis_virginiana -0.2207 0.3921 -1.0048 -0.2110
## total_shrub_cover-Sylvilagus_floridanus -0.3343 0.4850 -1.3698 -0.3133
## total_shrub_cover-Sciurus_carolinensis -0.1079 0.3914 -0.8653 -0.1150
## total_shrub_cover-Vulpes_vulpes -0.3211 0.5352 -1.5026 -0.3004
## total_shrub_cover-Sus_scrofa 0.0270 0.4939 -0.8729 0.0056
## avg_veg_height-Odocoileus_virginianus 0.0342 0.4833 -0.9727 0.0438
## avg_veg_height-Canis_latrans -0.0318 0.4064 -0.8666 -0.0240
## avg_veg_height-Sciurus_niger -0.1052 0.5099 -1.1652 -0.0826
## avg_veg_height-Procyon_lotor 0.1183 0.3961 -0.6429 0.1146
## avg_veg_height-Dasypus_novemcinctus 0.1976 0.3928 -0.5402 0.1835
## avg_veg_height-Lynx_rufus 0.0737 0.4669 -0.7912 0.0641
## avg_veg_height-Didelphis_virginiana 0.0079 0.3946 -0.7882 0.0156
## avg_veg_height-Sylvilagus_floridanus -0.0807 0.4301 -0.9688 -0.0758
## avg_veg_height-Sciurus_carolinensis 0.2768 0.4214 -0.5049 0.2692
## avg_veg_height-Vulpes_vulpes -0.0100 0.4745 -0.9052 -0.0205
## avg_veg_height-Sus_scrofa 0.0136 0.4413 -0.8686 0.0268
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.7092 1.0877 272
## (Intercept)-Canis_latrans 1.8580 1.0051 755
## (Intercept)-Sciurus_niger 4.4450 1.0633 76
## (Intercept)-Procyon_lotor 1.9733 1.0156 830
## (Intercept)-Dasypus_novemcinctus 0.4644 1.0050 993
## (Intercept)-Lynx_rufus 3.5054 1.0235 178
## (Intercept)-Didelphis_virginiana -0.1621 1.0108 1010
## (Intercept)-Sylvilagus_floridanus 1.5787 1.0068 490
## (Intercept)-Sciurus_carolinensis -0.1656 1.0009 922
## (Intercept)-Vulpes_vulpes 2.8961 1.0515 84
## (Intercept)-Sus_scrofa -0.3407 1.0360 702
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1650 1.0024 920
## Avg_Cogongrass_Cover-Canis_latrans 1.3442 1.0014 878
## Avg_Cogongrass_Cover-Sciurus_niger 0.8870 1.0129 431
## Avg_Cogongrass_Cover-Procyon_lotor 0.9566 1.0022 902
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0130 1.0026 702
## Avg_Cogongrass_Cover-Lynx_rufus 1.5231 1.0051 572
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.1189 0.9995 752
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6987 1.0037 688
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0546 0.9995 567
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3493 1.0058 549
## Avg_Cogongrass_Cover-Sus_scrofa 0.7524 1.0078 576
## total_shrub_cover-Odocoileus_virginianus 0.9854 1.0043 1019
## total_shrub_cover-Canis_latrans 0.9493 1.0131 1216
## total_shrub_cover-Sciurus_niger 0.5584 1.0058 744
## total_shrub_cover-Procyon_lotor 0.0627 1.0091 784
## total_shrub_cover-Dasypus_novemcinctus 0.6030 1.0133 1339
## total_shrub_cover-Lynx_rufus 0.2727 1.0138 636
## total_shrub_cover-Didelphis_virginiana 0.5389 1.0069 1191
## total_shrub_cover-Sylvilagus_floridanus 0.5568 1.0045 1223
## total_shrub_cover-Sciurus_carolinensis 0.6541 1.0097 1296
## total_shrub_cover-Vulpes_vulpes 0.7262 1.0028 901
## total_shrub_cover-Sus_scrofa 1.1144 1.0067 995
## avg_veg_height-Odocoileus_virginianus 0.9343 1.0015 641
## avg_veg_height-Canis_latrans 0.7544 1.0100 637
## avg_veg_height-Sciurus_niger 0.8711 1.0127 432
## avg_veg_height-Procyon_lotor 0.9215 1.0015 678
## avg_veg_height-Dasypus_novemcinctus 1.0427 1.0017 711
## avg_veg_height-Lynx_rufus 1.0447 1.0001 587
## avg_veg_height-Didelphis_virginiana 0.7833 1.0007 609
## avg_veg_height-Sylvilagus_floridanus 0.7122 1.0123 579
## avg_veg_height-Sciurus_carolinensis 1.1120 1.0010 616
## avg_veg_height-Vulpes_vulpes 0.9517 1.0042 587
## avg_veg_height-Sus_scrofa 0.8570 0.9992 727
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0054 0.0589 -0.1080 0.0042 0.1247
## (Intercept)-Canis_latrans -2.6400 0.1782 -3.0191 -2.6334 -2.2941
## (Intercept)-Sciurus_niger -4.0525 0.6699 -5.4157 -4.0123 -2.8233
## (Intercept)-Procyon_lotor -2.2675 0.1309 -2.5287 -2.2661 -2.0149
## (Intercept)-Dasypus_novemcinctus -1.5697 0.1321 -1.8378 -1.5697 -1.3241
## (Intercept)-Lynx_rufus -3.5672 0.3265 -4.1891 -3.5727 -2.9600
## (Intercept)-Didelphis_virginiana -2.3122 0.2445 -2.8256 -2.2996 -1.8587
## (Intercept)-Sylvilagus_floridanus -3.2441 0.3216 -3.9051 -3.2324 -2.6623
## (Intercept)-Sciurus_carolinensis -2.4334 0.2648 -2.9958 -2.4161 -1.9398
## (Intercept)-Vulpes_vulpes -4.0970 0.7705 -5.6538 -4.1063 -2.7243
## (Intercept)-Sus_scrofa -2.9687 0.4996 -4.0489 -2.9265 -2.0945
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0009 1295
## (Intercept)-Canis_latrans 1.0127 687
## (Intercept)-Sciurus_niger 1.0145 110
## (Intercept)-Procyon_lotor 1.0051 1028
## (Intercept)-Dasypus_novemcinctus 1.0111 1500
## (Intercept)-Lynx_rufus 1.0196 340
## (Intercept)-Didelphis_virginiana 1.0003 1121
## (Intercept)-Sylvilagus_floridanus 1.0088 370
## (Intercept)-Sciurus_carolinensis 0.9995 906
## (Intercept)-Vulpes_vulpes 1.0506 73
## (Intercept)-Sus_scrofa 1.0116 546
# Includes canopy covariates of occupancy and null for detection
ms_null_canopy <- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5475
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2022 0.7670 -1.6101 -0.2407 1.4358 1.0020 725
## Tree_Density -0.7483 0.4051 -1.6780 -0.7149 -0.0745 1.0034 418
## Avg_Canopy_Cover 1.0071 0.3291 0.3749 0.9958 1.6889 1.0014 615
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 6.5993 5.8580 1.5450 4.9178 20.8081 1.0657 207
## Tree_Density 0.6791 1.1954 0.0474 0.3487 3.2499 1.0680 383
## Avg_Canopy_Cover 0.5109 0.5048 0.0495 0.3642 1.8744 1.0125 405
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4256 0.4452 0.0415 0.273 1.6658 1.049 136
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4768 0.4467 -3.3125 -2.5013 -1.5293 1.0015 1190
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0022 1.3465 0.6817 1.6683 4.9252 1.0296 555
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.6902 1.7123 2.2230 4.4152 8.9567
## (Intercept)-Canis_latrans 0.3495 0.6544 -0.8566 0.3209 1.7452
## (Intercept)-Sciurus_niger -0.0913 1.4615 -2.3003 -0.3172 3.3051
## (Intercept)-Procyon_lotor 0.7276 0.6086 -0.5036 0.7270 1.8506
## (Intercept)-Dasypus_novemcinctus -1.0235 0.6002 -2.2964 -0.9844 0.1179
## (Intercept)-Lynx_rufus 1.2930 1.8808 -1.0408 0.8339 6.2825
## (Intercept)-Didelphis_virginiana -1.9075 0.6498 -3.2152 -1.8796 -0.7280
## (Intercept)-Sylvilagus_floridanus -0.6585 0.7055 -1.9918 -0.6786 0.7295
## (Intercept)-Sciurus_carolinensis -1.9852 0.6986 -3.4615 -1.9601 -0.6339
## (Intercept)-Vulpes_vulpes -1.1835 1.7933 -3.6632 -1.5561 3.6974
## (Intercept)-Sus_scrofa -2.7065 0.8982 -4.5578 -2.6486 -1.0955
## Tree_Density-Odocoileus_virginianus -0.3752 0.6418 -1.5271 -0.4451 1.1963
## Tree_Density-Canis_latrans -0.8664 0.5194 -2.0573 -0.8194 0.0281
## Tree_Density-Sciurus_niger -0.7521 0.8189 -2.4918 -0.7050 0.6846
## Tree_Density-Procyon_lotor -0.4771 0.4289 -1.3111 -0.4843 0.3693
## Tree_Density-Dasypus_novemcinctus -1.2928 0.8277 -3.4203 -1.1177 -0.1737
## Tree_Density-Lynx_rufus -0.0482 0.7704 -1.3130 -0.1533 1.8198
## Tree_Density-Didelphis_virginiana -1.0000 0.7177 -2.7356 -0.8783 0.1009
## Tree_Density-Sylvilagus_floridanus -1.0077 0.6950 -2.7001 -0.9032 0.0704
## Tree_Density-Sciurus_carolinensis -0.9307 0.7107 -2.7572 -0.8130 0.1733
## Tree_Density-Vulpes_vulpes -0.6942 0.7437 -2.3775 -0.6517 0.6241
## Tree_Density-Sus_scrofa -0.9409 0.7704 -2.9028 -0.8399 0.3011
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8223 0.6374 -0.5257 0.8377 2.0628
## Avg_Canopy_Cover-Canis_latrans 0.1514 0.4821 -0.8014 0.1611 1.0606
## Avg_Canopy_Cover-Sciurus_niger 1.0605 0.7281 -0.2627 1.0113 2.6654
## Avg_Canopy_Cover-Procyon_lotor 1.0257 0.4393 0.2035 1.0029 1.9206
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0182 0.3986 0.2692 1.0067 1.8358
## Avg_Canopy_Cover-Lynx_rufus 0.9289 0.6973 -0.3541 0.9197 2.3769
## Avg_Canopy_Cover-Didelphis_virginiana 1.2602 0.4754 0.4735 1.2118 2.3589
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.5986 0.7073 0.5364 1.4935 3.1682
## Avg_Canopy_Cover-Sciurus_carolinensis 1.2375 0.4850 0.4284 1.2102 2.3255
## Avg_Canopy_Cover-Vulpes_vulpes 1.0334 0.5821 0.0277 0.9799 2.3235
## Avg_Canopy_Cover-Sus_scrofa 1.2402 0.5147 0.3329 1.1827 2.3464
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0674 193
## (Intercept)-Canis_latrans 1.0043 839
## (Intercept)-Sciurus_niger 1.0204 160
## (Intercept)-Procyon_lotor 1.0036 812
## (Intercept)-Dasypus_novemcinctus 1.0156 1041
## (Intercept)-Lynx_rufus 1.0971 112
## (Intercept)-Didelphis_virginiana 1.0051 1004
## (Intercept)-Sylvilagus_floridanus 1.0211 791
## (Intercept)-Sciurus_carolinensis 1.0032 1002
## (Intercept)-Vulpes_vulpes 1.2330 60
## (Intercept)-Sus_scrofa 1.0072 544
## Tree_Density-Odocoileus_virginianus 1.0032 614
## Tree_Density-Canis_latrans 0.9993 1114
## Tree_Density-Sciurus_niger 1.0077 484
## Tree_Density-Procyon_lotor 1.0056 978
## Tree_Density-Dasypus_novemcinctus 1.0027 494
## Tree_Density-Lynx_rufus 1.0059 377
## Tree_Density-Didelphis_virginiana 1.0113 505
## Tree_Density-Sylvilagus_floridanus 1.0034 619
## Tree_Density-Sciurus_carolinensis 1.0349 639
## Tree_Density-Vulpes_vulpes 0.9994 493
## Tree_Density-Sus_scrofa 1.0275 547
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0086 1009
## Avg_Canopy_Cover-Canis_latrans 1.0074 928
## Avg_Canopy_Cover-Sciurus_niger 1.0116 541
## Avg_Canopy_Cover-Procyon_lotor 1.0049 1118
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0091 723
## Avg_Canopy_Cover-Lynx_rufus 1.0073 604
## Avg_Canopy_Cover-Didelphis_virginiana 1.0010 953
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0125 595
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0030 943
## Avg_Canopy_Cover-Vulpes_vulpes 1.0033 827
## Avg_Canopy_Cover-Sus_scrofa 0.9998 972
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0068 0.0600 -0.1081 0.0056 0.1197
## (Intercept)-Canis_latrans -2.6386 0.1829 -3.0153 -2.6332 -2.3026
## (Intercept)-Sciurus_niger -4.1446 0.5528 -5.1858 -4.1621 -3.0494
## (Intercept)-Procyon_lotor -2.2711 0.1303 -2.5399 -2.2664 -2.0285
## (Intercept)-Dasypus_novemcinctus -1.5783 0.1336 -1.8295 -1.5791 -1.3083
## (Intercept)-Lynx_rufus -3.7722 0.3606 -4.4834 -3.7703 -3.1006
## (Intercept)-Didelphis_virginiana -2.2907 0.2427 -2.7788 -2.2778 -1.8469
## (Intercept)-Sylvilagus_floridanus -3.1213 0.2805 -3.6799 -3.1101 -2.5926
## (Intercept)-Sciurus_carolinensis -2.4261 0.2609 -2.9511 -2.4174 -1.9443
## (Intercept)-Vulpes_vulpes -4.1090 0.8100 -5.7818 -4.0349 -2.7147
## (Intercept)-Sus_scrofa -2.8438 0.4400 -3.7534 -2.8118 -2.0618
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0034 1500
## (Intercept)-Canis_latrans 1.0041 748
## (Intercept)-Sciurus_niger 1.0158 136
## (Intercept)-Procyon_lotor 1.0122 1223
## (Intercept)-Dasypus_novemcinctus 1.0013 1500
## (Intercept)-Lynx_rufus 1.0537 185
## (Intercept)-Didelphis_virginiana 1.0008 1053
## (Intercept)-Sylvilagus_floridanus 1.0268 517
## (Intercept)-Sciurus_carolinensis 1.0042 1054
## (Intercept)-Vulpes_vulpes 1.1281 100
## (Intercept)-Sus_scrofa 1.0033 672
# Includes movement covariates of occupancy and null for detection
ms_null_move <- msPGOcc(
occ.formula = occ.move,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5407
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2996 0.6589 -1.5219 -0.3245 1.0660 1.0157 636
## Cogon_Patch_Size -0.2989 0.4342 -1.2885 -0.2765 0.4472 1.0295 463
## Avg_Cogongrass_Cover 0.2765 0.2732 -0.2459 0.2689 0.8400 1.0191 388
## total_shrub_cover -0.2128 0.2719 -0.7626 -0.2192 0.3196 1.0044 503
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.2332 3.1451 0.8718 3.3884 12.5455 1.0029 736
## Cogon_Patch_Size 1.0900 1.6331 0.0725 0.5845 4.7662 1.0340 387
## Avg_Cogongrass_Cover 0.2689 0.3675 0.0345 0.1698 1.0594 1.1532 725
## total_shrub_cover 0.3128 0.3560 0.0446 0.2059 1.2265 1.0320 650
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.1303 0.9963 0.0959 0.8645 3.5259 1.1365 186
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.493 0.4092 -3.279 -2.5021 -1.6407 1.0018 1224
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.8485 1.1642 0.6406 1.5443 5.0241 1.0096 758
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7135 1.4318 1.1846 3.5907
## (Intercept)-Canis_latrans 0.4052 0.7448 -1.0484 0.3844
## (Intercept)-Sciurus_niger -0.5048 1.3756 -2.6585 -0.6747
## (Intercept)-Procyon_lotor 0.5767 0.7072 -0.7999 0.5688
## (Intercept)-Dasypus_novemcinctus -0.7622 0.6487 -2.1112 -0.7388
## (Intercept)-Lynx_rufus -0.0781 1.0648 -2.0264 -0.1281
## (Intercept)-Didelphis_virginiana -1.4358 0.6913 -2.8878 -1.4257
## (Intercept)-Sylvilagus_floridanus -0.4477 0.9080 -2.0297 -0.5169
## (Intercept)-Sciurus_carolinensis -1.6801 0.7684 -3.2599 -1.6460
## (Intercept)-Vulpes_vulpes -1.2593 1.3482 -3.7231 -1.3708
## (Intercept)-Sus_scrofa -2.1792 0.9526 -4.1509 -2.1473
## Cogon_Patch_Size-Odocoileus_virginianus -0.0992 0.7380 -1.4292 -0.1506
## Cogon_Patch_Size-Canis_latrans 0.7184 0.7641 -0.3533 0.5852
## Cogon_Patch_Size-Sciurus_niger -0.7364 0.9783 -3.2046 -0.5873
## Cogon_Patch_Size-Procyon_lotor -0.2901 0.4610 -1.2284 -0.2847
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1759 0.4264 -1.1088 -0.1584
## Cogon_Patch_Size-Lynx_rufus -0.3356 0.7580 -1.8447 -0.3635
## Cogon_Patch_Size-Didelphis_virginiana 0.5849 0.5214 -0.2950 0.5579
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0320 1.0080 -3.5237 -0.8342
## Cogon_Patch_Size-Sciurus_carolinensis -0.7920 0.7202 -2.4715 -0.7084
## Cogon_Patch_Size-Vulpes_vulpes -0.6784 1.0660 -3.2537 -0.5572
## Cogon_Patch_Size-Sus_scrofa -0.6175 0.9142 -2.8644 -0.4821
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2641 0.5168 -0.7615 0.2478
## Avg_Cogongrass_Cover-Canis_latrans 0.3172 0.3811 -0.4106 0.3187
## Avg_Cogongrass_Cover-Sciurus_niger 0.0105 0.5650 -1.2177 0.0434
## Avg_Cogongrass_Cover-Procyon_lotor 0.2955 0.3998 -0.4973 0.2890
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4355 0.3597 -0.2813 0.4306
## Avg_Cogongrass_Cover-Lynx_rufus 0.5445 0.4856 -0.2972 0.5037
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2782 0.4120 -0.5223 0.2739
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0055 0.4621 -0.9985 0.0273
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4773 0.3962 -0.2372 0.4583
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3521 0.4460 -0.4886 0.3433
## Avg_Cogongrass_Cover-Sus_scrofa 0.0106 0.5205 -1.1822 0.0673
## total_shrub_cover-Odocoileus_virginianus -0.1217 0.5021 -1.0651 -0.1444
## total_shrub_cover-Canis_latrans 0.0782 0.4090 -0.6753 0.0475
## total_shrub_cover-Sciurus_niger -0.3901 0.5081 -1.4616 -0.3738
## total_shrub_cover-Procyon_lotor -0.6518 0.4459 -1.6439 -0.6146
## total_shrub_cover-Dasypus_novemcinctus -0.0377 0.3432 -0.7132 -0.0411
## total_shrub_cover-Lynx_rufus -0.5276 0.5444 -1.8227 -0.4841
## total_shrub_cover-Didelphis_virginiana -0.2468 0.3845 -1.0066 -0.2382
## total_shrub_cover-Sylvilagus_floridanus -0.2306 0.5014 -1.2349 -0.2163
## total_shrub_cover-Sciurus_carolinensis -0.0627 0.3927 -0.8379 -0.0776
## total_shrub_cover-Vulpes_vulpes -0.2585 0.5240 -1.3192 -0.2395
## total_shrub_cover-Sus_scrofa 0.0609 0.5041 -0.8276 0.0272
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.7906 1.0158 259
## (Intercept)-Canis_latrans 1.9102 1.0060 735
## (Intercept)-Sciurus_niger 2.6702 1.0372 137
## (Intercept)-Procyon_lotor 1.9516 1.0729 828
## (Intercept)-Dasypus_novemcinctus 0.5926 1.0214 758
## (Intercept)-Lynx_rufus 2.0138 1.0528 274
## (Intercept)-Didelphis_virginiana -0.1460 1.0050 935
## (Intercept)-Sylvilagus_floridanus 1.6711 1.0238 379
## (Intercept)-Sciurus_carolinensis -0.2537 1.0149 708
## (Intercept)-Vulpes_vulpes 1.5382 1.0698 201
## (Intercept)-Sus_scrofa -0.4253 1.0002 677
## Cogon_Patch_Size-Odocoileus_virginianus 1.5647 1.0006 973
## Cogon_Patch_Size-Canis_latrans 2.6711 1.0301 598
## Cogon_Patch_Size-Sciurus_niger 0.7750 1.0132 450
## Cogon_Patch_Size-Procyon_lotor 0.6443 1.0115 951
## Cogon_Patch_Size-Dasypus_novemcinctus 0.6111 1.0069 1386
## Cogon_Patch_Size-Lynx_rufus 1.3398 1.0090 520
## Cogon_Patch_Size-Didelphis_virginiana 1.6672 1.0055 767
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3563 1.0235 392
## Cogon_Patch_Size-Sciurus_carolinensis 0.2954 1.0402 673
## Cogon_Patch_Size-Vulpes_vulpes 0.9825 1.0101 299
## Cogon_Patch_Size-Sus_scrofa 0.7393 1.0082 511
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.3020 1.0190 873
## Avg_Cogongrass_Cover-Canis_latrans 1.1129 1.0024 402
## Avg_Cogongrass_Cover-Sciurus_niger 1.0751 1.0255 575
## Avg_Cogongrass_Cover-Procyon_lotor 1.1019 1.0190 898
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1630 1.0181 1094
## Avg_Cogongrass_Cover-Lynx_rufus 1.6926 1.0025 822
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0982 1.0080 798
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8669 1.0107 852
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.3362 1.0068 937
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2669 1.0043 937
## Avg_Cogongrass_Cover-Sus_scrofa 0.8951 1.0301 590
## total_shrub_cover-Odocoileus_virginianus 0.9308 1.0062 952
## total_shrub_cover-Canis_latrans 0.9641 0.9995 935
## total_shrub_cover-Sciurus_niger 0.5915 1.0154 690
## total_shrub_cover-Procyon_lotor 0.0994 1.0037 658
## total_shrub_cover-Dasypus_novemcinctus 0.6674 1.0125 1204
## total_shrub_cover-Lynx_rufus 0.3532 1.0011 591
## total_shrub_cover-Didelphis_virginiana 0.4797 1.0064 1120
## total_shrub_cover-Sylvilagus_floridanus 0.6851 1.0159 682
## total_shrub_cover-Sciurus_carolinensis 0.7165 1.0006 1230
## total_shrub_cover-Vulpes_vulpes 0.7352 1.0047 724
## total_shrub_cover-Sus_scrofa 1.1934 1.0060 883
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0032 0.0607 -0.1175 0.0042 0.1227
## (Intercept)-Canis_latrans -2.6087 0.1787 -2.9714 -2.5989 -2.2762
## (Intercept)-Sciurus_niger -4.0302 0.6268 -5.2487 -4.0124 -2.8768
## (Intercept)-Procyon_lotor -2.2661 0.1281 -2.5290 -2.2620 -2.0233
## (Intercept)-Dasypus_novemcinctus -1.5769 0.1308 -1.8459 -1.5749 -1.3165
## (Intercept)-Lynx_rufus -3.5382 0.3200 -4.2222 -3.5319 -2.9270
## (Intercept)-Didelphis_virginiana -2.3067 0.2487 -2.8352 -2.2918 -1.8667
## (Intercept)-Sylvilagus_floridanus -3.2402 0.3237 -3.8559 -3.2333 -2.6320
## (Intercept)-Sciurus_carolinensis -2.4406 0.2733 -3.0141 -2.4329 -1.9237
## (Intercept)-Vulpes_vulpes -4.0501 0.7135 -5.4669 -4.0446 -2.8068
## (Intercept)-Sus_scrofa -2.9360 0.4900 -4.0042 -2.9011 -2.0801
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0019 1500
## (Intercept)-Canis_latrans 1.0012 889
## (Intercept)-Sciurus_niger 1.0432 130
## (Intercept)-Procyon_lotor 1.0026 1179
## (Intercept)-Dasypus_novemcinctus 1.0016 1569
## (Intercept)-Lynx_rufus 1.0175 200
## (Intercept)-Didelphis_virginiana 1.0018 1174
## (Intercept)-Sylvilagus_floridanus 1.0330 377
## (Intercept)-Sciurus_carolinensis 1.0283 904
## (Intercept)-Vulpes_vulpes 1.0663 133
## (Intercept)-Sus_scrofa 1.0020 494
# Includes foraging covariates of occupancy and null for detection
ms_null_forage <- msPGOcc(
occ.formula = occ.forage,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5505
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2463 0.6597 -1.4571 -0.2769 1.1479 1.0168 344
## Veg_shannon_index 0.8242 0.3536 0.1430 0.8229 1.5246 1.0263 353
## Avg_Cogongrass_Cover 0.7994 0.3394 0.1241 0.8007 1.4716 1.0130 345
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.6369 7.4833 0.9922 3.1976 14.6861 1.3179 158
## Veg_shannon_index 0.3901 0.5436 0.0378 0.2206 1.7215 1.0096 316
## Avg_Cogongrass_Cover 0.2672 0.2869 0.0356 0.1767 1.0795 1.0283 659
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5814 0.5873 0.0583 0.3964 2.2628 1.0336 168
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5025 0.4105 -3.3624 -2.5048 -1.6795 1.0027 1222
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9146 1.1833 0.6444 1.5918 4.8859 1.0086 382
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7369 1.4439 1.6165 3.5483
## (Intercept)-Canis_latrans 0.2277 0.5990 -0.9685 0.2330
## (Intercept)-Sciurus_niger -0.2611 2.1256 -2.4076 -0.6187
## (Intercept)-Procyon_lotor 0.5810 0.5834 -0.5089 0.5801
## (Intercept)-Dasypus_novemcinctus -0.7799 0.5415 -1.8746 -0.7696
## (Intercept)-Lynx_rufus 0.1584 1.0430 -1.5043 0.0228
## (Intercept)-Didelphis_virginiana -1.5412 0.6241 -2.7863 -1.5027
## (Intercept)-Sylvilagus_floridanus -0.3814 0.7883 -1.7857 -0.4220
## (Intercept)-Sciurus_carolinensis -1.5311 0.6270 -2.8435 -1.5156
## (Intercept)-Vulpes_vulpes -0.8016 2.1813 -3.3958 -1.1922
## (Intercept)-Sus_scrofa -2.3873 0.8991 -4.3450 -2.3420
## Veg_shannon_index-Odocoileus_virginianus 0.7819 0.6187 -0.3755 0.7678
## Veg_shannon_index-Canis_latrans 0.9165 0.4616 0.0306 0.9105
## Veg_shannon_index-Sciurus_niger 0.9790 0.7013 -0.2886 0.9177
## Veg_shannon_index-Procyon_lotor 0.8709 0.4689 -0.0090 0.8638
## Veg_shannon_index-Dasypus_novemcinctus 0.6612 0.4513 -0.2395 0.6670
## Veg_shannon_index-Lynx_rufus 0.4771 0.6348 -0.8554 0.5259
## Veg_shannon_index-Didelphis_virginiana 0.6666 0.4761 -0.2937 0.6775
## Veg_shannon_index-Sylvilagus_floridanus 1.0938 0.5591 0.1385 1.0743
## Veg_shannon_index-Sciurus_carolinensis 0.6092 0.4525 -0.3808 0.6212
## Veg_shannon_index-Vulpes_vulpes 0.6792 0.5844 -0.5114 0.6998
## Veg_shannon_index-Sus_scrofa 1.3702 0.6887 0.3263 1.2910
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.7791 0.5409 -0.3032 0.7986
## Avg_Cogongrass_Cover-Canis_latrans 1.0233 0.4563 0.1971 0.9999
## Avg_Cogongrass_Cover-Sciurus_niger 0.4989 0.6116 -0.8457 0.5279
## Avg_Cogongrass_Cover-Procyon_lotor 0.9134 0.4321 0.0753 0.9034
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.8875 0.4279 0.0598 0.8839
## Avg_Cogongrass_Cover-Lynx_rufus 0.9701 0.5077 0.0314 0.9562
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9033 0.4475 0.0319 0.9044
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5324 0.5108 -0.5249 0.5529
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.8858 0.4481 -0.0241 0.8903
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.8660 0.5121 -0.1123 0.8671
## Avg_Cogongrass_Cover-Sus_scrofa 0.5998 0.5679 -0.5865 0.6465
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.2958 1.0129 406
## (Intercept)-Canis_latrans 1.4062 1.0138 1043
## (Intercept)-Sciurus_niger 3.0662 1.4719 80
## (Intercept)-Procyon_lotor 1.7972 1.0045 1116
## (Intercept)-Dasypus_novemcinctus 0.2831 1.0059 1134
## (Intercept)-Lynx_rufus 2.6145 1.0516 281
## (Intercept)-Didelphis_virginiana -0.3772 1.0111 1189
## (Intercept)-Sylvilagus_floridanus 1.3217 1.0403 432
## (Intercept)-Sciurus_carolinensis -0.2992 1.0122 959
## (Intercept)-Vulpes_vulpes 2.8465 1.2049 74
## (Intercept)-Sus_scrofa -0.7381 1.0048 652
## Veg_shannon_index-Odocoileus_virginianus 2.0863 1.0089 751
## Veg_shannon_index-Canis_latrans 1.8877 1.0110 705
## Veg_shannon_index-Sciurus_niger 2.5290 1.0101 437
## Veg_shannon_index-Procyon_lotor 1.8909 1.0033 613
## Veg_shannon_index-Dasypus_novemcinctus 1.5640 1.0158 517
## Veg_shannon_index-Lynx_rufus 1.6060 1.0242 309
## Veg_shannon_index-Didelphis_virginiana 1.6210 1.0176 507
## Veg_shannon_index-Sylvilagus_floridanus 2.3199 1.0186 551
## Veg_shannon_index-Sciurus_carolinensis 1.4593 1.0181 560
## Veg_shannon_index-Vulpes_vulpes 1.7504 1.0108 556
## Veg_shannon_index-Sus_scrofa 3.1730 1.0046 449
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.8547 1.0056 707
## Avg_Cogongrass_Cover-Canis_latrans 2.0360 1.0083 698
## Avg_Cogongrass_Cover-Sciurus_niger 1.5974 1.0209 407
## Avg_Cogongrass_Cover-Procyon_lotor 1.7977 1.0008 572
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.7719 1.0168 681
## Avg_Cogongrass_Cover-Lynx_rufus 2.0981 1.0064 444
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.7787 1.0149 436
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.4621 1.0030 486
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.7692 1.0208 611
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.9752 1.0204 374
## Avg_Cogongrass_Cover-Sus_scrofa 1.6083 0.9995 473
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0014 0.0593 -0.1147 -0.0003 0.1218
## (Intercept)-Canis_latrans -2.5980 0.1678 -2.9329 -2.5920 -2.2800
## (Intercept)-Sciurus_niger -4.0045 0.5802 -5.1497 -3.9882 -2.9426
## (Intercept)-Procyon_lotor -2.2708 0.1285 -2.5227 -2.2646 -2.0216
## (Intercept)-Dasypus_novemcinctus -1.5724 0.1368 -1.8530 -1.5662 -1.3174
## (Intercept)-Lynx_rufus -3.5787 0.3413 -4.3101 -3.5628 -2.9818
## (Intercept)-Didelphis_virginiana -2.3087 0.2440 -2.8234 -2.2977 -1.8557
## (Intercept)-Sylvilagus_floridanus -3.2061 0.3312 -3.9166 -3.1826 -2.6218
## (Intercept)-Sciurus_carolinensis -2.4347 0.2662 -2.9862 -2.4228 -1.9281
## (Intercept)-Vulpes_vulpes -4.1711 0.8360 -5.8424 -4.0961 -2.7097
## (Intercept)-Sus_scrofa -2.8446 0.4537 -3.8454 -2.8001 -2.0801
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0093 1634
## (Intercept)-Canis_latrans 1.0057 859
## (Intercept)-Sciurus_niger 1.0449 117
## (Intercept)-Procyon_lotor 1.0001 1168
## (Intercept)-Dasypus_novemcinctus 1.0027 1364
## (Intercept)-Lynx_rufus 1.0111 240
## (Intercept)-Didelphis_virginiana 1.0006 1145
## (Intercept)-Sylvilagus_floridanus 1.0500 320
## (Intercept)-Sciurus_carolinensis 1.0006 995
## (Intercept)-Vulpes_vulpes 1.0542 76
## (Intercept)-Sus_scrofa 1.0023 560
# Includes null covariate for detection and quadratic cogongrass cover for occupancy
ms_null_cogonQ <- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.null,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5323
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9811 0.6415 -2.1774 -0.9922 0.3661 1.0123 768
## Avg_Cogongrass_Cover -0.7558 0.3725 -1.4858 -0.7458 -0.0489 1.0346 417
## I(Avg_Cogongrass_Cover^2) 0.8267 0.2990 0.2707 0.8138 1.4636 1.0395 433
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.7039 3.0275 0.8803 2.8619 11.1575 1.0199 621
## Avg_Cogongrass_Cover 0.3768 0.4320 0.0393 0.2319 1.5607 1.0164 554
## I(Avg_Cogongrass_Cover^2) 0.3759 0.5180 0.0386 0.2167 1.5357 1.0419 488
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5218 0.5136 0.0585 0.3642 1.825 1.0603 257
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4656 0.4174 -3.2675 -2.4795 -1.6022 1.0027 1500
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.7974 1.2885 0.6071 1.4696 4.9657 1.0287 726
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.7420 1.3030 0.5407 2.5816
## (Intercept)-Canis_latrans -0.4747 0.6608 -1.7471 -0.4654
## (Intercept)-Sciurus_niger -1.0658 1.2468 -2.9901 -1.1976
## (Intercept)-Procyon_lotor -0.1841 0.6317 -1.5073 -0.1700
## (Intercept)-Dasypus_novemcinctus -1.4073 0.6184 -2.6896 -1.3996
## (Intercept)-Lynx_rufus -1.1624 0.8818 -2.7735 -1.2093
## (Intercept)-Didelphis_virginiana -2.0241 0.7105 -3.4782 -1.9962
## (Intercept)-Sylvilagus_floridanus -1.0690 0.8093 -2.5695 -1.0654
## (Intercept)-Sciurus_carolinensis -2.4966 0.7616 -4.0310 -2.4691
## (Intercept)-Vulpes_vulpes -2.1195 1.3553 -4.2579 -2.2641
## (Intercept)-Sus_scrofa -2.5912 0.8585 -4.4105 -2.5320
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7437 0.6557 -2.0698 -0.7386
## Avg_Cogongrass_Cover-Canis_latrans -0.4663 0.5032 -1.4328 -0.4819
## Avg_Cogongrass_Cover-Sciurus_niger -0.9976 0.6618 -2.4901 -0.9435
## Avg_Cogongrass_Cover-Procyon_lotor -0.6071 0.5054 -1.5314 -0.6367
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5823 0.4625 -1.4726 -0.5888
## Avg_Cogongrass_Cover-Lynx_rufus -0.6344 0.5321 -1.6813 -0.6573
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.5087 0.5224 -1.4781 -0.5315
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.1537 0.6022 -2.4818 -1.0972
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8242 0.5298 -1.9265 -0.7845
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8062 0.5994 -2.0583 -0.7945
## Avg_Cogongrass_Cover-Sus_scrofa -1.0606 0.6210 -2.4782 -1.0053
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.0885 0.5963 0.1734 1.0143
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.1376 0.5996 0.2652 1.0195
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.3665 0.6197 -1.0407 0.4221
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.0521 0.5346 0.2086 0.9702
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7433 0.3478 0.0913 0.7346
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.1786 0.5204 0.3984 1.1023
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.5978 0.3904 -0.1270 0.6036
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.7493 0.4447 -0.0546 0.7241
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.9767 0.3812 0.2975 0.9439
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 0.9562 0.4823 0.1531 0.9024
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.4231 0.5270 -0.7558 0.4797
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 5.7750 1.0024 434
## (Intercept)-Canis_latrans 0.8242 1.0002 839
## (Intercept)-Sciurus_niger 1.8964 1.0352 166
## (Intercept)-Procyon_lotor 0.9929 1.0009 996
## (Intercept)-Dasypus_novemcinctus -0.2174 1.0059 1183
## (Intercept)-Lynx_rufus 0.6837 1.0077 449
## (Intercept)-Didelphis_virginiana -0.7110 1.0011 1131
## (Intercept)-Sylvilagus_floridanus 0.4877 1.0213 513
## (Intercept)-Sciurus_carolinensis -1.0635 1.0228 724
## (Intercept)-Vulpes_vulpes 1.1457 1.1365 123
## (Intercept)-Sus_scrofa -1.0065 1.0185 661
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5490 1.0013 783
## Avg_Cogongrass_Cover-Canis_latrans 0.5859 1.0282 677
## Avg_Cogongrass_Cover-Sciurus_niger 0.1719 1.0304 577
## Avg_Cogongrass_Cover-Procyon_lotor 0.4450 1.0219 755
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3247 1.0146 681
## Avg_Cogongrass_Cover-Lynx_rufus 0.4341 1.0120 683
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5531 1.0045 862
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0994 1.0271 555
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1089 1.0218 528
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3286 1.0061 723
## Avg_Cogongrass_Cover-Sus_scrofa -0.0354 1.0280 505
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 2.5035 1.0101 515
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.5858 1.0072 404
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.4863 1.0324 477
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.2889 1.0108 646
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4638 1.0074 767
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.4005 1.0046 532
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.3330 1.0068 924
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.6954 1.0464 540
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7612 1.0112 650
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.0471 1.0512 444
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.3195 1.0277 539
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0039 0.0589 -0.1120 0.0021 0.1182
## (Intercept)-Canis_latrans -2.6354 0.1749 -2.9911 -2.6282 -2.3069
## (Intercept)-Sciurus_niger -3.8952 0.5758 -5.0446 -3.8508 -2.8224
## (Intercept)-Procyon_lotor -2.2757 0.1331 -2.5370 -2.2785 -2.0065
## (Intercept)-Dasypus_novemcinctus -1.5778 0.1363 -1.8485 -1.5704 -1.3290
## (Intercept)-Lynx_rufus -3.4629 0.3371 -4.1619 -3.4499 -2.8394
## (Intercept)-Didelphis_virginiana -2.3285 0.2598 -2.8651 -2.3132 -1.8708
## (Intercept)-Sylvilagus_floridanus -3.2074 0.3098 -3.8665 -3.1977 -2.6485
## (Intercept)-Sciurus_carolinensis -2.4318 0.2609 -2.9668 -2.4182 -1.9755
## (Intercept)-Vulpes_vulpes -3.9862 0.7629 -5.6516 -3.9060 -2.6990
## (Intercept)-Sus_scrofa -2.8913 0.4556 -3.8491 -2.8661 -2.0768
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0037 1500
## (Intercept)-Canis_latrans 1.0209 878
## (Intercept)-Sciurus_niger 1.0185 160
## (Intercept)-Procyon_lotor 1.0105 1252
## (Intercept)-Dasypus_novemcinctus 1.0068 1500
## (Intercept)-Lynx_rufus 1.0089 311
## (Intercept)-Didelphis_virginiana 1.0000 996
## (Intercept)-Sylvilagus_floridanus 1.0053 396
## (Intercept)-Sciurus_carolinensis 1.0061 1118
## (Intercept)-Vulpes_vulpes 1.0137 109
## (Intercept)-Sus_scrofa 1.0331 585
# Includes null covariates of detection and all covariates and quadratic cogongrass cover for occupancy
ms_null_fullQ <- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.null,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.null,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5922
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9695 1.1311 -3.0092 -1.0407 1.5348 1.0159 455
## Cogon_Patch_Size -0.0174 0.7512 -1.6276 0.0498 1.3217 1.0285 327
## Veg_shannon_index 1.3863 0.6194 0.2113 1.3467 2.6302 1.1340 179
## total_shrub_cover -0.2267 0.3909 -0.9790 -0.2271 0.5047 1.0084 306
## Avg_Cogongrass_Cover 0.6300 0.9781 -1.2996 0.6085 2.6995 1.0465 122
## Tree_Density -1.9448 0.7565 -3.4261 -1.9401 -0.4698 1.0314 194
## Avg_Canopy_Cover 1.8248 0.6251 0.6530 1.7825 3.1488 1.0952 305
## I(Avg_Cogongrass_Cover^2) 1.5303 0.5548 0.4547 1.5096 2.6393 1.0116 184
## avg_veg_height -0.2783 0.4844 -1.2240 -0.2615 0.6679 1.0191 242
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 22.6898 21.5350 4.2865 16.0533 78.6184 1.1861 179
## Cogon_Patch_Size 3.7097 6.0872 0.1468 1.8839 18.6676 1.2116 85
## Veg_shannon_index 1.2536 1.8917 0.0510 0.6154 6.2673 1.0240 232
## total_shrub_cover 0.5275 0.6377 0.0454 0.3078 2.3092 1.0359 539
## Avg_Cogongrass_Cover 1.0185 1.7288 0.0417 0.4229 5.6468 1.0030 369
## Tree_Density 3.3302 8.9600 0.0767 1.3408 15.8537 1.2545 168
## Avg_Canopy_Cover 2.3448 3.7006 0.1174 1.3205 11.4069 1.2046 149
## I(Avg_Cogongrass_Cover^2) 0.9352 1.4598 0.0503 0.4349 4.8016 1.0834 138
## avg_veg_height 0.4758 0.5925 0.0377 0.2734 2.0705 1.0297 363
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.1465 1.8014 0.045 0.5216 5.9782 1.2466 56
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5194 0.448 -3.3513 -2.5394 -1.5772 0.9997 1380
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0888 1.2001 0.751 1.8038 5.3841 1.0014 1217
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 7.4841 3.5646 2.5239
## (Intercept)-Canis_latrans -1.0422 1.0729 -3.1252
## (Intercept)-Sciurus_niger 1.1081 2.7848 -2.9839
## (Intercept)-Procyon_lotor -0.3720 1.0111 -2.4160
## (Intercept)-Dasypus_novemcinctus -2.7293 1.0834 -4.9971
## (Intercept)-Lynx_rufus 0.7429 2.9985 -3.2707
## (Intercept)-Didelphis_virginiana -4.3567 1.4552 -7.4771
## (Intercept)-Sylvilagus_floridanus -2.5360 1.3311 -5.2956
## (Intercept)-Sciurus_carolinensis -4.8706 1.5267 -8.1252
## (Intercept)-Vulpes_vulpes -4.3666 2.3434 -8.9167
## (Intercept)-Sus_scrofa -6.3309 2.2045 -11.1872
## Cogon_Patch_Size-Odocoileus_virginianus 0.2828 1.4338 -2.1776
## Cogon_Patch_Size-Canis_latrans 1.8694 1.5099 -0.1448
## Cogon_Patch_Size-Sciurus_niger -0.7860 2.1099 -5.8269
## Cogon_Patch_Size-Procyon_lotor -0.0884 0.8198 -1.5281
## Cogon_Patch_Size-Dasypus_novemcinctus -0.0262 0.6750 -1.5334
## Cogon_Patch_Size-Lynx_rufus -0.1469 1.5382 -2.8059
## Cogon_Patch_Size-Didelphis_virginiana 1.8460 1.0001 0.1672
## Cogon_Patch_Size-Sylvilagus_floridanus -1.1129 1.5508 -5.0165
## Cogon_Patch_Size-Sciurus_carolinensis -1.0280 1.5039 -5.0044
## Cogon_Patch_Size-Vulpes_vulpes -0.6994 1.8192 -5.1400
## Cogon_Patch_Size-Sus_scrofa -0.4299 1.6059 -4.4175
## Veg_shannon_index-Odocoileus_virginianus 1.2676 1.1666 -1.0736
## Veg_shannon_index-Canis_latrans 1.7987 0.9085 0.3196
## Veg_shannon_index-Sciurus_niger 1.6449 1.2514 -0.5701
## Veg_shannon_index-Procyon_lotor 1.3827 0.7625 0.0110
## Veg_shannon_index-Dasypus_novemcinctus 0.9956 0.7476 -0.4995
## Veg_shannon_index-Lynx_rufus 1.2808 1.2062 -1.1354
## Veg_shannon_index-Didelphis_virginiana 1.3063 0.8539 -0.4554
## Veg_shannon_index-Sylvilagus_floridanus 1.7492 0.9545 0.1615
## Veg_shannon_index-Sciurus_carolinensis 0.9095 0.9221 -1.0032
## Veg_shannon_index-Vulpes_vulpes 1.1380 1.0386 -1.0795
## Veg_shannon_index-Sus_scrofa 2.4251 1.2773 0.5232
## total_shrub_cover-Odocoileus_virginianus -0.0942 0.7309 -1.5371
## total_shrub_cover-Canis_latrans 0.0426 0.5061 -0.8886
## total_shrub_cover-Sciurus_niger -0.4617 0.7990 -2.3239
## total_shrub_cover-Procyon_lotor -0.6850 0.5751 -1.9691
## total_shrub_cover-Dasypus_novemcinctus 0.0958 0.4992 -0.8728
## total_shrub_cover-Lynx_rufus -0.5558 0.7585 -2.2557
## total_shrub_cover-Didelphis_virginiana -0.3866 0.6113 -1.6547
## total_shrub_cover-Sylvilagus_floridanus -0.1479 0.6290 -1.4260
## total_shrub_cover-Sciurus_carolinensis 0.0048 0.5952 -1.1669
## total_shrub_cover-Vulpes_vulpes -0.3496 0.6929 -1.8150
## total_shrub_cover-Sus_scrofa 0.0290 0.7328 -1.3536
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5962 1.3158 -1.9349
## Avg_Cogongrass_Cover-Canis_latrans 0.7071 1.1927 -1.4099
## Avg_Cogongrass_Cover-Sciurus_niger 0.3314 1.3915 -2.7392
## Avg_Cogongrass_Cover-Procyon_lotor 0.8676 1.1586 -1.2443
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1758 1.2884 -1.1761
## Avg_Cogongrass_Cover-Lynx_rufus 0.7723 1.2831 -1.5584
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.7622 1.2708 -1.5583
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.2486 1.2561 -2.3452
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.6677 1.2187 -1.8070
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.7520 1.2764 -1.6450
## Avg_Cogongrass_Cover-Sus_scrofa 0.3647 1.2728 -2.1806
## Tree_Density-Odocoileus_virginianus -0.8747 1.4572 -3.0231
## Tree_Density-Canis_latrans -2.5630 1.1925 -5.2276
## Tree_Density-Sciurus_niger -1.9140 1.5948 -5.0900
## Tree_Density-Procyon_lotor -1.7334 0.9442 -3.6393
## Tree_Density-Dasypus_novemcinctus -3.5815 1.8642 -7.9420
## Tree_Density-Lynx_rufus -0.8879 1.6951 -3.4693
## Tree_Density-Didelphis_virginiana -2.2743 1.1502 -4.9638
## Tree_Density-Sylvilagus_floridanus -2.4770 1.3223 -5.5383
## Tree_Density-Sciurus_carolinensis -2.6229 1.4571 -6.1879
## Tree_Density-Vulpes_vulpes -1.9787 1.6112 -5.2373
## Tree_Density-Sus_scrofa -2.3773 1.6947 -5.7748
## Avg_Canopy_Cover-Odocoileus_virginianus 1.2826 1.3922 -1.4308
## Avg_Canopy_Cover-Canis_latrans 0.2365 0.7114 -1.1731
## Avg_Canopy_Cover-Sciurus_niger 2.1339 1.5274 -0.7168
## Avg_Canopy_Cover-Procyon_lotor 1.6468 0.7255 0.3409
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.9349 0.7218 0.7005
## Avg_Canopy_Cover-Lynx_rufus 1.7738 1.4335 -0.7090
## Avg_Canopy_Cover-Didelphis_virginiana 2.6219 0.9996 1.1267
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.3741 1.6666 1.0531
## Avg_Canopy_Cover-Sciurus_carolinensis 2.2717 0.9297 0.8438
## Avg_Canopy_Cover-Vulpes_vulpes 2.3468 1.3376 0.3912
## Avg_Canopy_Cover-Sus_scrofa 1.9911 0.9247 0.5303
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.7193 0.9665 -0.0212
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.0526 0.9271 0.5986
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.1254 1.1721 -1.6143
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.9536 0.9198 0.3963
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4613 0.7246 0.1496
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.0916 0.9616 0.5954
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.1524 0.6930 -0.2121
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3374 0.7651 0.0146
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6610 0.6890 0.4408
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.8212 0.8133 0.3848
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.9901 1.0180 -1.4052
## avg_veg_height-Odocoileus_virginianus -0.3040 0.8111 -2.0439
## avg_veg_height-Canis_latrans -0.5069 0.6233 -1.7837
## avg_veg_height-Sciurus_niger -0.3830 0.8033 -2.0868
## avg_veg_height-Procyon_lotor 0.0241 0.6161 -1.1825
## avg_veg_height-Dasypus_novemcinctus 0.0061 0.6144 -1.1755
## avg_veg_height-Lynx_rufus -0.3872 0.7892 -2.1283
## avg_veg_height-Didelphis_virginiana -0.4233 0.6950 -1.8961
## avg_veg_height-Sylvilagus_floridanus -0.3606 0.7002 -1.7684
## avg_veg_height-Sciurus_carolinensis -0.0038 0.6835 -1.2345
## avg_veg_height-Vulpes_vulpes -0.4521 0.7665 -2.2221
## avg_veg_height-Sus_scrofa -0.3371 0.7134 -1.7742
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.7432 16.8015 1.2424 118
## (Intercept)-Canis_latrans -0.9903 1.0956 1.0077 513
## (Intercept)-Sciurus_niger 0.5801 8.3990 1.0613 91
## (Intercept)-Procyon_lotor -0.3772 1.6546 1.0196 381
## (Intercept)-Dasypus_novemcinctus -2.6535 -0.8571 1.0265 255
## (Intercept)-Lynx_rufus 0.0080 8.5079 1.1860 74
## (Intercept)-Didelphis_virginiana -4.2461 -1.8459 1.0171 258
## (Intercept)-Sylvilagus_floridanus -2.5260 -0.1432 1.0475 232
## (Intercept)-Sciurus_carolinensis -4.7364 -2.4006 1.0410 295
## (Intercept)-Vulpes_vulpes -4.4022 0.9390 1.1227 112
## (Intercept)-Sus_scrofa -5.9805 -2.8039 1.1775 177
## Cogon_Patch_Size-Odocoileus_virginianus 0.1793 3.4734 1.0134 478
## Cogon_Patch_Size-Canis_latrans 1.5506 5.7933 1.0786 200
## Cogon_Patch_Size-Sciurus_niger -0.5098 2.7251 1.0912 144
## Cogon_Patch_Size-Procyon_lotor -0.1242 1.5833 1.0517 349
## Cogon_Patch_Size-Dasypus_novemcinctus 0.0071 1.2323 1.0051 386
## Cogon_Patch_Size-Lynx_rufus -0.2233 3.0855 1.0213 297
## Cogon_Patch_Size-Didelphis_virginiana 1.7691 4.0641 1.0514 197
## Cogon_Patch_Size-Sylvilagus_floridanus -0.7969 1.0492 1.0436 317
## Cogon_Patch_Size-Sciurus_carolinensis -0.7292 0.9439 1.0501 246
## Cogon_Patch_Size-Vulpes_vulpes -0.4837 2.3119 1.0308 214
## Cogon_Patch_Size-Sus_scrofa -0.1379 1.9277 1.0474 382
## Veg_shannon_index-Odocoileus_virginianus 1.2557 3.7629 1.0550 508
## Veg_shannon_index-Canis_latrans 1.6785 3.8595 1.0908 215
## Veg_shannon_index-Sciurus_niger 1.5206 4.7091 1.1689 243
## Veg_shannon_index-Procyon_lotor 1.3245 3.0348 1.0868 372
## Veg_shannon_index-Dasypus_novemcinctus 1.0074 2.4324 1.0537 404
## Veg_shannon_index-Lynx_rufus 1.2795 3.7103 1.0213 312
## Veg_shannon_index-Didelphis_virginiana 1.3050 3.1412 1.0359 384
## Veg_shannon_index-Sylvilagus_floridanus 1.6445 3.9737 1.0925 278
## Veg_shannon_index-Sciurus_carolinensis 0.9718 2.6479 1.0160 622
## Veg_shannon_index-Vulpes_vulpes 1.1370 3.1827 1.0642 552
## Veg_shannon_index-Sus_scrofa 2.1821 5.7288 1.1474 251
## total_shrub_cover-Odocoileus_virginianus -0.1064 1.4951 1.0096 980
## total_shrub_cover-Canis_latrans 0.0214 1.0912 1.0065 901
## total_shrub_cover-Sciurus_niger -0.3989 0.9815 1.0014 471
## total_shrub_cover-Procyon_lotor -0.6458 0.3424 1.0126 478
## total_shrub_cover-Dasypus_novemcinctus 0.0932 1.0861 1.0165 729
## total_shrub_cover-Lynx_rufus -0.4873 0.7974 1.0046 321
## total_shrub_cover-Didelphis_virginiana -0.3540 0.7381 1.0195 709
## total_shrub_cover-Sylvilagus_floridanus -0.1296 1.0421 1.0030 733
## total_shrub_cover-Sciurus_carolinensis -0.0217 1.2460 1.0007 830
## total_shrub_cover-Vulpes_vulpes -0.3090 0.9333 1.0081 714
## total_shrub_cover-Sus_scrofa -0.0280 1.7308 1.0082 670
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.6002 3.1674 1.0298 205
## Avg_Cogongrass_Cover-Canis_latrans 0.6530 3.3130 1.0306 205
## Avg_Cogongrass_Cover-Sciurus_niger 0.4020 2.8564 1.0322 203
## Avg_Cogongrass_Cover-Procyon_lotor 0.8276 3.3277 1.0199 156
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0676 4.1171 1.0301 164
## Avg_Cogongrass_Cover-Lynx_rufus 0.6933 3.5972 1.0262 166
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.6907 3.4049 1.0311 161
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.3260 2.6858 1.0201 219
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.6178 3.1422 1.0326 166
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.7230 3.3653 1.0611 134
## Avg_Cogongrass_Cover-Sus_scrofa 0.4124 2.8320 1.0331 218
## Tree_Density-Odocoileus_virginianus -1.0794 2.5132 1.0325 166
## Tree_Density-Canis_latrans -2.4035 -0.6870 1.0049 382
## Tree_Density-Sciurus_niger -1.8849 1.8060 1.0788 238
## Tree_Density-Procyon_lotor -1.7219 0.1089 1.0096 481
## Tree_Density-Dasypus_novemcinctus -3.2015 -1.2558 1.0489 126
## Tree_Density-Lynx_rufus -1.1078 3.3639 1.0387 150
## Tree_Density-Didelphis_virginiana -2.1165 -0.4150 1.0206 375
## Tree_Density-Sylvilagus_floridanus -2.3002 -0.4719 1.0187 338
## Tree_Density-Sciurus_carolinensis -2.4229 -0.5982 1.0069 344
## Tree_Density-Vulpes_vulpes -1.9825 1.3774 1.0134 267
## Tree_Density-Sus_scrofa -2.1996 0.2206 1.0631 158
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3379 4.0461 1.0611 505
## Avg_Canopy_Cover-Canis_latrans 0.2327 1.6273 1.0565 388
## Avg_Canopy_Cover-Sciurus_niger 2.0521 5.4366 1.0704 266
## Avg_Canopy_Cover-Procyon_lotor 1.6169 3.1559 1.0417 519
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.8901 3.5655 1.1696 184
## Avg_Canopy_Cover-Lynx_rufus 1.6083 4.9337 1.1332 217
## Avg_Canopy_Cover-Didelphis_virginiana 2.4839 4.9202 1.0709 107
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.0826 7.9352 1.0999 128
## Avg_Canopy_Cover-Sciurus_carolinensis 2.1307 4.4241 1.0513 330
## Avg_Canopy_Cover-Vulpes_vulpes 2.1116 5.7774 1.0432 207
## Avg_Canopy_Cover-Sus_scrofa 1.8848 4.0699 1.1726 316
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.6472 3.9027 1.0109 281
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.9327 4.1979 1.0166 281
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.2491 3.1916 1.0275 195
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.8424 4.2375 1.0255 294
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4180 2.9717 1.0043 323
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.9740 4.4142 1.0091 334
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.1407 2.5409 1.0104 228
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.2822 2.9338 1.0201 300
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6051 3.2034 1.0065 308
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.7503 3.5897 1.0151 200
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.0969 2.6437 1.0104 288
## avg_veg_height-Odocoileus_virginianus -0.3060 1.2805 1.0213 408
## avg_veg_height-Canis_latrans -0.4712 0.6468 1.0221 350
## avg_veg_height-Sciurus_niger -0.3551 1.1357 1.0252 381
## avg_veg_height-Procyon_lotor 0.0073 1.3171 1.0141 393
## avg_veg_height-Dasypus_novemcinctus -0.0148 1.2028 1.0071 396
## avg_veg_height-Lynx_rufus -0.3488 1.1436 1.0022 344
## avg_veg_height-Didelphis_virginiana -0.3837 0.8194 1.0009 310
## avg_veg_height-Sylvilagus_floridanus -0.3161 0.9568 1.0177 373
## avg_veg_height-Sciurus_carolinensis -0.0460 1.5080 1.0216 475
## avg_veg_height-Vulpes_vulpes -0.3946 0.9609 1.0060 375
## avg_veg_height-Sus_scrofa -0.3199 1.0298 1.0098 442
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0058 0.0583 -0.1120 0.0072 0.1200
## (Intercept)-Canis_latrans -2.6075 0.1714 -2.9618 -2.5955 -2.2969
## (Intercept)-Sciurus_niger -4.5555 0.4320 -5.3931 -4.5526 -3.7031
## (Intercept)-Procyon_lotor -2.2733 0.1290 -2.5337 -2.2692 -2.0281
## (Intercept)-Dasypus_novemcinctus -1.5706 0.1295 -1.8392 -1.5686 -1.3259
## (Intercept)-Lynx_rufus -3.7807 0.3339 -4.4420 -3.7817 -3.1188
## (Intercept)-Didelphis_virginiana -2.3041 0.2437 -2.8316 -2.2844 -1.8570
## (Intercept)-Sylvilagus_floridanus -3.1804 0.2780 -3.7518 -3.1760 -2.6640
## (Intercept)-Sciurus_carolinensis -2.4300 0.2616 -2.9824 -2.4140 -1.9556
## (Intercept)-Vulpes_vulpes -4.0697 0.6214 -5.3968 -4.0315 -2.9593
## (Intercept)-Sus_scrofa -2.8058 0.4485 -3.7531 -2.7637 -2.0580
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0008 1500
## (Intercept)-Canis_latrans 0.9996 881
## (Intercept)-Sciurus_niger 1.0348 103
## (Intercept)-Procyon_lotor 1.0028 1224
## (Intercept)-Dasypus_novemcinctus 1.0093 1500
## (Intercept)-Lynx_rufus 1.0543 125
## (Intercept)-Didelphis_virginiana 1.0161 1177
## (Intercept)-Sylvilagus_floridanus 1.0078 466
## (Intercept)-Sciurus_carolinensis 0.9994 1001
## (Intercept)-Vulpes_vulpes 1.0485 169
## (Intercept)-Sus_scrofa 1.0117 428
# Includes all covariates of detection and cogongrass cover occupancy
ms_full_cogon <- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.full,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_full_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7153
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1814 0.5701 -1.2688 -0.2131 1.0151 1.0101 693
## Avg_Cogongrass_Cover 0.1930 0.2433 -0.3065 0.2018 0.6580 1.0278 688
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.1413 2.5498 0.6093 2.4913 9.1817 1.0365 488
## Avg_Cogongrass_Cover 0.2909 0.4492 0.0358 0.1847 1.2093 1.0812 774
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.6937 0.6757 0.0473 0.4963 2.4039 1.019 134
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6051 0.4089 -3.3572 -2.6181 -1.7219 1.0016 1321
## shrub_cover 0.2175 0.2413 -0.2857 0.2255 0.7065 1.0092 900
## veg_height -0.0077 0.1579 -0.3304 -0.0025 0.3043 1.0137 996
## week -0.0395 0.1210 -0.2929 -0.0373 0.1862 1.0110 740
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9729 1.3028 0.6741 1.6281 5.2207 1.0032 708
## shrub_cover 0.4450 0.3762 0.0971 0.3394 1.5218 1.0371 465
## veg_height 0.1938 0.1340 0.0588 0.1585 0.5605 1.0016 670
## week 0.1002 0.0864 0.0246 0.0751 0.3147 1.0170 652
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.3092 1.3108 1.1080 3.1954
## (Intercept)-Canis_latrans 0.4460 0.6396 -0.7621 0.4381
## (Intercept)-Sciurus_niger -0.4892 1.1485 -2.1648 -0.5748
## (Intercept)-Procyon_lotor 0.5698 0.6065 -0.6837 0.5766
## (Intercept)-Dasypus_novemcinctus -0.6461 0.5613 -1.7892 -0.6367
## (Intercept)-Lynx_rufus 0.1161 1.0408 -1.5705 -0.0194
## (Intercept)-Didelphis_virginiana -1.2184 0.6459 -2.4793 -1.2255
## (Intercept)-Sylvilagus_floridanus -0.3558 0.6441 -1.6189 -0.3586
## (Intercept)-Sciurus_carolinensis -1.3103 0.6571 -2.6292 -1.3028
## (Intercept)-Vulpes_vulpes -1.1083 1.1102 -3.0442 -1.2088
## (Intercept)-Sus_scrofa -1.7012 0.8471 -3.4482 -1.6757
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1591 0.4743 -0.7091 0.1341
## Avg_Cogongrass_Cover-Canis_latrans 0.4326 0.3857 -0.2220 0.3924
## Avg_Cogongrass_Cover-Sciurus_niger -0.1553 0.5723 -1.4614 -0.1010
## Avg_Cogongrass_Cover-Procyon_lotor 0.2169 0.3382 -0.4333 0.2122
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3415 0.3232 -0.3114 0.3427
## Avg_Cogongrass_Cover-Lynx_rufus 0.4303 0.4136 -0.2802 0.4029
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3266 0.3591 -0.3960 0.3171
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1911 0.4410 -1.1969 -0.1506
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3231 0.3403 -0.3452 0.3096
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3027 0.4443 -0.5294 0.2806
## Avg_Cogongrass_Cover-Sus_scrofa -0.0933 0.5288 -1.2664 -0.0376
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.2035 1.0126 436
## (Intercept)-Canis_latrans 1.8096 1.0054 769
## (Intercept)-Sciurus_niger 1.7715 1.0672 178
## (Intercept)-Procyon_lotor 1.7257 1.0086 926
## (Intercept)-Dasypus_novemcinctus 0.4284 1.0049 972
## (Intercept)-Lynx_rufus 2.7178 1.0632 252
## (Intercept)-Didelphis_virginiana 0.0924 1.0083 1075
## (Intercept)-Sylvilagus_floridanus 0.9192 1.0137 828
## (Intercept)-Sciurus_carolinensis -0.0426 1.0056 792
## (Intercept)-Vulpes_vulpes 1.3426 1.0242 199
## (Intercept)-Sus_scrofa -0.1495 1.0081 613
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1657 1.0032 1022
## Avg_Cogongrass_Cover-Canis_latrans 1.3195 1.0139 887
## Avg_Cogongrass_Cover-Sciurus_niger 0.7954 1.0343 527
## Avg_Cogongrass_Cover-Procyon_lotor 0.8878 0.9995 1316
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9556 1.0022 1113
## Avg_Cogongrass_Cover-Lynx_rufus 1.3102 1.0012 981
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0241 1.0196 928
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5568 1.0154 791
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0093 1.0042 1263
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2320 1.0019 1175
## Avg_Cogongrass_Cover-Sus_scrofa 0.8210 1.0420 410
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0085 0.0607 -0.1055 0.0066 0.1316
## (Intercept)-Canis_latrans -2.7671 0.1960 -3.1498 -2.7687 -2.3806
## (Intercept)-Sciurus_niger -4.1125 0.6257 -5.3956 -4.1032 -2.9111
## (Intercept)-Procyon_lotor -2.2905 0.1441 -2.5658 -2.2843 -2.0073
## (Intercept)-Dasypus_novemcinctus -1.7293 0.1556 -2.0424 -1.7238 -1.4359
## (Intercept)-Lynx_rufus -3.6743 0.3783 -4.4567 -3.6456 -2.9825
## (Intercept)-Didelphis_virginiana -2.5348 0.2855 -3.1629 -2.5233 -2.0212
## (Intercept)-Sylvilagus_floridanus -3.1973 0.2976 -3.8194 -3.1927 -2.6488
## (Intercept)-Sciurus_carolinensis -2.5972 0.3086 -3.2541 -2.5819 -2.0315
## (Intercept)-Vulpes_vulpes -4.1297 0.7202 -5.6235 -4.0928 -2.8088
## (Intercept)-Sus_scrofa -3.2337 0.5854 -4.4242 -3.2214 -2.1135
## shrub_cover-Odocoileus_virginianus -0.0553 0.0633 -0.1841 -0.0573 0.0652
## shrub_cover-Canis_latrans -0.2695 0.2271 -0.7225 -0.2657 0.1501
## shrub_cover-Sciurus_niger -0.3394 0.4621 -1.3078 -0.3148 0.4947
## shrub_cover-Procyon_lotor 0.2506 0.1602 -0.0538 0.2473 0.5549
## shrub_cover-Dasypus_novemcinctus 0.7930 0.2889 0.2548 0.7796 1.3705
## shrub_cover-Lynx_rufus -0.2251 0.3353 -0.9259 -0.2151 0.3980
## shrub_cover-Didelphis_virginiana 0.8778 0.3500 0.2453 0.8565 1.6257
## shrub_cover-Sylvilagus_floridanus 0.2570 0.3740 -0.4757 0.2484 0.9855
## shrub_cover-Sciurus_carolinensis 0.7405 0.3764 0.0274 0.7281 1.5361
## shrub_cover-Vulpes_vulpes -0.0754 0.5254 -1.1580 -0.0726 0.9224
## shrub_cover-Sus_scrofa 0.4998 0.6978 -0.7780 0.4832 1.9152
## veg_height-Odocoileus_virginianus -0.2993 0.0643 -0.4214 -0.3008 -0.1744
## veg_height-Canis_latrans -0.5922 0.1837 -0.9479 -0.5926 -0.2351
## veg_height-Sciurus_niger -0.0411 0.4020 -0.8121 -0.0436 0.7452
## veg_height-Procyon_lotor 0.3358 0.1230 0.0879 0.3365 0.5680
## veg_height-Dasypus_novemcinctus 0.2289 0.1322 -0.0201 0.2247 0.4911
## veg_height-Lynx_rufus 0.0180 0.2462 -0.4879 0.0236 0.4671
## veg_height-Didelphis_virginiana 0.3932 0.2363 -0.0534 0.3814 0.8672
## veg_height-Sylvilagus_floridanus 0.1153 0.2527 -0.3669 0.1127 0.6537
## veg_height-Sciurus_carolinensis 0.0561 0.2020 -0.3292 0.0593 0.4819
## veg_height-Vulpes_vulpes -0.1531 0.3095 -0.8012 -0.1423 0.4356
## veg_height-Sus_scrofa -0.1297 0.3294 -0.7872 -0.1306 0.5200
## week-Odocoileus_virginianus 0.2128 0.0617 0.0933 0.2105 0.3341
## week-Canis_latrans 0.0741 0.1307 -0.1920 0.0768 0.3225
## week-Sciurus_niger -0.2941 0.3212 -1.0698 -0.2459 0.1899
## week-Procyon_lotor -0.0478 0.1177 -0.2867 -0.0417 0.1725
## week-Dasypus_novemcinctus -0.1613 0.1354 -0.4392 -0.1556 0.0917
## week-Lynx_rufus -0.0262 0.1887 -0.4096 -0.0190 0.3153
## week-Didelphis_virginiana -0.1916 0.2106 -0.6586 -0.1778 0.1781
## week-Sylvilagus_floridanus -0.1489 0.2113 -0.6058 -0.1303 0.2431
## week-Sciurus_carolinensis 0.1419 0.1798 -0.2103 0.1438 0.4841
## week-Vulpes_vulpes -0.1095 0.2916 -0.7403 -0.0860 0.3942
## week-Sus_scrofa 0.1070 0.2306 -0.3748 0.1068 0.5523
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0003 1500
## (Intercept)-Canis_latrans 1.0302 683
## (Intercept)-Sciurus_niger 1.0022 169
## (Intercept)-Procyon_lotor 1.0019 1560
## (Intercept)-Dasypus_novemcinctus 1.0023 1251
## (Intercept)-Lynx_rufus 1.0267 190
## (Intercept)-Didelphis_virginiana 1.0020 530
## (Intercept)-Sylvilagus_floridanus 1.0074 521
## (Intercept)-Sciurus_carolinensis 1.0041 830
## (Intercept)-Vulpes_vulpes 1.0221 178
## (Intercept)-Sus_scrofa 1.0092 475
## shrub_cover-Odocoileus_virginianus 1.0001 1500
## shrub_cover-Canis_latrans 1.0102 674
## shrub_cover-Sciurus_niger 1.0073 391
## shrub_cover-Procyon_lotor 1.0224 1167
## shrub_cover-Dasypus_novemcinctus 1.0017 1053
## shrub_cover-Lynx_rufus 1.0019 436
## shrub_cover-Didelphis_virginiana 1.0104 666
## shrub_cover-Sylvilagus_floridanus 1.0221 520
## shrub_cover-Sciurus_carolinensis 1.0094 819
## shrub_cover-Vulpes_vulpes 1.0330 439
## shrub_cover-Sus_scrofa 1.0132 628
## veg_height-Odocoileus_virginianus 1.0071 1500
## veg_height-Canis_latrans 1.0102 724
## veg_height-Sciurus_niger 1.0084 403
## veg_height-Procyon_lotor 1.0078 1242
## veg_height-Dasypus_novemcinctus 1.0030 1500
## veg_height-Lynx_rufus 1.0026 539
## veg_height-Didelphis_virginiana 1.0010 904
## veg_height-Sylvilagus_floridanus 0.9992 660
## veg_height-Sciurus_carolinensis 1.0051 1096
## veg_height-Vulpes_vulpes 1.0026 588
## veg_height-Sus_scrofa 1.0128 772
## week-Odocoileus_virginianus 1.0019 1500
## week-Canis_latrans 1.0110 1324
## week-Sciurus_niger 1.0341 444
## week-Procyon_lotor 1.0016 1267
## week-Dasypus_novemcinctus 1.0118 1500
## week-Lynx_rufus 1.0006 1204
## week-Didelphis_virginiana 1.0086 931
## week-Sylvilagus_floridanus 1.0002 925
## week-Sciurus_carolinensis 1.0036 1792
## week-Vulpes_vulpes 1.0000 621
## week-Sus_scrofa 1.0098 1309
# Includes no covariates of detection and cogongrass cover for occupancy
ms_null_cogon <- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.null,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_null_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.null, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5218
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2442 0.5672 -1.3166 -0.2730 0.9537 1.0095 535
## Avg_Cogongrass_Cover 0.1876 0.2376 -0.2888 0.1898 0.6576 1.0017 778
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.2886 2.6881 0.7093 2.524 10.2980 1.0284 536
## Avg_Cogongrass_Cover 0.2669 0.2995 0.0346 0.173 1.0409 1.0352 719
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.69 0.6537 0.061 0.5087 2.3225 1.0419 184
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4753 0.4076 -3.3296 -2.4607 -1.7103 1.0051 1500
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.8899 1.2001 0.6523 1.6313 4.7938 1.0736 489
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.3165 1.2874 1.1486 3.1791
## (Intercept)-Canis_latrans 0.3080 0.5961 -0.8583 0.2917
## (Intercept)-Sciurus_niger -0.3868 1.2933 -2.2672 -0.5930
## (Intercept)-Procyon_lotor 0.5490 0.6062 -0.7019 0.5602
## (Intercept)-Dasypus_novemcinctus -0.6753 0.5722 -1.7915 -0.6650
## (Intercept)-Lynx_rufus -0.0651 0.8826 -1.5866 -0.1194
## (Intercept)-Didelphis_virginiana -1.3809 0.6113 -2.6371 -1.3742
## (Intercept)-Sylvilagus_floridanus -0.3342 0.7389 -1.6516 -0.3749
## (Intercept)-Sciurus_carolinensis -1.4389 0.6131 -2.6537 -1.4163
## (Intercept)-Vulpes_vulpes -0.8315 1.3612 -2.9155 -1.0704
## (Intercept)-Sus_scrofa -1.8892 0.7711 -3.4897 -1.8706
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1557 0.4589 -0.7310 0.1544
## Avg_Cogongrass_Cover-Canis_latrans 0.3646 0.3480 -0.2654 0.3510
## Avg_Cogongrass_Cover-Sciurus_niger -0.1267 0.5599 -1.4241 -0.0578
## Avg_Cogongrass_Cover-Procyon_lotor 0.2504 0.3425 -0.4098 0.2318
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3258 0.3228 -0.2657 0.3279
## Avg_Cogongrass_Cover-Lynx_rufus 0.4442 0.4183 -0.2924 0.4019
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3464 0.3441 -0.3211 0.3385
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1672 0.4244 -1.0936 -0.1422
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3415 0.3250 -0.2914 0.3421
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2641 0.4058 -0.4857 0.2640
## Avg_Cogongrass_Cover-Sus_scrofa -0.1205 0.5024 -1.3176 -0.0500
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.2817 1.0503 321
## (Intercept)-Canis_latrans 1.4883 1.0016 903
## (Intercept)-Sciurus_niger 2.7279 1.0274 149
## (Intercept)-Procyon_lotor 1.7212 1.0347 746
## (Intercept)-Dasypus_novemcinctus 0.4650 1.0082 1065
## (Intercept)-Lynx_rufus 1.8865 1.0174 398
## (Intercept)-Didelphis_virginiana -0.1867 1.0137 1051
## (Intercept)-Sylvilagus_floridanus 1.2297 1.0392 613
## (Intercept)-Sciurus_carolinensis -0.2597 1.0215 1235
## (Intercept)-Vulpes_vulpes 2.5071 1.1065 123
## (Intercept)-Sus_scrofa -0.4519 1.0025 882
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1354 1.0106 1156
## Avg_Cogongrass_Cover-Canis_latrans 1.1154 1.0093 1078
## Avg_Cogongrass_Cover-Sciurus_niger 0.8166 1.0460 574
## Avg_Cogongrass_Cover-Procyon_lotor 0.9617 1.0049 1259
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9622 1.0046 1350
## Avg_Cogongrass_Cover-Lynx_rufus 1.3679 1.0259 1076
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0708 1.0008 1153
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6139 1.0188 499
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0014 1.0085 1351
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.1394 1.0040 1133
## Avg_Cogongrass_Cover-Sus_scrofa 0.6794 1.0248 906
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0012 0.0586 -0.1086 0.0019 0.1212
## (Intercept)-Canis_latrans -2.6283 0.1747 -2.9947 -2.6226 -2.2985
## (Intercept)-Sciurus_niger -4.0080 0.6394 -5.2729 -3.9998 -2.8630
## (Intercept)-Procyon_lotor -2.2682 0.1383 -2.5546 -2.2591 -2.0118
## (Intercept)-Dasypus_novemcinctus -1.5741 0.1323 -1.8467 -1.5747 -1.3149
## (Intercept)-Lynx_rufus -3.5362 0.3169 -4.1832 -3.5246 -2.9536
## (Intercept)-Didelphis_virginiana -2.3113 0.2518 -2.8492 -2.2938 -1.8553
## (Intercept)-Sylvilagus_floridanus -3.1891 0.3041 -3.8705 -3.1637 -2.6459
## (Intercept)-Sciurus_carolinensis -2.4339 0.2670 -2.9869 -2.4259 -1.9284
## (Intercept)-Vulpes_vulpes -4.1365 0.8040 -5.7053 -4.0664 -2.7748
## (Intercept)-Sus_scrofa -2.9133 0.4642 -3.9268 -2.8745 -2.1089
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0044 1500
## (Intercept)-Canis_latrans 1.0009 863
## (Intercept)-Sciurus_niger 1.0268 108
## (Intercept)-Procyon_lotor 1.0015 1007
## (Intercept)-Dasypus_novemcinctus 1.0013 1871
## (Intercept)-Lynx_rufus 1.0232 393
## (Intercept)-Didelphis_virginiana 1.0106 959
## (Intercept)-Sylvilagus_floridanus 1.1134 319
## (Intercept)-Sciurus_carolinensis 1.0015 1077
## (Intercept)-Vulpes_vulpes 1.1768 90
## (Intercept)-Sus_scrofa 1.0017 584
# Includes week covariate for detection and cogongrass cover for occupancy
ms_week_cogon <- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.week,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6658
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2504 0.5802 -1.3416 -0.2659 0.9550 1.0267 787
## Avg_Cogongrass_Cover 0.2017 0.2286 -0.2483 0.2081 0.6295 1.0101 672
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.4927 2.9147 0.7196 2.7209 11.3732 1.0200 505
## Avg_Cogongrass_Cover 0.2461 0.3000 0.0325 0.1566 1.0630 1.0316 469
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.7039 0.6103 0.0728 0.5327 2.4624 1.0669 165
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4825 0.3946 -3.2331 -2.4960 -1.6426 1.0043 1217
## week -0.0357 0.1212 -0.2926 -0.0312 0.1836 1.0070 989
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.7948 1.0346 0.6268 1.5507 4.6120 1.0284 564
## week 0.0909 0.0696 0.0248 0.0711 0.2635 1.0132 906
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.4050 1.3934 1.1941 3.2069
## (Intercept)-Canis_latrans 0.2745 0.6079 -0.9026 0.2541
## (Intercept)-Sciurus_niger -0.5913 1.1266 -2.3702 -0.7404
## (Intercept)-Procyon_lotor 0.5135 0.5832 -0.6431 0.5004
## (Intercept)-Dasypus_novemcinctus -0.6840 0.5727 -1.8949 -0.6690
## (Intercept)-Lynx_rufus 0.0763 1.0623 -1.4819 -0.0721
## (Intercept)-Didelphis_virginiana -1.3966 0.6145 -2.6064 -1.3966
## (Intercept)-Sylvilagus_floridanus -0.3199 0.7361 -1.6647 -0.3632
## (Intercept)-Sciurus_carolinensis -1.4263 0.6586 -2.8151 -1.3994
## (Intercept)-Vulpes_vulpes -1.0977 1.2803 -3.1643 -1.2730
## (Intercept)-Sus_scrofa -1.8795 0.7838 -3.3928 -1.8517
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1937 0.4543 -0.7209 0.1779
## Avg_Cogongrass_Cover-Canis_latrans 0.3526 0.3354 -0.2458 0.3394
## Avg_Cogongrass_Cover-Sciurus_niger -0.1065 0.5077 -1.3230 -0.0498
## Avg_Cogongrass_Cover-Procyon_lotor 0.2490 0.3440 -0.3866 0.2319
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3248 0.3097 -0.2809 0.3113
## Avg_Cogongrass_Cover-Lynx_rufus 0.4428 0.4109 -0.2842 0.4212
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3462 0.3352 -0.2945 0.3428
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1373 0.4140 -1.0524 -0.1016
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3382 0.3236 -0.2765 0.3338
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2719 0.4132 -0.5783 0.2698
## Avg_Cogongrass_Cover-Sus_scrofa -0.0674 0.4645 -1.0768 -0.0196
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.4239 1.0331 331
## (Intercept)-Canis_latrans 1.5392 1.0018 982
## (Intercept)-Sciurus_niger 2.2974 1.1107 184
## (Intercept)-Procyon_lotor 1.6290 1.0009 892
## (Intercept)-Dasypus_novemcinctus 0.4168 1.0048 976
## (Intercept)-Lynx_rufus 2.7024 1.0491 231
## (Intercept)-Didelphis_virginiana -0.2016 1.0022 1083
## (Intercept)-Sylvilagus_floridanus 1.2242 1.0273 480
## (Intercept)-Sciurus_carolinensis -0.2183 1.0071 963
## (Intercept)-Vulpes_vulpes 1.8641 1.0898 120
## (Intercept)-Sus_scrofa -0.3654 1.0018 807
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1918 1.0154 1038
## Avg_Cogongrass_Cover-Canis_latrans 1.0226 0.9993 1193
## Avg_Cogongrass_Cover-Sciurus_niger 0.7149 1.0063 631
## Avg_Cogongrass_Cover-Procyon_lotor 0.9834 1.0261 1161
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9776 1.0178 972
## Avg_Cogongrass_Cover-Lynx_rufus 1.3156 1.0208 1062
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0297 1.0012 1317
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5667 1.0002 684
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0006 1.0144 1223
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.1160 1.0200 1163
## Avg_Cogongrass_Cover-Sus_scrofa 0.7060 1.0125 882
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0060 0.0590 -0.1076 0.0076 0.1180
## (Intercept)-Canis_latrans -2.6281 0.1792 -2.9775 -2.6268 -2.2971
## (Intercept)-Sciurus_niger -3.9266 0.5865 -5.1041 -3.8775 -2.9049
## (Intercept)-Procyon_lotor -2.2694 0.1292 -2.5477 -2.2662 -2.0306
## (Intercept)-Dasypus_novemcinctus -1.5879 0.1327 -1.8439 -1.5879 -1.3327
## (Intercept)-Lynx_rufus -3.5801 0.3429 -4.2659 -3.5718 -2.9312
## (Intercept)-Didelphis_virginiana -2.3404 0.2558 -2.8448 -2.3322 -1.8501
## (Intercept)-Sylvilagus_floridanus -3.2478 0.3296 -3.9507 -3.2271 -2.6613
## (Intercept)-Sciurus_carolinensis -2.4687 0.2816 -3.0245 -2.4587 -1.9609
## (Intercept)-Vulpes_vulpes -4.0291 0.7543 -5.6109 -3.9653 -2.7124
## (Intercept)-Sus_scrofa -2.9591 0.5021 -4.0420 -2.9161 -2.1088
## week-Odocoileus_virginianus 0.2107 0.0603 0.0904 0.2106 0.3397
## week-Canis_latrans 0.0678 0.1292 -0.1851 0.0698 0.3177
## week-Sciurus_niger -0.2783 0.2882 -0.9376 -0.2426 0.1868
## week-Procyon_lotor -0.0441 0.1171 -0.2838 -0.0411 0.1804
## week-Dasypus_novemcinctus -0.1561 0.1340 -0.4320 -0.1540 0.0952
## week-Lynx_rufus -0.0286 0.1839 -0.3963 -0.0203 0.3172
## week-Didelphis_virginiana -0.1967 0.2103 -0.6452 -0.1792 0.1750
## week-Sylvilagus_floridanus -0.1420 0.2055 -0.5947 -0.1276 0.2262
## week-Sciurus_carolinensis 0.1408 0.1765 -0.2052 0.1444 0.4815
## week-Vulpes_vulpes -0.0835 0.2611 -0.6483 -0.0704 0.3994
## week-Sus_scrofa 0.1037 0.2273 -0.3395 0.0967 0.5677
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0005 1500
## (Intercept)-Canis_latrans 1.0091 842
## (Intercept)-Sciurus_niger 1.0832 169
## (Intercept)-Procyon_lotor 0.9998 1290
## (Intercept)-Dasypus_novemcinctus 1.0266 1500
## (Intercept)-Lynx_rufus 1.0251 252
## (Intercept)-Didelphis_virginiana 1.0292 1015
## (Intercept)-Sylvilagus_floridanus 1.0873 357
## (Intercept)-Sciurus_carolinensis 1.0009 929
## (Intercept)-Vulpes_vulpes 1.0774 112
## (Intercept)-Sus_scrofa 1.0190 490
## week-Odocoileus_virginianus 1.0037 1500
## week-Canis_latrans 1.0035 1212
## week-Sciurus_niger 1.0244 624
## week-Procyon_lotor 1.0107 1218
## week-Dasypus_novemcinctus 1.0013 1500
## week-Lynx_rufus 1.0011 929
## week-Didelphis_virginiana 1.0045 1029
## week-Sylvilagus_floridanus 1.0093 783
## week-Sciurus_carolinensis 1.0009 1370
## week-Vulpes_vulpes 1.0129 820
## week-Sus_scrofa 1.0013 1358
# Includes week covariate for detection and all covariates for occupancy
ms_week_full <- msPGOcc(
occ.formula = occ.full,
det.formula = det.week,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7255
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2145 1.0043 -2.1386 -0.2287 1.7562 1.0019 701
## Cogon_Patch_Size -0.5004 0.5657 -1.7448 -0.4435 0.4925 1.0466 482
## Veg_shannon_index 1.2584 0.5101 0.3367 1.2449 2.3084 1.0821 261
## total_shrub_cover -0.1426 0.3433 -0.8089 -0.1470 0.5159 1.0204 389
## Avg_Cogongrass_Cover 2.6219 0.6230 1.4868 2.5832 3.8991 1.3190 102
## Tree_Density -1.6804 0.5823 -2.9547 -1.6742 -0.5663 1.1075 302
## Avg_Canopy_Cover 1.7369 0.4880 0.8307 1.7095 2.7530 1.0870 393
## avg_veg_height -0.6590 0.4050 -1.4474 -0.6540 0.1277 1.1858 203
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 16.2108 12.7800 4.0036 12.3569 50.1724 1.1486 242
## Cogon_Patch_Size 2.2260 4.1391 0.1141 1.1357 10.3590 1.0199 295
## Veg_shannon_index 0.8954 1.3050 0.0453 0.4525 4.8221 1.1250 323
## total_shrub_cover 0.4229 0.7138 0.0407 0.2414 1.7886 1.1149 650
## Avg_Cogongrass_Cover 0.5570 0.7924 0.0478 0.2978 2.7019 1.0170 547
## Tree_Density 1.8372 3.0112 0.0595 0.7877 10.8181 1.2042 193
## Avg_Canopy_Cover 1.3442 1.7183 0.0871 0.8244 5.3347 1.0074 390
## avg_veg_height 0.3426 0.3888 0.0436 0.2193 1.3966 1.0514 706
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.7617 0.9096 0.0412 0.4293 3.3306 1.1673 102
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5438 0.4377 -3.3137 -2.5672 -1.6378 1.0010 1343
## week -0.0406 0.1191 -0.2842 -0.0338 0.1794 1.0051 798
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1257 1.2515 0.7925 1.8159 5.1363 1.0207 1118
## week 0.0964 0.0831 0.0247 0.0756 0.2759 1.0527 647
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 7.9183 3.0562 3.5971 7.3148
## (Intercept)-Canis_latrans 0.5140 0.8884 -1.0872 0.4599
## (Intercept)-Sciurus_niger 1.0991 1.7779 -2.2349 0.9745
## (Intercept)-Procyon_lotor 0.9294 0.8062 -0.7061 0.9318
## (Intercept)-Dasypus_novemcinctus -1.4511 0.8301 -3.3317 -1.3655
## (Intercept)-Lynx_rufus 2.3736 2.3614 -1.2774 2.0058
## (Intercept)-Didelphis_virginiana -2.8699 1.0065 -5.1608 -2.7987
## (Intercept)-Sylvilagus_floridanus -1.2547 1.0218 -3.3058 -1.2392
## (Intercept)-Sciurus_carolinensis -2.9971 1.0027 -5.2672 -2.9108
## (Intercept)-Vulpes_vulpes -2.1379 1.6859 -5.0407 -2.3195
## (Intercept)-Sus_scrofa -4.4783 1.4524 -7.8729 -4.2860
## Cogon_Patch_Size-Odocoileus_virginianus -0.3439 1.1098 -2.3879 -0.4058
## Cogon_Patch_Size-Canis_latrans 0.8488 1.0241 -0.5717 0.6615
## Cogon_Patch_Size-Sciurus_niger -1.1688 1.4568 -4.6693 -0.9592
## Cogon_Patch_Size-Procyon_lotor -0.5315 0.5696 -1.6889 -0.5180
## Cogon_Patch_Size-Dasypus_novemcinctus -0.4820 0.5330 -1.5713 -0.4723
## Cogon_Patch_Size-Lynx_rufus -0.5870 1.1271 -2.7421 -0.6013
## Cogon_Patch_Size-Didelphis_virginiana 0.8610 0.7201 -0.4330 0.7999
## Cogon_Patch_Size-Sylvilagus_floridanus -1.4900 1.3670 -5.1103 -1.2222
## Cogon_Patch_Size-Sciurus_carolinensis -1.3485 1.1868 -4.3579 -1.1124
## Cogon_Patch_Size-Vulpes_vulpes -0.9146 1.5485 -4.0323 -0.8173
## Cogon_Patch_Size-Sus_scrofa -0.8085 1.2422 -3.7793 -0.6330
## Veg_shannon_index-Odocoileus_virginianus 1.1856 0.9711 -0.8382 1.1956
## Veg_shannon_index-Canis_latrans 1.5569 0.7116 0.2812 1.5252
## Veg_shannon_index-Sciurus_niger 1.5494 1.0501 -0.4802 1.4810
## Veg_shannon_index-Procyon_lotor 1.3142 0.6673 0.0247 1.3140
## Veg_shannon_index-Dasypus_novemcinctus 1.0163 0.6246 -0.2046 1.0239
## Veg_shannon_index-Lynx_rufus 1.0097 1.0293 -1.3338 1.0757
## Veg_shannon_index-Didelphis_virginiana 1.2213 0.6878 -0.1528 1.2280
## Veg_shannon_index-Sylvilagus_floridanus 1.6350 0.7647 0.2599 1.5933
## Veg_shannon_index-Sciurus_carolinensis 0.8122 0.7584 -0.8886 0.8702
## Veg_shannon_index-Vulpes_vulpes 0.8559 0.8758 -1.0706 0.8934
## Veg_shannon_index-Sus_scrofa 2.1314 0.9905 0.6205 1.9732
## total_shrub_cover-Odocoileus_virginianus -0.0059 0.6555 -1.2640 -0.0288
## total_shrub_cover-Canis_latrans 0.1168 0.4860 -0.7852 0.0964
## total_shrub_cover-Sciurus_niger -0.3213 0.6650 -1.7498 -0.2944
## total_shrub_cover-Procyon_lotor -0.5537 0.4941 -1.6506 -0.5203
## total_shrub_cover-Dasypus_novemcinctus 0.0724 0.4347 -0.7572 0.0542
## total_shrub_cover-Lynx_rufus -0.3845 0.7076 -1.9504 -0.3505
## total_shrub_cover-Didelphis_virginiana -0.2496 0.5229 -1.3495 -0.2369
## total_shrub_cover-Sylvilagus_floridanus -0.0993 0.5529 -1.2330 -0.1098
## total_shrub_cover-Sciurus_carolinensis -0.0440 0.5447 -1.1164 -0.0616
## total_shrub_cover-Vulpes_vulpes -0.2705 0.6222 -1.5264 -0.2458
## total_shrub_cover-Sus_scrofa 0.0673 0.6186 -1.0917 0.0366
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.5529 0.8733 0.8461 2.5536
## Avg_Cogongrass_Cover-Canis_latrans 2.7764 0.7835 1.2880 2.7461
## Avg_Cogongrass_Cover-Sciurus_niger 2.3556 1.0280 0.1608 2.3804
## Avg_Cogongrass_Cover-Procyon_lotor 2.7547 0.8033 1.2731 2.7056
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 2.9322 0.8128 1.4437 2.8855
## Avg_Cogongrass_Cover-Lynx_rufus 2.7974 0.8503 1.2629 2.7619
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.7463 0.7618 1.4071 2.6889
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.3441 0.7989 0.7834 2.3385
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.8171 0.8081 1.3733 2.7465
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.8833 0.8562 1.3686 2.8115
## Avg_Cogongrass_Cover-Sus_scrofa 2.3882 0.9030 0.4566 2.4285
## Tree_Density-Odocoileus_virginianus -0.8698 1.0192 -2.5563 -0.9821
## Tree_Density-Canis_latrans -2.0514 0.9373 -4.3311 -1.9368
## Tree_Density-Sciurus_niger -1.7278 1.2723 -4.5278 -1.6954
## Tree_Density-Procyon_lotor -1.3171 0.6556 -2.5933 -1.3001
## Tree_Density-Dasypus_novemcinctus -2.9177 1.4930 -7.0204 -2.5402
## Tree_Density-Lynx_rufus -0.7764 1.2045 -2.6638 -0.9581
## Tree_Density-Didelphis_virginiana -2.0263 0.9868 -4.4284 -1.8828
## Tree_Density-Sylvilagus_floridanus -2.0864 1.1652 -5.0001 -1.8806
## Tree_Density-Sciurus_carolinensis -2.2007 1.1523 -5.0959 -1.9942
## Tree_Density-Vulpes_vulpes -1.7224 1.2054 -4.5390 -1.6937
## Tree_Density-Sus_scrofa -1.9800 1.2098 -4.8947 -1.8089
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3178 1.1108 -1.0624 1.3720
## Avg_Canopy_Cover-Canis_latrans 0.4964 0.6499 -0.7999 0.4816
## Avg_Canopy_Cover-Sciurus_niger 2.0299 1.1817 -0.2451 1.9734
## Avg_Canopy_Cover-Procyon_lotor 1.6970 0.6429 0.4718 1.6733
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.8396 0.5988 0.7754 1.7785
## Avg_Canopy_Cover-Lynx_rufus 1.5237 1.1118 -0.6755 1.4980
## Avg_Canopy_Cover-Didelphis_virginiana 2.3727 0.7818 1.1336 2.2772
## Avg_Canopy_Cover-Sylvilagus_floridanus 2.7119 1.1589 1.0453 2.4653
## Avg_Canopy_Cover-Sciurus_carolinensis 2.0983 0.6851 0.9653 2.0042
## Avg_Canopy_Cover-Vulpes_vulpes 1.9522 0.9000 0.4419 1.8621
## Avg_Canopy_Cover-Sus_scrofa 1.8731 0.7353 0.6193 1.7994
## avg_veg_height-Odocoileus_virginianus -0.6764 0.6657 -1.9801 -0.6608
## avg_veg_height-Canis_latrans -0.8497 0.5265 -1.9356 -0.8419
## avg_veg_height-Sciurus_niger -0.8020 0.6537 -2.1456 -0.7921
## avg_veg_height-Procyon_lotor -0.5196 0.5024 -1.4789 -0.5122
## avg_veg_height-Dasypus_novemcinctus -0.4397 0.5288 -1.4317 -0.4666
## avg_veg_height-Lynx_rufus -0.7188 0.6679 -2.0107 -0.6999
## avg_veg_height-Didelphis_virginiana -0.7467 0.5614 -1.8733 -0.7142
## avg_veg_height-Sylvilagus_floridanus -0.7878 0.5696 -1.9354 -0.7711
## avg_veg_height-Sciurus_carolinensis -0.3581 0.5710 -1.4225 -0.3909
## avg_veg_height-Vulpes_vulpes -0.6678 0.6343 -1.9916 -0.6544
## avg_veg_height-Sus_scrofa -0.7108 0.6181 -1.9582 -0.6968
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 15.9358 1.1566 149
## (Intercept)-Canis_latrans 2.5285 1.0654 402
## (Intercept)-Sciurus_niger 5.0301 1.0954 138
## (Intercept)-Procyon_lotor 2.5256 1.0193 531
## (Intercept)-Dasypus_novemcinctus -0.0563 1.0418 553
## (Intercept)-Lynx_rufus 8.0369 1.0714 97
## (Intercept)-Didelphis_virginiana -1.1019 1.0162 388
## (Intercept)-Sylvilagus_floridanus 0.7379 1.0011 510
## (Intercept)-Sciurus_carolinensis -1.2077 1.0592 404
## (Intercept)-Vulpes_vulpes 1.6933 1.0669 142
## (Intercept)-Sus_scrofa -2.0561 1.0675 388
## Cogon_Patch_Size-Odocoileus_virginianus 2.0626 1.0112 633
## Cogon_Patch_Size-Canis_latrans 3.3425 1.0091 328
## Cogon_Patch_Size-Sciurus_niger 1.2835 1.0261 295
## Cogon_Patch_Size-Procyon_lotor 0.6018 1.0768 856
## Cogon_Patch_Size-Dasypus_novemcinctus 0.5144 1.0166 863
## Cogon_Patch_Size-Lynx_rufus 1.6059 1.0410 406
## Cogon_Patch_Size-Didelphis_virginiana 2.4322 1.0048 597
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3220 1.0389 261
## Cogon_Patch_Size-Sciurus_carolinensis 0.2282 1.0397 355
## Cogon_Patch_Size-Vulpes_vulpes 1.9407 1.0836 178
## Cogon_Patch_Size-Sus_scrofa 1.1213 1.0382 550
## Veg_shannon_index-Odocoileus_virginianus 3.0110 1.0297 598
## Veg_shannon_index-Canis_latrans 3.1897 1.0476 486
## Veg_shannon_index-Sciurus_niger 3.9497 1.0946 316
## Veg_shannon_index-Procyon_lotor 2.6087 1.0329 392
## Veg_shannon_index-Dasypus_novemcinctus 2.2245 1.0707 394
## Veg_shannon_index-Lynx_rufus 2.7918 1.0456 310
## Veg_shannon_index-Didelphis_virginiana 2.5303 1.0874 374
## Veg_shannon_index-Sylvilagus_floridanus 3.3003 1.0767 472
## Veg_shannon_index-Sciurus_carolinensis 2.1743 1.0289 353
## Veg_shannon_index-Vulpes_vulpes 2.4285 1.0345 358
## Veg_shannon_index-Sus_scrofa 4.5603 1.0810 292
## total_shrub_cover-Odocoileus_virginianus 1.4330 1.0447 663
## total_shrub_cover-Canis_latrans 1.1823 1.0079 892
## total_shrub_cover-Sciurus_niger 0.8927 1.0014 608
## total_shrub_cover-Procyon_lotor 0.3339 1.0014 785
## total_shrub_cover-Dasypus_novemcinctus 0.9833 1.0033 798
## total_shrub_cover-Lynx_rufus 0.8643 1.0054 527
## total_shrub_cover-Didelphis_virginiana 0.6769 1.0251 1017
## total_shrub_cover-Sylvilagus_floridanus 0.9870 1.0076 725
## total_shrub_cover-Sciurus_carolinensis 1.1267 1.0013 750
## total_shrub_cover-Vulpes_vulpes 0.9130 1.0114 718
## total_shrub_cover-Sus_scrofa 1.3438 1.0153 561
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.2117 1.1726 250
## Avg_Cogongrass_Cover-Canis_latrans 4.3242 1.1876 220
## Avg_Cogongrass_Cover-Sciurus_niger 4.2025 1.1171 208
## Avg_Cogongrass_Cover-Procyon_lotor 4.4519 1.2213 243
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 4.5830 1.1812 219
## Avg_Cogongrass_Cover-Lynx_rufus 4.5511 1.1920 260
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.4012 1.2132 154
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 3.9425 1.2164 156
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.4621 1.2237 132
## Avg_Cogongrass_Cover-Vulpes_vulpes 4.7644 1.2215 198
## Avg_Cogongrass_Cover-Sus_scrofa 4.0313 1.1397 163
## Tree_Density-Odocoileus_virginianus 1.5942 1.0204 243
## Tree_Density-Canis_latrans -0.5438 1.0882 380
## Tree_Density-Sciurus_niger 0.7004 1.1317 301
## Tree_Density-Procyon_lotor 0.0088 1.0171 720
## Tree_Density-Dasypus_novemcinctus -1.0965 1.1669 212
## Tree_Density-Lynx_rufus 1.9645 1.0281 221
## Tree_Density-Didelphis_virginiana -0.5115 1.1090 388
## Tree_Density-Sylvilagus_floridanus -0.3509 1.0794 226
## Tree_Density-Sciurus_carolinensis -0.6615 1.1332 319
## Tree_Density-Vulpes_vulpes 0.4827 1.0345 472
## Tree_Density-Sus_scrofa 0.0431 1.1505 478
## Avg_Canopy_Cover-Odocoileus_virginianus 3.4211 1.0221 634
## Avg_Canopy_Cover-Canis_latrans 1.8159 1.0168 476
## Avg_Canopy_Cover-Sciurus_niger 4.4711 1.1818 390
## Avg_Canopy_Cover-Procyon_lotor 3.0328 1.0169 716
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.1117 1.0655 640
## Avg_Canopy_Cover-Lynx_rufus 3.9895 1.0002 320
## Avg_Canopy_Cover-Didelphis_virginiana 4.1750 1.0122 323
## Avg_Canopy_Cover-Sylvilagus_floridanus 5.4223 1.0353 320
## Avg_Canopy_Cover-Sciurus_carolinensis 3.6240 1.0581 427
## Avg_Canopy_Cover-Vulpes_vulpes 3.9920 1.0158 416
## Avg_Canopy_Cover-Sus_scrofa 3.5226 1.0337 631
## avg_veg_height-Odocoileus_virginianus 0.6519 1.0867 507
## avg_veg_height-Canis_latrans 0.1225 1.0926 327
## avg_veg_height-Sciurus_niger 0.4598 1.0579 394
## avg_veg_height-Procyon_lotor 0.4595 1.1035 365
## avg_veg_height-Dasypus_novemcinctus 0.6361 1.0913 362
## avg_veg_height-Lynx_rufus 0.6425 1.0959 387
## avg_veg_height-Didelphis_virginiana 0.3252 1.0520 447
## avg_veg_height-Sylvilagus_floridanus 0.2664 1.0875 313
## avg_veg_height-Sciurus_carolinensis 0.8340 1.1256 443
## avg_veg_height-Vulpes_vulpes 0.6022 1.1038 524
## avg_veg_height-Sus_scrofa 0.4234 1.0856 381
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0083 0.0583 -0.1038 0.0075 0.1232
## (Intercept)-Canis_latrans -2.6410 0.1802 -3.0280 -2.6302 -2.2999
## (Intercept)-Sciurus_niger -4.5582 0.4509 -5.4194 -4.5653 -3.6530
## (Intercept)-Procyon_lotor -2.2713 0.1333 -2.5335 -2.2677 -2.0084
## (Intercept)-Dasypus_novemcinctus -1.5871 0.1364 -1.8502 -1.5885 -1.3279
## (Intercept)-Lynx_rufus -3.8866 0.3303 -4.4872 -3.9079 -3.1812
## (Intercept)-Didelphis_virginiana -2.3156 0.2412 -2.8182 -2.3015 -1.8781
## (Intercept)-Sylvilagus_floridanus -3.1773 0.2935 -3.8150 -3.1640 -2.6464
## (Intercept)-Sciurus_carolinensis -2.4386 0.2612 -2.9709 -2.4187 -1.9624
## (Intercept)-Vulpes_vulpes -4.1478 0.6578 -5.4739 -4.1465 -2.8943
## (Intercept)-Sus_scrofa -2.8469 0.4455 -3.8250 -2.8320 -2.0364
## week-Odocoileus_virginianus 0.2056 0.0609 0.0853 0.2072 0.3277
## week-Canis_latrans 0.0767 0.1310 -0.1900 0.0785 0.3344
## week-Sciurus_niger -0.2984 0.3050 -1.0286 -0.2579 0.1848
## week-Procyon_lotor -0.0457 0.1164 -0.2732 -0.0435 0.1750
## week-Dasypus_novemcinctus -0.1619 0.1355 -0.4421 -0.1563 0.0939
## week-Lynx_rufus -0.0242 0.1910 -0.4187 -0.0122 0.3381
## week-Didelphis_virginiana -0.2088 0.2165 -0.6828 -0.1936 0.1683
## week-Sylvilagus_floridanus -0.1470 0.2076 -0.5965 -0.1246 0.2118
## week-Sciurus_carolinensis 0.1381 0.1745 -0.2198 0.1406 0.4702
## week-Vulpes_vulpes -0.0975 0.2597 -0.6538 -0.0856 0.3909
## week-Sus_scrofa 0.1027 0.2324 -0.3641 0.1083 0.5425
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0008 1500
## (Intercept)-Canis_latrans 1.0235 741
## (Intercept)-Sciurus_niger 1.0737 150
## (Intercept)-Procyon_lotor 1.0081 1166
## (Intercept)-Dasypus_novemcinctus 1.0014 1518
## (Intercept)-Lynx_rufus 1.0667 226
## (Intercept)-Didelphis_virginiana 1.0012 1152
## (Intercept)-Sylvilagus_floridanus 1.0236 384
## (Intercept)-Sciurus_carolinensis 1.0151 1216
## (Intercept)-Vulpes_vulpes 1.0053 151
## (Intercept)-Sus_scrofa 1.0057 829
## week-Odocoileus_virginianus 1.0020 1500
## week-Canis_latrans 1.0033 1217
## week-Sciurus_niger 1.0107 387
## week-Procyon_lotor 1.0064 1228
## week-Dasypus_novemcinctus 1.0118 1405
## week-Lynx_rufus 1.0144 745
## week-Didelphis_virginiana 1.0045 968
## week-Sylvilagus_floridanus 1.0112 855
## week-Sciurus_carolinensis 1.0011 1500
## week-Vulpes_vulpes 1.0018 1003
## week-Sus_scrofa 1.0060 1253
# Includes week covariate for detection and only cover for occupancy
ms_week_cover <- msPGOcc(
occ.formula = occ.cover,
det.formula = det.week,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6727
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2050 0.6223 -1.3977 -0.2426 1.0544 1.0027 1014
## Avg_Cogongrass_Cover 0.1311 0.3060 -0.5013 0.1358 0.7354 1.0107 442
## total_shrub_cover -0.2709 0.2803 -0.8346 -0.2699 0.2704 1.0068 773
## avg_veg_height 0.0238 0.2797 -0.5292 0.0204 0.5744 1.0053 426
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.1797 3.1906 0.7911 3.2636 12.9845 1.0225 430
## Avg_Cogongrass_Cover 0.3489 0.5711 0.0362 0.2012 1.5249 1.0865 631
## total_shrub_cover 0.3656 0.3909 0.0464 0.2451 1.4591 1.0133 657
## avg_veg_height 0.1910 0.1908 0.0286 0.1332 0.6867 1.0038 895
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9226 0.8959 0.074 0.6542 3.3706 1.0239 113
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5011 0.4138 -3.3101 -2.5095 -1.6581 1.0104 977
## week -0.0403 0.1225 -0.3010 -0.0321 0.1873 1.0064 629
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9619 1.2731 0.6598 1.6189 5.3016 1.0004 320
## week 0.1029 0.0840 0.0261 0.0814 0.2957 1.0348 825
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7777 1.4815 1.2812 3.5991
## (Intercept)-Canis_latrans 0.3400 0.6763 -0.9366 0.3243
## (Intercept)-Sciurus_niger -0.5420 1.3002 -2.5175 -0.7167
## (Intercept)-Procyon_lotor 0.6774 0.6707 -0.6174 0.6721
## (Intercept)-Dasypus_novemcinctus -0.7406 0.6192 -1.9811 -0.7445
## (Intercept)-Lynx_rufus 0.0052 1.0223 -1.8104 -0.0650
## (Intercept)-Didelphis_virginiana -1.4855 0.7053 -2.9885 -1.4711
## (Intercept)-Sylvilagus_floridanus -0.2408 0.9270 -1.7869 -0.3528
## (Intercept)-Sciurus_carolinensis -1.5360 0.7099 -2.9378 -1.5093
## (Intercept)-Vulpes_vulpes -0.8466 1.5708 -3.2434 -1.1121
## (Intercept)-Sus_scrofa -2.0215 0.8731 -3.8138 -2.0165
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1203 0.5313 -0.9965 0.1171
## Avg_Cogongrass_Cover-Canis_latrans 0.3935 0.4234 -0.3637 0.3684
## Avg_Cogongrass_Cover-Sciurus_niger -0.2371 0.6348 -1.8301 -0.1533
## Avg_Cogongrass_Cover-Procyon_lotor 0.0953 0.4293 -0.7693 0.0917
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.2462 0.3798 -0.5236 0.2475
## Avg_Cogongrass_Cover-Lynx_rufus 0.4163 0.4736 -0.4195 0.3686
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2892 0.4318 -0.5634 0.2886
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.2272 0.5019 -1.3101 -0.1921
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2378 0.4095 -0.5413 0.2318
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2613 0.4971 -0.6821 0.2479
## Avg_Cogongrass_Cover-Sus_scrofa -0.1798 0.6000 -1.5906 -0.1066
## total_shrub_cover-Odocoileus_virginianus -0.1585 0.5254 -1.1736 -0.1703
## total_shrub_cover-Canis_latrans 0.0953 0.4212 -0.6608 0.0570
## total_shrub_cover-Sciurus_niger -0.5310 0.5389 -1.7236 -0.4971
## total_shrub_cover-Procyon_lotor -0.7517 0.4681 -1.8513 -0.7048
## total_shrub_cover-Dasypus_novemcinctus -0.0677 0.3492 -0.7278 -0.0836
## total_shrub_cover-Lynx_rufus -0.6527 0.5441 -1.9253 -0.6021
## total_shrub_cover-Didelphis_virginiana -0.2028 0.3938 -0.9666 -0.2077
## total_shrub_cover-Sylvilagus_floridanus -0.3159 0.4728 -1.2323 -0.3142
## total_shrub_cover-Sciurus_carolinensis -0.1133 0.3987 -0.8429 -0.1307
## total_shrub_cover-Vulpes_vulpes -0.3062 0.5644 -1.4407 -0.2921
## total_shrub_cover-Sus_scrofa 0.0389 0.4740 -0.8579 0.0147
## avg_veg_height-Odocoileus_virginianus 0.0290 0.4580 -0.8597 0.0441
## avg_veg_height-Canis_latrans -0.0642 0.3896 -0.8368 -0.0598
## avg_veg_height-Sciurus_niger -0.1290 0.4759 -1.1252 -0.1050
## avg_veg_height-Procyon_lotor 0.1099 0.3982 -0.6735 0.1023
## avg_veg_height-Dasypus_novemcinctus 0.1860 0.3605 -0.5029 0.1777
## avg_veg_height-Lynx_rufus 0.0146 0.4404 -0.8361 0.0188
## avg_veg_height-Didelphis_virginiana 0.0017 0.3923 -0.7811 0.0100
## avg_veg_height-Sylvilagus_floridanus -0.1049 0.4056 -0.9186 -0.0917
## avg_veg_height-Sciurus_carolinensis 0.2572 0.4052 -0.5033 0.2409
## avg_veg_height-Vulpes_vulpes -0.0226 0.4447 -0.9217 -0.0044
## avg_veg_height-Sus_scrofa -0.0154 0.4207 -0.9001 -0.0045
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.0299 1.0038 356
## (Intercept)-Canis_latrans 1.7032 1.0146 865
## (Intercept)-Sciurus_niger 2.3808 1.0667 215
## (Intercept)-Procyon_lotor 2.0222 1.0036 798
## (Intercept)-Dasypus_novemcinctus 0.4310 1.0181 874
## (Intercept)-Lynx_rufus 2.2960 1.0487 346
## (Intercept)-Didelphis_virginiana -0.1816 1.0047 845
## (Intercept)-Sylvilagus_floridanus 2.0143 1.0044 296
## (Intercept)-Sciurus_carolinensis -0.1519 1.0069 815
## (Intercept)-Vulpes_vulpes 3.1294 1.0368 86
## (Intercept)-Sus_scrofa -0.3038 1.0265 576
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1468 1.0021 992
## Avg_Cogongrass_Cover-Canis_latrans 1.2969 1.0052 769
## Avg_Cogongrass_Cover-Sciurus_niger 0.7865 1.0291 488
## Avg_Cogongrass_Cover-Procyon_lotor 0.9858 1.0080 812
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0075 1.0150 881
## Avg_Cogongrass_Cover-Lynx_rufus 1.3349 1.0064 784
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.1646 1.0164 661
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6850 1.0252 686
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0623 0.9997 858
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3363 1.0066 672
## Avg_Cogongrass_Cover-Sus_scrofa 0.8160 1.0258 502
## total_shrub_cover-Odocoileus_virginianus 0.9333 1.0027 915
## total_shrub_cover-Canis_latrans 1.0059 1.0020 1086
## total_shrub_cover-Sciurus_niger 0.4635 1.0065 561
## total_shrub_cover-Procyon_lotor 0.0081 1.0154 884
## total_shrub_cover-Dasypus_novemcinctus 0.6213 1.0087 1143
## total_shrub_cover-Lynx_rufus 0.2649 1.0022 595
## total_shrub_cover-Didelphis_virginiana 0.5819 0.9993 1224
## total_shrub_cover-Sylvilagus_floridanus 0.6287 1.0167 817
## total_shrub_cover-Sciurus_carolinensis 0.6908 1.0050 1075
## total_shrub_cover-Vulpes_vulpes 0.6914 1.0109 695
## total_shrub_cover-Sus_scrofa 1.0684 1.0125 1185
## avg_veg_height-Odocoileus_virginianus 0.9380 1.0003 720
## avg_veg_height-Canis_latrans 0.6371 1.0025 795
## avg_veg_height-Sciurus_niger 0.8090 1.0028 759
## avg_veg_height-Procyon_lotor 0.9194 1.0132 764
## avg_veg_height-Dasypus_novemcinctus 0.9224 1.0024 729
## avg_veg_height-Lynx_rufus 0.9441 0.9995 876
## avg_veg_height-Didelphis_virginiana 0.7439 1.0111 570
## avg_veg_height-Sylvilagus_floridanus 0.6492 1.0073 703
## avg_veg_height-Sciurus_carolinensis 1.0900 1.0024 790
## avg_veg_height-Vulpes_vulpes 0.8392 1.0022 943
## avg_veg_height-Sus_scrofa 0.8077 1.0070 793
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0059 0.0586 -0.1123 0.0054 0.1202
## (Intercept)-Canis_latrans -2.6362 0.1800 -3.0030 -2.6295 -2.2954
## (Intercept)-Sciurus_niger -3.9810 0.5682 -5.1387 -3.9527 -2.9712
## (Intercept)-Procyon_lotor -2.2854 0.1275 -2.5486 -2.2830 -2.0367
## (Intercept)-Dasypus_novemcinctus -1.5912 0.1336 -1.8637 -1.5872 -1.3396
## (Intercept)-Lynx_rufus -3.5730 0.3143 -4.2494 -3.5581 -2.9914
## (Intercept)-Didelphis_virginiana -2.3397 0.2548 -2.8760 -2.3326 -1.8844
## (Intercept)-Sylvilagus_floridanus -3.2580 0.3379 -3.9866 -3.2265 -2.6599
## (Intercept)-Sciurus_carolinensis -2.4600 0.2745 -3.0081 -2.4524 -1.9430
## (Intercept)-Vulpes_vulpes -4.2186 0.8143 -5.9559 -4.1423 -2.8509
## (Intercept)-Sus_scrofa -2.9891 0.4916 -4.0855 -2.9418 -2.1620
## week-Odocoileus_virginianus 0.2079 0.0589 0.0914 0.2068 0.3202
## week-Canis_latrans 0.0709 0.1292 -0.1891 0.0764 0.3234
## week-Sciurus_niger -0.2999 0.2939 -0.9323 -0.2676 0.1752
## week-Procyon_lotor -0.0540 0.1186 -0.2954 -0.0515 0.1633
## week-Dasypus_novemcinctus -0.1590 0.1363 -0.4275 -0.1518 0.0912
## week-Lynx_rufus -0.0316 0.1943 -0.4499 -0.0249 0.3289
## week-Didelphis_virginiana -0.2011 0.2162 -0.6917 -0.1819 0.1746
## week-Sylvilagus_floridanus -0.1409 0.2048 -0.5662 -0.1287 0.2253
## week-Sciurus_carolinensis 0.1535 0.1794 -0.1968 0.1524 0.5163
## week-Vulpes_vulpes -0.1025 0.2823 -0.6755 -0.0904 0.4177
## week-Sus_scrofa 0.0915 0.2321 -0.3780 0.0789 0.5434
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0092 1267
## (Intercept)-Canis_latrans 0.9998 739
## (Intercept)-Sciurus_niger 1.0295 173
## (Intercept)-Procyon_lotor 1.0022 1223
## (Intercept)-Dasypus_novemcinctus 1.0010 1500
## (Intercept)-Lynx_rufus 1.0188 326
## (Intercept)-Didelphis_virginiana 1.0005 1169
## (Intercept)-Sylvilagus_floridanus 1.0285 267
## (Intercept)-Sciurus_carolinensis 1.0165 1100
## (Intercept)-Vulpes_vulpes 1.0189 54
## (Intercept)-Sus_scrofa 1.0154 398
## week-Odocoileus_virginianus 1.0000 1318
## week-Canis_latrans 1.0003 1239
## week-Sciurus_niger 1.0189 507
## week-Procyon_lotor 1.0026 1332
## week-Dasypus_novemcinctus 1.0014 1334
## week-Lynx_rufus 1.0133 691
## week-Didelphis_virginiana 1.0018 1229
## week-Sylvilagus_floridanus 1.0115 685
## week-Sciurus_carolinensis 1.0133 1101
## week-Vulpes_vulpes 1.0094 685
## week-Sus_scrofa 1.0079 1500
# Includes week covariate for detection and none for occupancy
ms_week_null <- msPGOcc(
occ.formula = occ.null,
det.formula = det.week,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6718
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1973 0.5606 -1.2641 -0.2115 0.9804 1.0078 847
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.265 2.3574 0.8615 2.5991 9.9471 1.0303 538
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4605 0.4176 -3.2441 -2.4770 -1.6085 1.0124 1341
## week -0.0403 0.1203 -0.2840 -0.0377 0.1869 1.0159 908
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9062 1.3253 0.6306 1.5639 5.1593 1.0035 819
## week 0.0984 0.0807 0.0249 0.0755 0.3157 1.0080 561
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.4411 1.1457 1.8007 3.2470 6.4073
## (Intercept)-Canis_latrans 0.3140 0.4097 -0.4425 0.3037 1.1517
## (Intercept)-Sciurus_niger -0.5577 1.0880 -2.0947 -0.7409 2.1966
## (Intercept)-Procyon_lotor 0.7112 0.4035 -0.0181 0.6859 1.5333
## (Intercept)-Dasypus_novemcinctus -0.6228 0.3716 -1.3752 -0.6225 0.1153
## (Intercept)-Lynx_rufus 0.5186 0.9906 -0.8474 0.3329 3.0620
## (Intercept)-Didelphis_virginiana -1.3703 0.4488 -2.2905 -1.3548 -0.5183
## (Intercept)-Sylvilagus_floridanus -0.2833 0.6342 -1.2371 -0.3528 1.1978
## (Intercept)-Sciurus_carolinensis -1.3341 0.4452 -2.2761 -1.3136 -0.5149
## (Intercept)-Vulpes_vulpes -1.1773 1.1132 -2.8605 -1.3432 1.5819
## (Intercept)-Sus_scrofa -1.8829 0.5963 -3.0938 -1.8545 -0.7480
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0170 427
## (Intercept)-Canis_latrans 1.0098 1313
## (Intercept)-Sciurus_niger 1.0522 132
## (Intercept)-Procyon_lotor 1.0055 1500
## (Intercept)-Dasypus_novemcinctus 1.0028 1500
## (Intercept)-Lynx_rufus 1.0690 195
## (Intercept)-Didelphis_virginiana 1.0041 1500
## (Intercept)-Sylvilagus_floridanus 1.0142 361
## (Intercept)-Sciurus_carolinensis 1.0105 1376
## (Intercept)-Vulpes_vulpes 1.0247 158
## (Intercept)-Sus_scrofa 1.0060 923
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0057 0.0585 -0.1125 0.0059 0.1208
## (Intercept)-Canis_latrans -2.6214 0.1730 -2.9848 -2.6140 -2.2965
## (Intercept)-Sciurus_niger -3.9510 0.6163 -5.2451 -3.9241 -2.8658
## (Intercept)-Procyon_lotor -2.2719 0.1305 -2.5413 -2.2672 -2.0270
## (Intercept)-Dasypus_novemcinctus -1.5864 0.1332 -1.8437 -1.5845 -1.3309
## (Intercept)-Lynx_rufus -3.6561 0.3469 -4.3316 -3.6616 -2.9703
## (Intercept)-Didelphis_virginiana -2.3462 0.2593 -2.8905 -2.3335 -1.8707
## (Intercept)-Sylvilagus_floridanus -3.2253 0.3293 -3.9232 -3.2084 -2.6469
## (Intercept)-Sciurus_carolinensis -2.4540 0.2638 -2.9866 -2.4482 -1.9575
## (Intercept)-Vulpes_vulpes -3.9546 0.7484 -5.4930 -3.9139 -2.6597
## (Intercept)-Sus_scrofa -2.9409 0.4878 -3.9933 -2.9006 -2.1351
## week-Odocoileus_virginianus 0.2079 0.0617 0.0904 0.2059 0.3296
## week-Canis_latrans 0.0729 0.1313 -0.1966 0.0778 0.3083
## week-Sciurus_niger -0.2892 0.2969 -1.0375 -0.2572 0.1836
## week-Procyon_lotor -0.0502 0.1166 -0.2757 -0.0462 0.1704
## week-Dasypus_novemcinctus -0.1610 0.1365 -0.4268 -0.1571 0.0997
## week-Lynx_rufus -0.0287 0.1911 -0.4234 -0.0182 0.3272
## week-Didelphis_virginiana -0.1996 0.2106 -0.6687 -0.1818 0.1734
## week-Sylvilagus_floridanus -0.1497 0.2035 -0.5795 -0.1322 0.2141
## week-Sciurus_carolinensis 0.1381 0.1726 -0.2022 0.1400 0.4790
## week-Vulpes_vulpes -0.1057 0.2755 -0.6697 -0.0961 0.4061
## week-Sus_scrofa 0.1138 0.2277 -0.3295 0.1093 0.5545
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0201 1213
## (Intercept)-Canis_latrans 1.0034 864
## (Intercept)-Sciurus_niger 1.0226 148
## (Intercept)-Procyon_lotor 1.0000 1251
## (Intercept)-Dasypus_novemcinctus 1.0014 1500
## (Intercept)-Lynx_rufus 1.0066 242
## (Intercept)-Didelphis_virginiana 1.0046 1124
## (Intercept)-Sylvilagus_floridanus 1.0068 309
## (Intercept)-Sciurus_carolinensis 1.0172 978
## (Intercept)-Vulpes_vulpes 1.0315 140
## (Intercept)-Sus_scrofa 1.0081 544
## week-Odocoileus_virginianus 1.0081 1500
## week-Canis_latrans 1.0035 1288
## week-Sciurus_niger 1.0067 442
## week-Procyon_lotor 1.0167 1134
## week-Dasypus_novemcinctus 1.0073 1289
## week-Lynx_rufus 1.0033 687
## week-Didelphis_virginiana 1.0012 1029
## week-Sylvilagus_floridanus 1.0025 782
## week-Sciurus_carolinensis 1.0073 1500
## week-Vulpes_vulpes 1.0153 969
## week-Sus_scrofa 1.0026 1191
#Includes week for detection and only foraging for occupancy
ms_week_forage <- msPGOcc(
occ.formula = occ.forage,
det.formula = det.week,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6765
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2512 0.6345 -1.4590 -0.2691 1.0960 1.0125 543
## Veg_shannon_index 0.8363 0.3622 0.1460 0.8248 1.6160 1.0188 309
## Avg_Cogongrass_Cover 0.8210 0.3385 0.1967 0.8171 1.5335 1.0046 366
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.2809 3.2535 1.0015 3.3856 12.8104 1.0154 432
## Veg_shannon_index 0.3601 0.4433 0.0397 0.2173 1.4976 1.0110 560
## Avg_Cogongrass_Cover 0.2644 0.3095 0.0373 0.1728 1.0524 1.0028 643
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5357 0.5396 0.0517 0.3906 1.8598 1.0182 161
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5031 0.4210 -3.3047 -2.4983 -1.7035 1.0118 1345
## week -0.0362 0.1203 -0.2912 -0.0295 0.1846 1.0125 754
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9870 1.3134 0.6573 1.6556 5.4015 1.0166 702
## week 0.0962 0.0749 0.0248 0.0760 0.2940 1.0396 675
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.8532 1.4793 1.5982 3.6528
## (Intercept)-Canis_latrans 0.2525 0.5835 -0.8620 0.2366
## (Intercept)-Sciurus_niger -0.1604 1.4653 -2.3141 -0.3744
## (Intercept)-Procyon_lotor 0.5941 0.5975 -0.6264 0.6006
## (Intercept)-Dasypus_novemcinctus -0.7611 0.5419 -1.9193 -0.7699
## (Intercept)-Lynx_rufus 0.0647 0.9740 -1.5187 -0.0227
## (Intercept)-Didelphis_virginiana -1.4874 0.6113 -2.7048 -1.4665
## (Intercept)-Sylvilagus_floridanus -0.4053 0.7467 -1.7229 -0.4291
## (Intercept)-Sciurus_carolinensis -1.5363 0.6299 -2.8914 -1.5530
## (Intercept)-Vulpes_vulpes -0.9945 1.4110 -3.1465 -1.2124
## (Intercept)-Sus_scrofa -2.4121 0.8683 -4.2778 -2.3614
## Veg_shannon_index-Odocoileus_virginianus 0.7788 0.5904 -0.4309 0.7710
## Veg_shannon_index-Canis_latrans 0.9328 0.4490 0.0948 0.9254
## Veg_shannon_index-Sciurus_niger 1.0129 0.6759 -0.1786 0.9592
## Veg_shannon_index-Procyon_lotor 0.8777 0.4659 0.0341 0.8587
## Veg_shannon_index-Dasypus_novemcinctus 0.6697 0.4323 -0.2134 0.6726
## Veg_shannon_index-Lynx_rufus 0.5362 0.5824 -0.6883 0.5501
## Veg_shannon_index-Didelphis_virginiana 0.6830 0.4641 -0.2386 0.6863
## Veg_shannon_index-Sylvilagus_floridanus 1.1128 0.5392 0.1209 1.0559
## Veg_shannon_index-Sciurus_carolinensis 0.6176 0.4756 -0.3554 0.6352
## Veg_shannon_index-Vulpes_vulpes 0.7411 0.5685 -0.4606 0.7466
## Veg_shannon_index-Sus_scrofa 1.3766 0.6699 0.3173 1.2742
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.7951 0.5456 -0.3167 0.8007
## Avg_Cogongrass_Cover-Canis_latrans 1.0317 0.4459 0.2382 0.9999
## Avg_Cogongrass_Cover-Sciurus_niger 0.5623 0.5992 -0.7155 0.5806
## Avg_Cogongrass_Cover-Procyon_lotor 0.9097 0.4518 -0.0123 0.9040
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9067 0.4097 0.1408 0.8886
## Avg_Cogongrass_Cover-Lynx_rufus 0.9839 0.4842 0.0686 0.9630
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9370 0.4424 0.1192 0.9242
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5687 0.5127 -0.5089 0.5770
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.9058 0.4462 0.0154 0.9040
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.9050 0.5237 -0.0891 0.8963
## Avg_Cogongrass_Cover-Sus_scrofa 0.6079 0.5628 -0.6667 0.6486
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.3267 1.0258 361
## (Intercept)-Canis_latrans 1.4319 1.0058 1112
## (Intercept)-Sciurus_niger 3.2708 1.1027 142
## (Intercept)-Procyon_lotor 1.7336 1.0169 571
## (Intercept)-Dasypus_novemcinctus 0.2635 1.0013 1232
## (Intercept)-Lynx_rufus 2.1577 1.0025 259
## (Intercept)-Didelphis_virginiana -0.3388 1.0030 990
## (Intercept)-Sylvilagus_floridanus 1.2232 1.0044 517
## (Intercept)-Sciurus_carolinensis -0.2601 1.0132 996
## (Intercept)-Vulpes_vulpes 2.5932 1.0412 106
## (Intercept)-Sus_scrofa -0.7691 1.0016 749
## Veg_shannon_index-Odocoileus_virginianus 1.9992 1.0016 769
## Veg_shannon_index-Canis_latrans 1.8847 1.0039 550
## Veg_shannon_index-Sciurus_niger 2.5317 1.0096 411
## Veg_shannon_index-Procyon_lotor 1.8239 1.0071 480
## Veg_shannon_index-Dasypus_novemcinctus 1.5075 1.0029 621
## Veg_shannon_index-Lynx_rufus 1.6519 1.0036 501
## Veg_shannon_index-Didelphis_virginiana 1.5965 1.0050 656
## Veg_shannon_index-Sylvilagus_floridanus 2.2808 1.0111 676
## Veg_shannon_index-Sciurus_carolinensis 1.4970 1.0073 636
## Veg_shannon_index-Vulpes_vulpes 1.8190 1.0017 675
## Veg_shannon_index-Sus_scrofa 2.9438 1.0351 543
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.8839 1.0021 621
## Avg_Cogongrass_Cover-Canis_latrans 2.0112 1.0015 628
## Avg_Cogongrass_Cover-Sciurus_niger 1.6809 1.0138 540
## Avg_Cogongrass_Cover-Procyon_lotor 1.8129 1.0100 601
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.7298 1.0010 614
## Avg_Cogongrass_Cover-Lynx_rufus 1.9550 1.0120 661
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.8281 1.0078 640
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.5569 1.0008 531
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.8295 1.0105 558
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.0210 1.0008 562
## Avg_Cogongrass_Cover-Sus_scrofa 1.6586 1.0001 531
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0041 0.0606 -0.1173 0.0040 0.1202
## (Intercept)-Canis_latrans -2.6040 0.1720 -2.9503 -2.5954 -2.2936
## (Intercept)-Sciurus_niger -4.1576 0.6093 -5.2640 -4.1601 -3.0126
## (Intercept)-Procyon_lotor -2.2725 0.1316 -2.5348 -2.2693 -2.0241
## (Intercept)-Dasypus_novemcinctus -1.5897 0.1331 -1.8705 -1.5858 -1.3414
## (Intercept)-Lynx_rufus -3.5822 0.3530 -4.3577 -3.5649 -2.9315
## (Intercept)-Didelphis_virginiana -2.3509 0.2526 -2.8804 -2.3401 -1.8944
## (Intercept)-Sylvilagus_floridanus -3.2141 0.3043 -3.8608 -3.1977 -2.6976
## (Intercept)-Sciurus_carolinensis -2.4745 0.2756 -3.0571 -2.4625 -1.9748
## (Intercept)-Vulpes_vulpes -4.1573 0.7716 -5.7217 -4.0897 -2.8158
## (Intercept)-Sus_scrofa -2.8990 0.4436 -3.8069 -2.8745 -2.1193
## week-Odocoileus_virginianus 0.2059 0.0601 0.0959 0.2073 0.3201
## week-Canis_latrans 0.0728 0.1255 -0.1893 0.0760 0.2982
## week-Sciurus_niger -0.2839 0.3063 -0.9512 -0.2489 0.2080
## week-Procyon_lotor -0.0469 0.1175 -0.2857 -0.0423 0.1634
## week-Dasypus_novemcinctus -0.1560 0.1372 -0.4379 -0.1548 0.0976
## week-Lynx_rufus -0.0280 0.1938 -0.4585 -0.0175 0.3248
## week-Didelphis_virginiana -0.1933 0.2046 -0.6151 -0.1748 0.1626
## week-Sylvilagus_floridanus -0.1273 0.1986 -0.5556 -0.1130 0.2198
## week-Sciurus_carolinensis 0.1371 0.1852 -0.2353 0.1420 0.4850
## week-Vulpes_vulpes -0.1033 0.2689 -0.6681 -0.0920 0.3795
## week-Sus_scrofa 0.1109 0.2371 -0.3569 0.1101 0.5492
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0112 1500
## (Intercept)-Canis_latrans 0.9995 867
## (Intercept)-Sciurus_niger 1.0104 128
## (Intercept)-Procyon_lotor 1.0025 1134
## (Intercept)-Dasypus_novemcinctus 1.0130 1385
## (Intercept)-Lynx_rufus 1.0269 231
## (Intercept)-Didelphis_virginiana 1.0153 1036
## (Intercept)-Sylvilagus_floridanus 1.0024 415
## (Intercept)-Sciurus_carolinensis 0.9996 1132
## (Intercept)-Vulpes_vulpes 1.0492 108
## (Intercept)-Sus_scrofa 1.0115 796
## week-Odocoileus_virginianus 0.9993 1500
## week-Canis_latrans 1.0097 1407
## week-Sciurus_niger 1.0386 537
## week-Procyon_lotor 1.0036 1193
## week-Dasypus_novemcinctus 1.0006 1276
## week-Lynx_rufus 1.0104 775
## week-Didelphis_virginiana 1.0148 1129
## week-Sylvilagus_floridanus 1.0108 857
## week-Sciurus_carolinensis 1.0000 1702
## week-Vulpes_vulpes 1.0070 830
## week-Sus_scrofa 1.0010 1359
# Includes movement covariates of occupancy and week for detection
ms_week_move <- msPGOcc(
occ.formula = occ.move,
det.formula = det.week,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6747
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3146 0.6404 -1.5473 -0.3294 0.9474 1.0064 720
## Cogon_Patch_Size -0.2836 0.3930 -1.1258 -0.2534 0.4379 1.0219 628
## Avg_Cogongrass_Cover 0.2660 0.2842 -0.2703 0.2589 0.8286 1.0079 556
## total_shrub_cover -0.2303 0.2825 -0.7941 -0.2273 0.2941 1.0178 632
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.2918 3.5026 0.8023 3.3401 12.3778 1.1058 481
## Cogon_Patch_Size 0.9257 1.3809 0.0614 0.5482 3.9574 1.0272 388
## Avg_Cogongrass_Cover 0.2662 0.3130 0.0333 0.1751 1.0894 1.0375 771
## total_shrub_cover 0.3360 0.3910 0.0401 0.2042 1.3738 1.0034 321
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.168 1.1081 0.0979 0.8399 4.131 1.0523 120
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4870 0.4067 -3.2619 -2.4890 -1.6477 0.9996 1343
## week -0.0437 0.1173 -0.2891 -0.0324 0.1616 1.0076 936
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.8444 1.2150 0.6568 1.5169 4.8779 1.0137 696
## week 0.0922 0.0696 0.0236 0.0730 0.2643 1.0189 837
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7998 1.5121 1.2882 3.6764
## (Intercept)-Canis_latrans 0.4044 0.7467 -1.0820 0.3789
## (Intercept)-Sciurus_niger -0.5986 1.3976 -2.7517 -0.8077
## (Intercept)-Procyon_lotor 0.5617 0.7565 -1.0248 0.5809
## (Intercept)-Dasypus_novemcinctus -0.7634 0.6586 -2.1399 -0.7535
## (Intercept)-Lynx_rufus -0.1355 1.0426 -1.9001 -0.1992
## (Intercept)-Didelphis_virginiana -1.4960 0.7148 -2.9209 -1.5126
## (Intercept)-Sylvilagus_floridanus -0.3617 0.9457 -1.9812 -0.4312
## (Intercept)-Sciurus_carolinensis -1.6849 0.7307 -3.2677 -1.6230
## (Intercept)-Vulpes_vulpes -1.2249 1.6902 -3.7578 -1.4829
## (Intercept)-Sus_scrofa -2.1558 0.8694 -3.8649 -2.1473
## Cogon_Patch_Size-Odocoileus_virginianus -0.0818 0.7062 -1.3857 -0.1127
## Cogon_Patch_Size-Canis_latrans 0.6533 0.7069 -0.3616 0.5333
## Cogon_Patch_Size-Sciurus_niger -0.6829 0.9497 -2.8679 -0.5543
## Cogon_Patch_Size-Procyon_lotor -0.2828 0.4526 -1.1561 -0.2899
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1677 0.4113 -0.9960 -0.1518
## Cogon_Patch_Size-Lynx_rufus -0.3215 0.7517 -1.7349 -0.3635
## Cogon_Patch_Size-Didelphis_virginiana 0.5602 0.5061 -0.3732 0.5358
## Cogon_Patch_Size-Sylvilagus_floridanus -0.9753 0.8577 -3.0461 -0.8428
## Cogon_Patch_Size-Sciurus_carolinensis -0.7326 0.6999 -2.3004 -0.6348
## Cogon_Patch_Size-Vulpes_vulpes -0.6418 0.9651 -3.0843 -0.5248
## Cogon_Patch_Size-Sus_scrofa -0.5474 0.7909 -2.4684 -0.4437
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2392 0.5093 -0.7858 0.2508
## Avg_Cogongrass_Cover-Canis_latrans 0.3276 0.3737 -0.3579 0.3266
## Avg_Cogongrass_Cover-Sciurus_niger 0.0033 0.5672 -1.2622 0.0337
## Avg_Cogongrass_Cover-Procyon_lotor 0.2918 0.4114 -0.4677 0.2859
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3988 0.3511 -0.2380 0.3764
## Avg_Cogongrass_Cover-Lynx_rufus 0.5399 0.4685 -0.2750 0.5145
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2842 0.3933 -0.4643 0.2947
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0151 0.4658 -0.9829 -0.0128
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4710 0.3775 -0.2286 0.4559
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3544 0.4537 -0.4852 0.3461
## Avg_Cogongrass_Cover-Sus_scrofa 0.0322 0.5298 -1.1622 0.0907
## total_shrub_cover-Odocoileus_virginianus -0.1541 0.5019 -1.1188 -0.1660
## total_shrub_cover-Canis_latrans 0.0623 0.4218 -0.7024 0.0277
## total_shrub_cover-Sciurus_niger -0.4524 0.5425 -1.6359 -0.4010
## total_shrub_cover-Procyon_lotor -0.6674 0.4650 -1.7204 -0.6092
## total_shrub_cover-Dasypus_novemcinctus -0.0522 0.3428 -0.7155 -0.0497
## total_shrub_cover-Lynx_rufus -0.5448 0.5538 -1.8136 -0.4903
## total_shrub_cover-Didelphis_virginiana -0.2605 0.4007 -1.0836 -0.2353
## total_shrub_cover-Sylvilagus_floridanus -0.2500 0.4864 -1.2392 -0.2424
## total_shrub_cover-Sciurus_carolinensis -0.0554 0.4000 -0.8233 -0.0739
## total_shrub_cover-Vulpes_vulpes -0.2738 0.5422 -1.4446 -0.2498
## total_shrub_cover-Sus_scrofa 0.0506 0.4969 -0.8319 0.0134
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.2570 1.0180 410
## (Intercept)-Canis_latrans 1.9188 1.0119 637
## (Intercept)-Sciurus_niger 2.8078 1.0687 133
## (Intercept)-Procyon_lotor 1.9478 1.0016 679
## (Intercept)-Dasypus_novemcinctus 0.4647 1.0000 651
## (Intercept)-Lynx_rufus 1.9997 1.0461 288
## (Intercept)-Didelphis_virginiana 0.0178 1.0078 833
## (Intercept)-Sylvilagus_floridanus 1.7694 1.0513 354
## (Intercept)-Sciurus_carolinensis -0.3034 1.0111 795
## (Intercept)-Vulpes_vulpes 3.2421 1.1516 86
## (Intercept)-Sus_scrofa -0.4594 1.0039 560
## Cogon_Patch_Size-Odocoileus_virginianus 1.5062 1.0005 725
## Cogon_Patch_Size-Canis_latrans 2.3411 1.0056 810
## Cogon_Patch_Size-Sciurus_niger 0.8655 1.0171 426
## Cogon_Patch_Size-Procyon_lotor 0.5939 1.0062 1215
## Cogon_Patch_Size-Dasypus_novemcinctus 0.6058 1.0223 1283
## Cogon_Patch_Size-Lynx_rufus 1.3164 1.0180 592
## Cogon_Patch_Size-Didelphis_virginiana 1.6670 1.0230 796
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3157 1.0290 502
## Cogon_Patch_Size-Sciurus_carolinensis 0.3189 1.0048 616
## Cogon_Patch_Size-Vulpes_vulpes 0.9887 1.0155 342
## Cogon_Patch_Size-Sus_scrofa 0.7307 1.0177 798
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2162 1.0050 797
## Avg_Cogongrass_Cover-Canis_latrans 1.1172 1.0000 965
## Avg_Cogongrass_Cover-Sciurus_niger 1.0932 1.0143 693
## Avg_Cogongrass_Cover-Procyon_lotor 1.1160 1.0080 836
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1321 1.0097 1235
## Avg_Cogongrass_Cover-Lynx_rufus 1.5367 1.0036 764
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0275 1.0031 1078
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8593 1.0307 628
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2559 1.0099 734
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2981 1.0024 874
## Avg_Cogongrass_Cover-Sus_scrofa 0.9418 1.0190 557
## total_shrub_cover-Odocoileus_virginianus 0.8713 1.0107 1196
## total_shrub_cover-Canis_latrans 0.9404 1.0038 1152
## total_shrub_cover-Sciurus_niger 0.4897 1.0188 623
## total_shrub_cover-Procyon_lotor 0.1122 1.0106 753
## total_shrub_cover-Dasypus_novemcinctus 0.6344 1.0047 1286
## total_shrub_cover-Lynx_rufus 0.3907 1.0128 546
## total_shrub_cover-Didelphis_virginiana 0.5001 1.0064 1045
## total_shrub_cover-Sylvilagus_floridanus 0.6599 1.0021 1011
## total_shrub_cover-Sciurus_carolinensis 0.7686 1.0081 1265
## total_shrub_cover-Vulpes_vulpes 0.7271 1.0249 624
## total_shrub_cover-Sus_scrofa 1.1712 1.0025 896
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0051 0.0589 -0.1154 0.0054 0.1181
## (Intercept)-Canis_latrans -2.6239 0.1765 -2.9730 -2.6225 -2.2726
## (Intercept)-Sciurus_niger -4.0012 0.5886 -5.1490 -3.9862 -2.8780
## (Intercept)-Procyon_lotor -2.2857 0.1318 -2.5544 -2.2789 -2.0407
## (Intercept)-Dasypus_novemcinctus -1.5904 0.1371 -1.8533 -1.5931 -1.3273
## (Intercept)-Lynx_rufus -3.5374 0.3211 -4.1962 -3.5242 -2.9437
## (Intercept)-Didelphis_virginiana -2.3326 0.2431 -2.8252 -2.3311 -1.8895
## (Intercept)-Sylvilagus_floridanus -3.2656 0.3221 -3.9400 -3.2497 -2.6799
## (Intercept)-Sciurus_carolinensis -2.4550 0.2642 -3.0079 -2.4395 -1.9674
## (Intercept)-Vulpes_vulpes -4.0542 0.7570 -5.7047 -3.9606 -2.8009
## (Intercept)-Sus_scrofa -2.9481 0.5003 -4.0343 -2.8921 -2.0900
## week-Odocoileus_virginianus 0.2071 0.0605 0.0813 0.2096 0.3170
## week-Canis_latrans 0.0725 0.1295 -0.1826 0.0740 0.3180
## week-Sciurus_niger -0.2682 0.2870 -0.9316 -0.2417 0.1995
## week-Procyon_lotor -0.0430 0.1136 -0.2762 -0.0399 0.1676
## week-Dasypus_novemcinctus -0.1556 0.1369 -0.4284 -0.1496 0.1100
## week-Lynx_rufus -0.0197 0.1850 -0.4078 -0.0113 0.3301
## week-Didelphis_virginiana -0.1847 0.2112 -0.6304 -0.1662 0.1763
## week-Sylvilagus_floridanus -0.1510 0.2012 -0.5878 -0.1365 0.2066
## week-Sciurus_carolinensis 0.1360 0.1769 -0.2229 0.1402 0.4668
## week-Vulpes_vulpes -0.1069 0.2640 -0.7090 -0.0906 0.3475
## week-Sus_scrofa 0.0887 0.2237 -0.3550 0.0846 0.5183
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0005 1325
## (Intercept)-Canis_latrans 1.0085 837
## (Intercept)-Sciurus_niger 1.0255 131
## (Intercept)-Procyon_lotor 1.0068 984
## (Intercept)-Dasypus_novemcinctus 1.0063 1480
## (Intercept)-Lynx_rufus 1.0123 236
## (Intercept)-Didelphis_virginiana 1.0086 1120
## (Intercept)-Sylvilagus_floridanus 1.0056 266
## (Intercept)-Sciurus_carolinensis 1.0002 1039
## (Intercept)-Vulpes_vulpes 1.0549 102
## (Intercept)-Sus_scrofa 1.0157 429
## week-Odocoileus_virginianus 1.0038 1372
## week-Canis_latrans 1.0032 1312
## week-Sciurus_niger 1.0147 654
## week-Procyon_lotor 1.0123 1325
## week-Dasypus_novemcinctus 1.0118 1500
## week-Lynx_rufus 1.0004 847
## week-Didelphis_virginiana 1.0024 1153
## week-Sylvilagus_floridanus 1.0400 851
## week-Sciurus_carolinensis 1.0105 1375
## week-Vulpes_vulpes 1.0084 992
## week-Sus_scrofa 1.0193 1256
#Includes week covariate of detection and only canopy for occupancy
ms_week_canopy <- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.week,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.week, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7027
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2400 0.7614 -1.7143 -0.2668 1.3378 1.0030 573
## Tree_Density -0.7487 0.3921 -1.6014 -0.7257 -0.0387 1.0297 433
## Avg_Canopy_Cover 1.0186 0.3322 0.3931 1.0023 1.7018 1.0236 479
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 6.5337 4.9917 1.4063 5.1661 19.5773 1.0110 390
## Tree_Density 0.7555 1.2595 0.0464 0.3554 3.7971 1.0094 442
## Avg_Canopy_Cover 0.5603 0.6048 0.0555 0.3811 2.2982 1.0166 576
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4087 0.4851 0.0484 0.2478 1.7198 1.1101 116
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5166 0.4359 -3.3726 -2.5174 -1.6223 1.0006 1076
## week -0.0333 0.1175 -0.2686 -0.0295 0.1844 0.9998 785
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9883 1.1886 0.6737 1.7135 5.0510 1.0136 397
## week 0.0926 0.0685 0.0239 0.0728 0.2721 1.0113 975
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.6275 1.6724 2.0511 4.3925 8.7977
## (Intercept)-Canis_latrans 0.2756 0.6253 -0.8499 0.2288 1.5602
## (Intercept)-Sciurus_niger 0.0202 1.4782 -2.3482 -0.1866 3.4754
## (Intercept)-Procyon_lotor 0.7649 0.5963 -0.4128 0.7451 1.9143
## (Intercept)-Dasypus_novemcinctus -1.0278 0.6013 -2.3510 -0.9800 0.0330
## (Intercept)-Lynx_rufus 1.1802 1.8265 -1.3547 0.8342 6.1244
## (Intercept)-Didelphis_virginiana -1.9388 0.7018 -3.4430 -1.9051 -0.6513
## (Intercept)-Sylvilagus_floridanus -0.7025 0.6952 -2.0128 -0.7275 0.7147
## (Intercept)-Sciurus_carolinensis -1.9927 0.7122 -3.5211 -1.9386 -0.7283
## (Intercept)-Vulpes_vulpes -1.3265 1.6461 -3.7535 -1.5946 2.9083
## (Intercept)-Sus_scrofa -2.7321 0.9340 -4.6211 -2.7055 -0.9127
## Tree_Density-Odocoileus_virginianus -0.3520 0.6364 -1.4387 -0.4141 1.1257
## Tree_Density-Canis_latrans -0.8662 0.5460 -2.1643 -0.7904 0.0141
## Tree_Density-Sciurus_niger -0.7904 0.8002 -2.6656 -0.7401 0.6535
## Tree_Density-Procyon_lotor -0.4625 0.3954 -1.2559 -0.4676 0.2988
## Tree_Density-Dasypus_novemcinctus -1.3043 0.8592 -3.4787 -1.1180 -0.1650
## Tree_Density-Lynx_rufus -0.0393 0.7725 -1.2952 -0.1371 1.9029
## Tree_Density-Didelphis_virginiana -1.0187 0.7766 -2.9069 -0.8813 0.1169
## Tree_Density-Sylvilagus_floridanus -1.0384 0.7319 -2.7814 -0.8988 0.0049
## Tree_Density-Sciurus_carolinensis -0.9325 0.7397 -2.7170 -0.8387 0.2446
## Tree_Density-Vulpes_vulpes -0.7165 0.7703 -2.4310 -0.6704 0.6456
## Tree_Density-Sus_scrofa -0.9896 0.8735 -3.2450 -0.8367 0.2858
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8323 0.6786 -0.4958 0.8292 2.2483
## Avg_Canopy_Cover-Canis_latrans 0.1414 0.4808 -0.7560 0.1445 1.0550
## Avg_Canopy_Cover-Sciurus_niger 1.0358 0.7644 -0.3233 0.9949 2.7034
## Avg_Canopy_Cover-Procyon_lotor 1.0447 0.4469 0.2438 1.0227 2.0054
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0315 0.4164 0.2576 1.0120 1.8889
## Avg_Canopy_Cover-Lynx_rufus 0.9378 0.7319 -0.4177 0.8958 2.5269
## Avg_Canopy_Cover-Didelphis_virginiana 1.2584 0.4940 0.3789 1.2103 2.4008
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.6467 0.6993 0.6233 1.5386 3.3345
## Avg_Canopy_Cover-Sciurus_carolinensis 1.2414 0.4661 0.4166 1.2142 2.2330
## Avg_Canopy_Cover-Vulpes_vulpes 1.0586 0.5973 0.0017 1.0237 2.4374
## Avg_Canopy_Cover-Sus_scrofa 1.2379 0.5357 0.3069 1.2036 2.4249
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0041 342
## (Intercept)-Canis_latrans 1.0021 960
## (Intercept)-Sciurus_niger 1.0626 94
## (Intercept)-Procyon_lotor 1.0056 964
## (Intercept)-Dasypus_novemcinctus 1.0064 829
## (Intercept)-Lynx_rufus 1.1285 114
## (Intercept)-Didelphis_virginiana 1.0036 723
## (Intercept)-Sylvilagus_floridanus 1.0138 804
## (Intercept)-Sciurus_carolinensis 1.0197 726
## (Intercept)-Vulpes_vulpes 1.0349 80
## (Intercept)-Sus_scrofa 1.0086 597
## Tree_Density-Odocoileus_virginianus 1.0065 758
## Tree_Density-Canis_latrans 1.0091 894
## Tree_Density-Sciurus_niger 1.0487 580
## Tree_Density-Procyon_lotor 1.0068 568
## Tree_Density-Dasypus_novemcinctus 1.0008 464
## Tree_Density-Lynx_rufus 1.0180 422
## Tree_Density-Didelphis_virginiana 1.0170 520
## Tree_Density-Sylvilagus_floridanus 1.0060 560
## Tree_Density-Sciurus_carolinensis 1.0005 739
## Tree_Density-Vulpes_vulpes 1.0109 473
## Tree_Density-Sus_scrofa 1.0020 722
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0147 592
## Avg_Canopy_Cover-Canis_latrans 1.0312 769
## Avg_Canopy_Cover-Sciurus_niger 1.0339 383
## Avg_Canopy_Cover-Procyon_lotor 1.0046 1050
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0117 756
## Avg_Canopy_Cover-Lynx_rufus 1.0088 400
## Avg_Canopy_Cover-Didelphis_virginiana 1.0099 560
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0004 403
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0046 639
## Avg_Canopy_Cover-Vulpes_vulpes 1.0028 719
## Avg_Canopy_Cover-Sus_scrofa 1.0116 1049
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0059 0.0592 -0.1163 0.0067 0.1171
## (Intercept)-Canis_latrans -2.6427 0.1831 -2.9992 -2.6361 -2.2931
## (Intercept)-Sciurus_niger -4.2428 0.5865 -5.4109 -4.2623 -3.0760
## (Intercept)-Procyon_lotor -2.2730 0.1283 -2.5285 -2.2672 -2.0221
## (Intercept)-Dasypus_novemcinctus -1.5834 0.1349 -1.8430 -1.5815 -1.3241
## (Intercept)-Lynx_rufus -3.7853 0.3676 -4.4916 -3.8014 -3.0610
## (Intercept)-Didelphis_virginiana -2.3307 0.2434 -2.8526 -2.3246 -1.8892
## (Intercept)-Sylvilagus_floridanus -3.1360 0.2728 -3.7042 -3.1275 -2.6446
## (Intercept)-Sciurus_carolinensis -2.4618 0.2554 -2.9737 -2.4509 -1.9814
## (Intercept)-Vulpes_vulpes -4.1111 0.8029 -5.8056 -4.0419 -2.7647
## (Intercept)-Sus_scrofa -2.8943 0.4840 -4.0300 -2.8472 -2.0790
## week-Odocoileus_virginianus 0.2071 0.0635 0.0908 0.2057 0.3359
## week-Canis_latrans 0.0709 0.1286 -0.1895 0.0723 0.3110
## week-Sciurus_niger -0.2594 0.2796 -0.8677 -0.2343 0.2087
## week-Procyon_lotor -0.0423 0.1189 -0.2894 -0.0423 0.1923
## week-Dasypus_novemcinctus -0.1587 0.1348 -0.4319 -0.1530 0.0922
## week-Lynx_rufus -0.0274 0.1859 -0.4168 -0.0198 0.3220
## week-Didelphis_virginiana -0.1905 0.2059 -0.6207 -0.1765 0.1809
## week-Sylvilagus_floridanus -0.1316 0.2065 -0.5738 -0.1226 0.2420
## week-Sciurus_carolinensis 0.1292 0.1787 -0.2308 0.1256 0.4897
## week-Vulpes_vulpes -0.1054 0.2755 -0.7250 -0.0904 0.3707
## week-Sus_scrofa 0.1013 0.2254 -0.3458 0.1037 0.5294
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0081 1606
## (Intercept)-Canis_latrans 1.0006 827
## (Intercept)-Sciurus_niger 1.1570 99
## (Intercept)-Procyon_lotor 1.0029 1263
## (Intercept)-Dasypus_novemcinctus 1.0052 1500
## (Intercept)-Lynx_rufus 1.0203 165
## (Intercept)-Didelphis_virginiana 1.0009 1134
## (Intercept)-Sylvilagus_floridanus 1.0093 638
## (Intercept)-Sciurus_carolinensis 1.0034 1144
## (Intercept)-Vulpes_vulpes 1.0135 61
## (Intercept)-Sus_scrofa 1.0071 638
## week-Odocoileus_virginianus 1.0083 1500
## week-Canis_latrans 1.0114 1266
## week-Sciurus_niger 1.0422 410
## week-Procyon_lotor 1.0013 1215
## week-Dasypus_novemcinctus 1.0141 1369
## week-Lynx_rufus 1.0036 926
## week-Didelphis_virginiana 1.0054 1093
## week-Sylvilagus_floridanus 1.0022 702
## week-Sciurus_carolinensis 1.0182 1478
## week-Vulpes_vulpes 1.0017 847
## week-Sus_scrofa 1.0041 1500
# Includes week covaritate of detection and quadratic cogongrass cover for occupancy
ms_week_cogonQ <- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.week,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.week,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.665
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9683 0.6190 -2.1491 -0.9776 0.3401 1.0065 898
## Avg_Cogongrass_Cover -0.7739 0.3824 -1.5279 -0.7641 -0.0332 1.0021 458
## I(Avg_Cogongrass_Cover^2) 0.8708 0.3417 0.2712 0.8559 1.6496 1.0196 308
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.6599 2.8347 0.7695 2.9067 10.6539 1.0350 556
## Avg_Cogongrass_Cover 0.4121 0.5625 0.0417 0.2387 1.7674 1.0453 460
## I(Avg_Cogongrass_Cover^2) 0.5519 0.9489 0.0392 0.2423 3.2356 1.1306 177
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4938 0.54 0.04 0.3121 2.088 1.0262 136
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4718 0.4114 -3.2731 -2.4732 -1.6451 1.0006 1500
## week -0.0371 0.1167 -0.2799 -0.0296 0.1742 0.9999 984
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.7877 1.0416 0.6274 1.5318 4.5564 1.0020 920
## week 0.0935 0.0662 0.0261 0.0747 0.2715 1.0007 1047
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.8552 1.4389 0.5569 2.6370
## (Intercept)-Canis_latrans -0.5339 0.6817 -1.9465 -0.5114
## (Intercept)-Sciurus_niger -0.9591 1.2073 -2.8675 -1.0905
## (Intercept)-Procyon_lotor -0.2078 0.6427 -1.6255 -0.1804
## (Intercept)-Dasypus_novemcinctus -1.3964 0.6426 -2.6303 -1.4020
## (Intercept)-Lynx_rufus -1.2663 0.8689 -2.9522 -1.2413
## (Intercept)-Didelphis_virginiana -2.0492 0.7109 -3.5458 -2.0443
## (Intercept)-Sylvilagus_floridanus -1.0811 0.7780 -2.6219 -1.0544
## (Intercept)-Sciurus_carolinensis -2.5143 0.7537 -4.1206 -2.4856
## (Intercept)-Vulpes_vulpes -2.2293 1.1516 -4.4667 -2.2553
## (Intercept)-Sus_scrofa -2.5844 0.8670 -4.3560 -2.5509
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7762 0.6402 -2.1675 -0.7572
## Avg_Cogongrass_Cover-Canis_latrans -0.4687 0.5192 -1.4189 -0.4871
## Avg_Cogongrass_Cover-Sciurus_niger -0.9918 0.6514 -2.4502 -0.9355
## Avg_Cogongrass_Cover-Procyon_lotor -0.6267 0.5164 -1.6105 -0.6381
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5660 0.4877 -1.4677 -0.5835
## Avg_Cogongrass_Cover-Lynx_rufus -0.6606 0.5367 -1.6893 -0.6793
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.4759 0.5362 -1.4269 -0.4797
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.1956 0.6378 -2.6018 -1.1275
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8557 0.5552 -2.0449 -0.8298
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8440 0.6295 -2.2157 -0.8239
## Avg_Cogongrass_Cover-Sus_scrofa -1.0946 0.6651 -2.6313 -1.0398
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.2248 0.8296 0.1251 1.0799
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.2917 0.8223 0.2927 1.0862
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.3856 0.7233 -1.3161 0.4569
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.1402 0.7396 0.2495 0.9978
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7447 0.3610 0.0213 0.7358
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.2308 0.5537 0.4020 1.1482
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.5804 0.4137 -0.1704 0.5687
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.8370 0.5150 -0.0142 0.7622
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.9916 0.3876 0.2959 0.9579
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.0055 0.5579 0.1622 0.9289
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.3644 0.6141 -1.1378 0.4521
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.3737 1.0126 436
## (Intercept)-Canis_latrans 0.7491 1.0065 805
## (Intercept)-Sciurus_niger 2.0523 1.0539 149
## (Intercept)-Procyon_lotor 0.9784 1.0207 656
## (Intercept)-Dasypus_novemcinctus -0.1550 1.0096 857
## (Intercept)-Lynx_rufus 0.5098 1.0463 435
## (Intercept)-Didelphis_virginiana -0.7578 1.0045 607
## (Intercept)-Sylvilagus_floridanus 0.4097 1.0112 531
## (Intercept)-Sciurus_carolinensis -1.1176 1.0002 934
## (Intercept)-Vulpes_vulpes 0.0083 1.0155 300
## (Intercept)-Sus_scrofa -0.9641 1.0074 559
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.4501 1.0073 806
## Avg_Cogongrass_Cover-Canis_latrans 0.5458 1.0207 794
## Avg_Cogongrass_Cover-Sciurus_niger 0.1663 1.0062 618
## Avg_Cogongrass_Cover-Procyon_lotor 0.4589 1.0138 921
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4186 1.0093 893
## Avg_Cogongrass_Cover-Lynx_rufus 0.4272 1.0043 765
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.6126 1.0056 656
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1373 1.0085 600
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1694 1.0063 626
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3444 1.0069 648
## Avg_Cogongrass_Cover-Sus_scrofa -0.0394 1.0162 608
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 3.4079 1.0864 271
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 3.5370 1.0592 250
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.6045 1.0046 248
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 3.0383 1.1700 139
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4704 1.0034 923
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.5558 1.0112 491
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.4317 1.0056 636
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 2.0862 1.0064 576
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.8494 1.0027 601
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.4570 1.0222 367
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.2611 1.0143 429
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0081 0.0577 -0.1058 0.0093 0.1177
## (Intercept)-Canis_latrans -2.6400 0.1704 -2.9922 -2.6379 -2.3110
## (Intercept)-Sciurus_niger -3.9796 0.5904 -5.1029 -3.9603 -2.8825
## (Intercept)-Procyon_lotor -2.2845 0.1305 -2.5462 -2.2839 -2.0288
## (Intercept)-Dasypus_novemcinctus -1.5885 0.1337 -1.8543 -1.5851 -1.3328
## (Intercept)-Lynx_rufus -3.4201 0.3073 -4.0942 -3.3992 -2.8883
## (Intercept)-Didelphis_virginiana -2.3470 0.2608 -2.8753 -2.3372 -1.8710
## (Intercept)-Sylvilagus_floridanus -3.2484 0.3201 -3.9371 -3.2284 -2.6709
## (Intercept)-Sciurus_carolinensis -2.4573 0.2629 -2.9812 -2.4486 -1.9625
## (Intercept)-Vulpes_vulpes -4.0144 0.7155 -5.4572 -3.9924 -2.7110
## (Intercept)-Sus_scrofa -2.9566 0.4870 -4.0592 -2.9017 -2.1588
## week-Odocoileus_virginianus 0.2072 0.0585 0.0936 0.2076 0.3180
## week-Canis_latrans 0.0733 0.1258 -0.1795 0.0757 0.2975
## week-Sciurus_niger -0.2784 0.2974 -0.9211 -0.2546 0.2112
## week-Procyon_lotor -0.0498 0.1180 -0.2967 -0.0469 0.1716
## week-Dasypus_novemcinctus -0.1588 0.1365 -0.4403 -0.1521 0.0894
## week-Lynx_rufus -0.0223 0.1920 -0.4142 -0.0158 0.3267
## week-Didelphis_virginiana -0.1990 0.2069 -0.6410 -0.1813 0.1604
## week-Sylvilagus_floridanus -0.1356 0.1990 -0.5408 -0.1307 0.2258
## week-Sciurus_carolinensis 0.1406 0.1680 -0.1952 0.1395 0.4707
## week-Vulpes_vulpes -0.1100 0.2692 -0.6725 -0.1005 0.3942
## week-Sus_scrofa 0.1034 0.2302 -0.3717 0.1028 0.5437
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 0.9996 1500
## (Intercept)-Canis_latrans 0.9996 847
## (Intercept)-Sciurus_niger 1.0747 116
## (Intercept)-Procyon_lotor 1.0188 1240
## (Intercept)-Dasypus_novemcinctus 1.0063 1588
## (Intercept)-Lynx_rufus 1.0481 265
## (Intercept)-Didelphis_virginiana 1.0008 1094
## (Intercept)-Sylvilagus_floridanus 1.0192 371
## (Intercept)-Sciurus_carolinensis 1.0133 1036
## (Intercept)-Vulpes_vulpes 1.0060 128
## (Intercept)-Sus_scrofa 1.0046 474
## week-Odocoileus_virginianus 1.0209 1226
## week-Canis_latrans 1.0073 1256
## week-Sciurus_niger 1.0115 441
## week-Procyon_lotor 1.0035 1371
## week-Dasypus_novemcinctus 1.0019 1258
## week-Lynx_rufus 1.0044 881
## week-Didelphis_virginiana 1.0003 1035
## week-Sylvilagus_floridanus 1.0012 982
## week-Sciurus_carolinensis 0.9997 1500
## week-Vulpes_vulpes 1.0052 784
## week-Sus_scrofa 1.0009 1325
# Includes week covaritate of detection and all covariates and quadratic cogongrass cover for occupancy
ms_week_fullQ <- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.week,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_week_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.week,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7338
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.8887 1.1487 -3.0532 -0.9186 1.4371 1.0009 612
## Cogon_Patch_Size -0.0360 0.7580 -1.6576 0.0050 1.4006 1.0449 201
## Veg_shannon_index 1.4422 0.5624 0.3710 1.4416 2.5179 1.0058 293
## total_shrub_cover -0.2224 0.3943 -1.0337 -0.2145 0.5306 1.0090 437
## Avg_Cogongrass_Cover 0.7478 1.0130 -1.1405 0.7469 2.6999 1.0709 103
## Tree_Density -1.9294 0.7844 -3.5293 -1.9336 -0.4000 1.0194 228
## Avg_Canopy_Cover 1.8250 0.6089 0.6539 1.8005 3.0183 1.0291 388
## I(Avg_Cogongrass_Cover^2) 1.5418 0.5878 0.4808 1.5235 2.7676 1.0033 125
## avg_veg_height -0.2946 0.4739 -1.2416 -0.2929 0.6338 1.0164 300
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 24.1759 21.3057 4.7857 17.9438 83.2760 1.0626 138
## Cogon_Patch_Size 3.5749 4.8768 0.1297 1.9657 16.1879 1.0284 259
## Veg_shannon_index 1.0987 1.8225 0.0536 0.5340 5.5596 1.1897 298
## total_shrub_cover 0.6204 0.9820 0.0477 0.3327 2.7572 1.0836 382
## Avg_Cogongrass_Cover 1.1048 2.2903 0.0518 0.4501 6.4548 1.2195 160
## Tree_Density 3.5650 6.0684 0.0779 1.4947 17.7761 1.0340 184
## Avg_Canopy_Cover 2.2674 2.8771 0.1162 1.3318 10.5800 1.0618 237
## I(Avg_Cogongrass_Cover^2) 1.1595 2.8295 0.0456 0.3681 7.5034 1.0719 122
## avg_veg_height 0.5146 0.7915 0.0380 0.2875 2.3163 1.0886 264
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.222 1.3183 0.0785 0.8028 4.6258 1.0486 85
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5559 0.4455 -3.4184 -2.5662 -1.634 1.0100 1285
## week -0.0460 0.1262 -0.3161 -0.0393 0.194 1.0143 742
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2292 1.3492 0.8394 1.8766 5.6272 1.0048 1095
## week 0.0994 0.0757 0.0240 0.0791 0.2989 1.0035 780
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 7.7813 3.6643 2.8474
## (Intercept)-Canis_latrans -1.0614 1.1842 -3.4949
## (Intercept)-Sciurus_niger 1.5947 2.9982 -2.7261
## (Intercept)-Procyon_lotor -0.3982 0.9766 -2.4047
## (Intercept)-Dasypus_novemcinctus -2.8351 1.1842 -5.5258
## (Intercept)-Lynx_rufus 1.0621 3.3384 -3.2441
## (Intercept)-Didelphis_virginiana -4.3375 1.4576 -7.4836
## (Intercept)-Sylvilagus_floridanus -2.6334 1.4027 -5.6561
## (Intercept)-Sciurus_carolinensis -4.9617 1.4912 -8.2266
## (Intercept)-Vulpes_vulpes -4.0515 2.5863 -8.5422
## (Intercept)-Sus_scrofa -6.3368 2.2249 -11.8321
## Cogon_Patch_Size-Odocoileus_virginianus 0.1787 1.4477 -2.4136
## Cogon_Patch_Size-Canis_latrans 1.8260 1.4894 -0.1891
## Cogon_Patch_Size-Sciurus_niger -0.6750 2.0600 -5.3234
## Cogon_Patch_Size-Procyon_lotor -0.1693 0.7317 -1.5282
## Cogon_Patch_Size-Dasypus_novemcinctus -0.0083 0.6808 -1.5080
## Cogon_Patch_Size-Lynx_rufus -0.2161 1.4723 -2.9814
## Cogon_Patch_Size-Didelphis_virginiana 1.8200 1.0016 0.1283
## Cogon_Patch_Size-Sylvilagus_floridanus -1.1768 1.5904 -5.0356
## Cogon_Patch_Size-Sciurus_carolinensis -0.9774 1.3039 -4.1659
## Cogon_Patch_Size-Vulpes_vulpes -0.4840 1.7227 -4.4007
## Cogon_Patch_Size-Sus_scrofa -0.5016 1.7577 -4.6508
## Veg_shannon_index-Odocoileus_virginianus 1.3342 1.0592 -1.0737
## Veg_shannon_index-Canis_latrans 1.8220 0.8466 0.3783
## Veg_shannon_index-Sciurus_niger 1.6539 1.1687 -0.6314
## Veg_shannon_index-Procyon_lotor 1.4056 0.7188 -0.0051
## Veg_shannon_index-Dasypus_novemcinctus 1.0897 0.7292 -0.4368
## Veg_shannon_index-Lynx_rufus 1.3553 1.1696 -1.0132
## Veg_shannon_index-Didelphis_virginiana 1.3759 0.8151 -0.3084
## Veg_shannon_index-Sylvilagus_floridanus 1.8319 0.9264 0.3298
## Veg_shannon_index-Sciurus_carolinensis 1.0258 0.8847 -0.8514
## Veg_shannon_index-Vulpes_vulpes 1.2326 1.0029 -1.0591
## Veg_shannon_index-Sus_scrofa 2.3671 1.1693 0.6245
## total_shrub_cover-Odocoileus_virginianus -0.0838 0.7498 -1.5368
## total_shrub_cover-Canis_latrans 0.0406 0.5260 -0.9493
## total_shrub_cover-Sciurus_niger -0.3973 0.8056 -2.1597
## total_shrub_cover-Procyon_lotor -0.6952 0.5679 -2.0396
## total_shrub_cover-Dasypus_novemcinctus 0.1302 0.4868 -0.7958
## total_shrub_cover-Lynx_rufus -0.5248 0.9707 -2.5334
## total_shrub_cover-Didelphis_virginiana -0.3978 0.6084 -1.7360
## total_shrub_cover-Sylvilagus_floridanus -0.1119 0.6503 -1.4548
## total_shrub_cover-Sciurus_carolinensis 0.0018 0.6081 -1.2578
## total_shrub_cover-Vulpes_vulpes -0.3700 0.7865 -2.1703
## total_shrub_cover-Sus_scrofa 0.0786 0.7297 -1.2885
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.6863 1.3911 -2.2321
## Avg_Cogongrass_Cover-Canis_latrans 0.8509 1.1873 -1.3802
## Avg_Cogongrass_Cover-Sciurus_niger 0.4609 1.5526 -2.6074
## Avg_Cogongrass_Cover-Procyon_lotor 0.9903 1.2036 -1.1776
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.3027 1.2685 -0.9192
## Avg_Cogongrass_Cover-Lynx_rufus 0.8571 1.2952 -1.5953
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8483 1.2576 -1.5802
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.3680 1.2976 -2.2476
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.7774 1.2314 -1.5391
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.8349 1.3068 -1.5965
## Avg_Cogongrass_Cover-Sus_scrofa 0.4122 1.4481 -2.6210
## Tree_Density-Odocoileus_virginianus -0.9202 1.3399 -3.2772
## Tree_Density-Canis_latrans -2.6844 1.3781 -5.9756
## Tree_Density-Sciurus_niger -1.8111 1.7213 -5.4180
## Tree_Density-Procyon_lotor -1.7739 0.9214 -3.6775
## Tree_Density-Dasypus_novemcinctus -3.8102 2.0077 -8.9318
## Tree_Density-Lynx_rufus -0.7371 1.7911 -3.4081
## Tree_Density-Didelphis_virginiana -2.3463 1.1922 -5.1838
## Tree_Density-Sylvilagus_floridanus -2.4969 1.4629 -6.0304
## Tree_Density-Sciurus_carolinensis -2.7533 1.5818 -6.8253
## Tree_Density-Vulpes_vulpes -2.0954 1.7469 -5.9975
## Tree_Density-Sus_scrofa -2.4195 1.7808 -6.5186
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3503 1.3439 -1.5647
## Avg_Canopy_Cover-Canis_latrans 0.2383 0.7263 -1.1829
## Avg_Canopy_Cover-Sciurus_niger 2.2874 1.6127 -0.4445
## Avg_Canopy_Cover-Procyon_lotor 1.6626 0.6741 0.4596
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0116 0.7156 0.7930
## Avg_Canopy_Cover-Lynx_rufus 1.6216 1.3007 -0.9873
## Avg_Canopy_Cover-Didelphis_virginiana 2.6115 0.9465 1.0867
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.3269 1.5757 1.1458
## Avg_Canopy_Cover-Sciurus_carolinensis 2.2443 0.8950 0.8749
## Avg_Canopy_Cover-Vulpes_vulpes 2.3876 1.4528 0.4559
## Avg_Canopy_Cover-Sus_scrofa 1.9500 0.8390 0.4842
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.8297 1.2519 0.0882
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.0455 1.0210 0.6044
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.2252 1.2622 -1.8063
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.8956 0.9219 0.4856
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5015 0.7510 0.2260
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.0490 1.0590 0.5451
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.1908 0.7270 -0.2620
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3467 0.7817 -0.1030
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6682 0.7095 0.4087
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.8875 1.1362 0.4094
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.9132 1.1624 -1.9244
## avg_veg_height-Odocoileus_virginianus -0.3172 0.7842 -1.8553
## avg_veg_height-Canis_latrans -0.5186 0.6112 -1.8023
## avg_veg_height-Sciurus_niger -0.4386 0.9755 -2.2832
## avg_veg_height-Procyon_lotor 0.0008 0.6097 -1.1450
## avg_veg_height-Dasypus_novemcinctus 0.0107 0.6136 -1.0913
## avg_veg_height-Lynx_rufus -0.4134 0.8108 -2.0068
## avg_veg_height-Didelphis_virginiana -0.4539 0.6940 -1.9732
## avg_veg_height-Sylvilagus_floridanus -0.4018 0.7185 -1.8877
## avg_veg_height-Sciurus_carolinensis -0.0337 0.6794 -1.2318
## avg_veg_height-Vulpes_vulpes -0.4241 0.7479 -1.9289
## avg_veg_height-Sus_scrofa -0.3750 0.7127 -1.7872
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.9898 17.3553 1.0262 110
## (Intercept)-Canis_latrans -1.0490 1.2675 1.0097 340
## (Intercept)-Sciurus_niger 1.0725 8.9211 1.1908 86
## (Intercept)-Procyon_lotor -0.3704 1.4901 1.0221 800
## (Intercept)-Dasypus_novemcinctus -2.7440 -0.7517 1.0053 179
## (Intercept)-Lynx_rufus 0.2722 10.0782 1.2636 89
## (Intercept)-Didelphis_virginiana -4.1930 -1.7709 1.0077 334
## (Intercept)-Sylvilagus_floridanus -2.5595 -0.0619 1.0124 234
## (Intercept)-Sciurus_carolinensis -4.8241 -2.3479 1.0156 336
## (Intercept)-Vulpes_vulpes -4.3551 2.0124 1.0935 89
## (Intercept)-Sus_scrofa -6.0514 -2.9055 1.0500 134
## Cogon_Patch_Size-Odocoileus_virginianus 0.0947 3.3016 1.0065 417
## Cogon_Patch_Size-Canis_latrans 1.5388 5.4310 1.0137 383
## Cogon_Patch_Size-Sciurus_niger -0.4600 3.0824 1.0088 168
## Cogon_Patch_Size-Procyon_lotor -0.1914 1.3306 1.0275 449
## Cogon_Patch_Size-Dasypus_novemcinctus 0.0332 1.2543 1.0345 417
## Cogon_Patch_Size-Lynx_rufus -0.2514 2.8745 1.0317 332
## Cogon_Patch_Size-Didelphis_virginiana 1.7597 3.8785 1.0027 199
## Cogon_Patch_Size-Sylvilagus_floridanus -0.8437 0.9855 1.0253 341
## Cogon_Patch_Size-Sciurus_carolinensis -0.6914 0.9647 1.0364 354
## Cogon_Patch_Size-Vulpes_vulpes -0.2831 2.7164 1.1020 262
## Cogon_Patch_Size-Sus_scrofa -0.1706 2.1641 1.0273 290
## Veg_shannon_index-Odocoileus_virginianus 1.3731 3.3930 1.0099 367
## Veg_shannon_index-Canis_latrans 1.7424 3.7524 1.0084 345
## Veg_shannon_index-Sciurus_niger 1.5799 4.2008 1.0652 315
## Veg_shannon_index-Procyon_lotor 1.4035 2.8688 1.0075 441
## Veg_shannon_index-Dasypus_novemcinctus 1.1124 2.4669 1.0023 614
## Veg_shannon_index-Lynx_rufus 1.3874 3.5673 1.0594 324
## Veg_shannon_index-Didelphis_virginiana 1.3861 3.0104 1.0006 700
## Veg_shannon_index-Sylvilagus_floridanus 1.7339 3.9147 1.0123 414
## Veg_shannon_index-Sciurus_carolinensis 1.0473 2.5898 1.0095 463
## Veg_shannon_index-Vulpes_vulpes 1.2864 3.1266 1.0225 329
## Veg_shannon_index-Sus_scrofa 2.1976 5.1109 1.0180 272
## total_shrub_cover-Odocoileus_virginianus -0.1187 1.4506 1.0166 627
## total_shrub_cover-Canis_latrans 0.0050 1.1849 1.0007 745
## total_shrub_cover-Sciurus_niger -0.3657 1.1715 1.0088 491
## total_shrub_cover-Procyon_lotor -0.6226 0.2533 1.0200 437
## total_shrub_cover-Dasypus_novemcinctus 0.1155 1.1587 1.0007 781
## total_shrub_cover-Lynx_rufus -0.4622 1.0531 1.0448 271
## total_shrub_cover-Didelphis_virginiana -0.3524 0.6627 1.0084 628
## total_shrub_cover-Sylvilagus_floridanus -0.1160 1.2072 1.0012 627
## total_shrub_cover-Sciurus_carolinensis -0.0243 1.2149 1.0012 992
## total_shrub_cover-Vulpes_vulpes -0.2928 0.9561 1.0102 576
## total_shrub_cover-Sus_scrofa 0.0243 1.6187 1.0082 755
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.7075 3.3651 1.0502 181
## Avg_Cogongrass_Cover-Canis_latrans 0.8355 3.1810 1.0424 125
## Avg_Cogongrass_Cover-Sciurus_niger 0.5484 3.0034 1.0559 162
## Avg_Cogongrass_Cover-Procyon_lotor 0.9698 3.6552 1.0637 163
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2351 3.9996 1.0430 174
## Avg_Cogongrass_Cover-Lynx_rufus 0.8555 3.3387 1.0418 159
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8249 3.4092 1.0296 132
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.4130 2.5817 1.0370 121
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.7488 3.1662 1.0356 197
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.8193 3.5051 1.0555 162
## Avg_Cogongrass_Cover-Sus_scrofa 0.4694 2.9518 1.0520 113
## Tree_Density-Odocoileus_virginianus -1.0459 2.0917 1.0206 223
## Tree_Density-Canis_latrans -2.4334 -0.5635 1.0123 229
## Tree_Density-Sciurus_niger -1.8751 2.3078 1.0239 228
## Tree_Density-Procyon_lotor -1.7531 -0.0031 1.0032 543
## Tree_Density-Dasypus_novemcinctus -3.3330 -1.3022 1.0188 138
## Tree_Density-Lynx_rufus -1.0194 3.7817 1.0135 151
## Tree_Density-Didelphis_virginiana -2.1705 -0.5370 1.0267 497
## Tree_Density-Sylvilagus_floridanus -2.2809 -0.0651 1.0360 341
## Tree_Density-Sciurus_carolinensis -2.4295 -0.4968 1.0336 219
## Tree_Density-Vulpes_vulpes -2.0236 1.2697 1.0374 259
## Tree_Density-Sus_scrofa -2.1506 0.1507 1.0208 321
## Avg_Canopy_Cover-Odocoileus_virginianus 1.4138 4.0518 1.0231 391
## Avg_Canopy_Cover-Canis_latrans 0.2467 1.6563 1.0084 447
## Avg_Canopy_Cover-Sciurus_niger 2.0726 6.1186 1.0443 240
## Avg_Canopy_Cover-Procyon_lotor 1.6227 3.1183 1.0022 464
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.9618 3.5548 1.0113 316
## Avg_Canopy_Cover-Lynx_rufus 1.6416 4.3030 1.0136 359
## Avg_Canopy_Cover-Didelphis_virginiana 2.5025 4.8800 1.0102 310
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.0372 7.1339 1.0022 185
## Avg_Canopy_Cover-Sciurus_carolinensis 2.1026 4.5549 1.0040 471
## Avg_Canopy_Cover-Vulpes_vulpes 2.1113 6.1278 1.0246 203
## Avg_Canopy_Cover-Sus_scrofa 1.8723 3.7387 1.0264 718
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.6538 4.7307 1.0608 136
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.9107 4.6452 1.0117 128
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3347 3.5611 1.0167 143
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.7790 3.8621 1.0109 152
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4294 3.2883 1.0143 238
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.8911 4.4594 1.0551 219
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2177 2.6508 1.0191 210
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3390 2.9665 1.0050 324
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6202 3.2158 1.0127 279
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.7338 4.2716 1.0999 96
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.0933 2.5741 1.0315 196
## avg_veg_height-Odocoileus_virginianus -0.3242 1.2103 1.0053 489
## avg_veg_height-Canis_latrans -0.4807 0.5688 1.0126 371
## avg_veg_height-Sciurus_niger -0.3686 1.0641 1.0870 263
## avg_veg_height-Procyon_lotor -0.0314 1.2965 1.0157 460
## avg_veg_height-Dasypus_novemcinctus -0.0186 1.2778 1.0238 395
## avg_veg_height-Lynx_rufus -0.3884 1.0382 1.0031 466
## avg_veg_height-Didelphis_virginiana -0.4212 0.8346 1.0040 394
## avg_veg_height-Sylvilagus_floridanus -0.3724 0.8825 1.0159 436
## avg_veg_height-Sciurus_carolinensis -0.0791 1.4558 1.0214 551
## avg_veg_height-Vulpes_vulpes -0.3844 0.9665 1.0075 359
## avg_veg_height-Sus_scrofa -0.3593 0.9787 1.0204 389
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0075 0.0592 -0.1057 0.0051 0.1216
## (Intercept)-Canis_latrans -2.6113 0.1677 -2.9582 -2.6067 -2.3002
## (Intercept)-Sciurus_niger -4.6802 0.4679 -5.6105 -4.6940 -3.7513
## (Intercept)-Procyon_lotor -2.2756 0.1301 -2.5283 -2.2770 -2.0197
## (Intercept)-Dasypus_novemcinctus -1.5825 0.1358 -1.8614 -1.5791 -1.3256
## (Intercept)-Lynx_rufus -3.8573 0.3244 -4.4778 -3.8575 -3.1944
## (Intercept)-Didelphis_virginiana -2.3331 0.2451 -2.8285 -2.3260 -1.8761
## (Intercept)-Sylvilagus_floridanus -3.2057 0.2778 -3.7667 -3.2045 -2.6765
## (Intercept)-Sciurus_carolinensis -2.4384 0.2583 -2.9796 -2.4243 -1.9492
## (Intercept)-Vulpes_vulpes -4.1812 0.6326 -5.3792 -4.1790 -2.9336
## (Intercept)-Sus_scrofa -2.8563 0.4382 -3.8098 -2.8234 -2.1066
## week-Odocoileus_virginianus 0.2100 0.0609 0.0956 0.2107 0.3347
## week-Canis_latrans 0.0663 0.1340 -0.2030 0.0693 0.3125
## week-Sciurus_niger -0.2917 0.2796 -0.9172 -0.2711 0.2019
## week-Procyon_lotor -0.0458 0.1147 -0.2797 -0.0404 0.1779
## week-Dasypus_novemcinctus -0.1544 0.1336 -0.4233 -0.1521 0.0936
## week-Lynx_rufus -0.0222 0.1886 -0.3987 -0.0215 0.3454
## week-Didelphis_virginiana -0.2025 0.2128 -0.6534 -0.1875 0.1701
## week-Sylvilagus_floridanus -0.1531 0.2059 -0.5892 -0.1433 0.2212
## week-Sciurus_carolinensis 0.1435 0.1736 -0.1969 0.1453 0.4748
## week-Vulpes_vulpes -0.1219 0.2857 -0.7487 -0.1052 0.4028
## week-Sus_scrofa 0.0960 0.2374 -0.3784 0.0912 0.5705
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 0.9992 1500
## (Intercept)-Canis_latrans 1.0024 762
## (Intercept)-Sciurus_niger 1.0276 166
## (Intercept)-Procyon_lotor 1.0037 1120
## (Intercept)-Dasypus_novemcinctus 1.0120 1500
## (Intercept)-Lynx_rufus 1.0328 146
## (Intercept)-Didelphis_virginiana 1.0058 977
## (Intercept)-Sylvilagus_floridanus 1.0006 538
## (Intercept)-Sciurus_carolinensis 1.0004 1135
## (Intercept)-Vulpes_vulpes 1.0716 154
## (Intercept)-Sus_scrofa 1.0100 760
## week-Odocoileus_virginianus 1.0007 1500
## week-Canis_latrans 1.0018 1339
## week-Sciurus_niger 1.0019 357
## week-Procyon_lotor 1.0078 1169
## week-Dasypus_novemcinctus 1.0001 1500
## week-Lynx_rufus 1.0053 769
## week-Didelphis_virginiana 1.0124 987
## week-Sylvilagus_floridanus 1.0108 900
## week-Sciurus_carolinensis 1.0037 1304
## week-Vulpes_vulpes 1.0090 690
## week-Sus_scrofa 1.0024 1376
# Includes cover covariate for detection and cogongrass cover for occupancy
ms_cover_cogon <- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.cover,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5432
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2140 0.5425 -1.2493 -0.2314 0.9045 1.0165 912
## Avg_Cogongrass_Cover 0.2056 0.2385 -0.2842 0.2142 0.6542 1.0069 595
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.9881 2.5109 0.4385 2.2771 9.2684 1.0147 388
## Avg_Cogongrass_Cover 0.2680 0.2912 0.0372 0.1733 1.0502 1.0240 770
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.7999 0.9335 0.0727 0.5438 3.2808 1.2224 102
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5786 0.4295 -3.3802 -2.5875 -1.7262 1.0022 1183
## shrub_cover 0.2191 0.2433 -0.2503 0.2210 0.7513 1.0219 829
## veg_height -0.0099 0.1539 -0.3360 -0.0042 0.2822 1.0075 1083
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9454 1.1601 0.6946 1.6614 4.9538 1.0101 637
## shrub_cover 0.4664 0.4302 0.0891 0.3493 1.4850 1.0547 803
## veg_height 0.1939 0.1291 0.0559 0.1604 0.5391 1.0053 793
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.1524 1.3775 0.6962 3.0233
## (Intercept)-Canis_latrans 0.4147 0.6087 -0.7871 0.4164
## (Intercept)-Sciurus_niger -0.4643 1.0550 -2.1685 -0.5842
## (Intercept)-Procyon_lotor 0.4928 0.6034 -0.7620 0.4974
## (Intercept)-Dasypus_novemcinctus -0.6494 0.5978 -1.9174 -0.6309
## (Intercept)-Lynx_rufus 0.0579 0.9695 -1.4815 -0.0601
## (Intercept)-Didelphis_virginiana -1.2291 0.6455 -2.4885 -1.2057
## (Intercept)-Sylvilagus_floridanus -0.3399 0.6792 -1.6365 -0.3460
## (Intercept)-Sciurus_carolinensis -1.2729 0.6442 -2.5107 -1.2651
## (Intercept)-Vulpes_vulpes -1.0190 1.1797 -3.1240 -1.0952
## (Intercept)-Sus_scrofa -1.6346 0.8113 -3.2859 -1.6314
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1878 0.4783 -0.7694 0.1796
## Avg_Cogongrass_Cover-Canis_latrans 0.4459 0.3823 -0.1979 0.4081
## Avg_Cogongrass_Cover-Sciurus_niger -0.1153 0.5446 -1.3484 -0.0614
## Avg_Cogongrass_Cover-Procyon_lotor 0.2350 0.3550 -0.4505 0.2318
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3589 0.3177 -0.2003 0.3406
## Avg_Cogongrass_Cover-Lynx_rufus 0.4227 0.3809 -0.2814 0.3963
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3209 0.3535 -0.3377 0.3129
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1701 0.4410 -1.1687 -0.1277
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3611 0.3505 -0.2836 0.3472
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3241 0.4498 -0.5134 0.3088
## Avg_Cogongrass_Cover-Sus_scrofa -0.0387 0.5132 -1.2742 0.0018
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.3315 1.0122 293
## (Intercept)-Canis_latrans 1.6488 1.0136 776
## (Intercept)-Sciurus_niger 2.0277 1.0852 252
## (Intercept)-Procyon_lotor 1.6347 1.0025 512
## (Intercept)-Dasypus_novemcinctus 0.4517 1.0110 965
## (Intercept)-Lynx_rufus 2.1813 1.0110 217
## (Intercept)-Didelphis_virginiana 0.0094 0.9994 827
## (Intercept)-Sylvilagus_floridanus 1.0591 1.0451 774
## (Intercept)-Sciurus_carolinensis -0.0595 1.0007 627
## (Intercept)-Vulpes_vulpes 1.3055 1.0429 150
## (Intercept)-Sus_scrofa -0.1100 1.0033 571
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1253 1.0011 1070
## Avg_Cogongrass_Cover-Canis_latrans 1.3381 1.0004 943
## Avg_Cogongrass_Cover-Sciurus_niger 0.8863 1.0322 503
## Avg_Cogongrass_Cover-Procyon_lotor 0.9636 1.0001 927
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0287 1.0028 1172
## Avg_Cogongrass_Cover-Lynx_rufus 1.2532 1.0013 1127
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0136 0.9997 1205
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5472 1.0019 916
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0759 1.0013 1159
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2990 1.0045 1113
## Avg_Cogongrass_Cover-Sus_scrofa 0.8672 1.0049 587
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0054 0.0600 -0.1105 0.0043 0.1244
## (Intercept)-Canis_latrans -2.7586 0.1856 -3.1143 -2.7564 -2.4052
## (Intercept)-Sciurus_niger -4.0404 0.5935 -5.1272 -4.0405 -2.9129
## (Intercept)-Procyon_lotor -2.2882 0.1417 -2.5702 -2.2877 -2.0191
## (Intercept)-Dasypus_novemcinctus -1.7139 0.1540 -2.0339 -1.7070 -1.4335
## (Intercept)-Lynx_rufus -3.6553 0.3802 -4.4491 -3.6390 -2.9614
## (Intercept)-Didelphis_virginiana -2.5334 0.2899 -3.1227 -2.5156 -1.9645
## (Intercept)-Sylvilagus_floridanus -3.1789 0.3058 -3.8096 -3.1659 -2.6315
## (Intercept)-Sciurus_carolinensis -2.5813 0.3111 -3.2447 -2.5681 -2.0203
## (Intercept)-Vulpes_vulpes -4.1545 0.7456 -5.7116 -4.1093 -2.8284
## (Intercept)-Sus_scrofa -3.2364 0.6013 -4.4443 -3.2372 -2.0599
## shrub_cover-Odocoileus_virginianus -0.0526 0.0642 -0.1790 -0.0519 0.0781
## shrub_cover-Canis_latrans -0.2740 0.2083 -0.7059 -0.2715 0.1266
## shrub_cover-Sciurus_niger -0.3042 0.4406 -1.1534 -0.2978 0.5470
## shrub_cover-Procyon_lotor 0.2480 0.1648 -0.0942 0.2545 0.5541
## shrub_cover-Dasypus_novemcinctus 0.8020 0.2977 0.2633 0.7857 1.4064
## shrub_cover-Lynx_rufus -0.2463 0.3567 -0.9611 -0.2331 0.4470
## shrub_cover-Didelphis_virginiana 0.8853 0.3567 0.2550 0.8727 1.6678
## shrub_cover-Sylvilagus_floridanus 0.2671 0.4017 -0.5149 0.2511 1.0772
## shrub_cover-Sciurus_carolinensis 0.7563 0.3844 0.0396 0.7498 1.5404
## shrub_cover-Vulpes_vulpes -0.0772 0.5396 -1.2548 -0.0620 1.0084
## shrub_cover-Sus_scrofa 0.5268 0.7215 -0.9026 0.5287 1.8976
## veg_height-Odocoileus_virginianus -0.2969 0.0648 -0.4328 -0.2968 -0.1738
## veg_height-Canis_latrans -0.5971 0.1829 -0.9668 -0.6011 -0.2556
## veg_height-Sciurus_niger -0.0356 0.3939 -0.7794 -0.0366 0.7724
## veg_height-Procyon_lotor 0.3254 0.1232 0.0849 0.3252 0.5587
## veg_height-Dasypus_novemcinctus 0.2279 0.1308 -0.0364 0.2266 0.4908
## veg_height-Lynx_rufus 0.0067 0.2467 -0.5012 0.0213 0.4807
## veg_height-Didelphis_virginiana 0.4023 0.2349 -0.0404 0.3891 0.9112
## veg_height-Sylvilagus_floridanus 0.1216 0.2416 -0.3693 0.1238 0.5895
## veg_height-Sciurus_carolinensis 0.0423 0.2011 -0.3485 0.0413 0.4497
## veg_height-Vulpes_vulpes -0.1345 0.3155 -0.7938 -0.1321 0.4437
## veg_height-Sus_scrofa -0.1498 0.3302 -0.8793 -0.1343 0.4526
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0036 1500
## (Intercept)-Canis_latrans 1.0078 710
## (Intercept)-Sciurus_niger 1.0448 188
## (Intercept)-Procyon_lotor 1.0227 1001
## (Intercept)-Dasypus_novemcinctus 1.0017 1185
## (Intercept)-Lynx_rufus 1.0639 192
## (Intercept)-Didelphis_virginiana 1.0281 688
## (Intercept)-Sylvilagus_floridanus 1.0345 483
## (Intercept)-Sciurus_carolinensis 1.0010 793
## (Intercept)-Vulpes_vulpes 1.0396 149
## (Intercept)-Sus_scrofa 1.0350 496
## shrub_cover-Odocoileus_virginianus 1.0092 1500
## shrub_cover-Canis_latrans 1.0039 896
## shrub_cover-Sciurus_niger 1.0281 425
## shrub_cover-Procyon_lotor 1.0057 1173
## shrub_cover-Dasypus_novemcinctus 1.0027 1034
## shrub_cover-Lynx_rufus 1.0635 293
## shrub_cover-Didelphis_virginiana 1.0190 725
## shrub_cover-Sylvilagus_floridanus 1.0212 491
## shrub_cover-Sciurus_carolinensis 1.0026 606
## shrub_cover-Vulpes_vulpes 1.0132 586
## shrub_cover-Sus_scrofa 1.0135 888
## veg_height-Odocoileus_virginianus 1.0040 1500
## veg_height-Canis_latrans 0.9998 742
## veg_height-Sciurus_niger 1.0142 546
## veg_height-Procyon_lotor 1.0045 1324
## veg_height-Dasypus_novemcinctus 1.0076 1207
## veg_height-Lynx_rufus 1.0034 711
## veg_height-Didelphis_virginiana 1.0092 1000
## veg_height-Sylvilagus_floridanus 1.0003 788
## veg_height-Sciurus_carolinensis 1.0155 913
## veg_height-Vulpes_vulpes 1.0432 524
## veg_height-Sus_scrofa 1.0002 918
# Includes cover covariate for detection and all covariates for occupancy
ms_cover_full <- msPGOcc(
occ.formula = occ.full,
det.formula = det.cover,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6065
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0432 1.0191 -1.9694 -0.0857 2.0411 1.0260 495
## Cogon_Patch_Size -0.4872 0.6242 -1.8158 -0.4506 0.6430 1.0024 327
## Veg_shannon_index 1.2602 0.5534 0.0728 1.2726 2.3249 1.1301 295
## total_shrub_cover -0.2710 0.4363 -1.1913 -0.2476 0.5031 1.0234 311
## Avg_Cogongrass_Cover 2.5887 0.6668 1.2586 2.5959 3.8700 1.0333 181
## Tree_Density -1.7781 0.6779 -3.2136 -1.7591 -0.4768 1.0187 252
## Avg_Canopy_Cover 1.8757 0.5907 0.8378 1.8431 3.1087 1.0138 283
## avg_veg_height -0.6707 0.4367 -1.5394 -0.6641 0.2097 1.0137 269
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 18.5805 16.9104 3.9058 13.3923 67.1428 1.0432 141
## Cogon_Patch_Size 2.5225 3.8661 0.0966 1.2881 13.5585 1.1006 229
## Veg_shannon_index 1.1110 1.6615 0.0523 0.4653 5.9077 1.0965 211
## total_shrub_cover 0.7894 2.9147 0.0469 0.3289 4.0738 1.6504 149
## Avg_Cogongrass_Cover 0.8645 1.3914 0.0501 0.3733 5.0209 1.0419 237
## Tree_Density 2.7270 5.5125 0.0577 1.0589 15.4268 1.1214 122
## Avg_Canopy_Cover 1.9826 2.5331 0.1396 1.2108 8.5736 1.0294 220
## avg_veg_height 0.3932 0.4833 0.0409 0.2395 1.7425 1.0113 764
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9728 1.6271 0.054 0.4602 5.1287 2.5263 45
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6350 0.4673 -3.4957 -2.6352 -1.7297 1.0105 963
## shrub_cover 0.2475 0.2468 -0.2069 0.2405 0.7460 1.0032 749
## veg_height 0.0212 0.1513 -0.3022 0.0202 0.3268 1.0017 834
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2215 1.3833 0.7944 1.8911 5.7688 1.0447 283
## shrub_cover 0.4437 0.3324 0.0999 0.3559 1.3900 1.0062 554
## veg_height 0.1872 0.1258 0.0540 0.1549 0.4940 1.0079 826
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 8.1419 3.2666 3.4981 7.4953
## (Intercept)-Canis_latrans 0.7131 1.0530 -0.9027 0.5804
## (Intercept)-Sciurus_niger 1.3417 2.7312 -2.0952 0.7684
## (Intercept)-Procyon_lotor 1.1003 0.9557 -0.7973 1.0988
## (Intercept)-Dasypus_novemcinctus -1.3428 0.8589 -3.1283 -1.2770
## (Intercept)-Lynx_rufus 3.0112 3.0921 -1.3812 2.4904
## (Intercept)-Didelphis_virginiana -2.7081 1.0364 -4.9810 -2.6781
## (Intercept)-Sylvilagus_floridanus -1.1497 1.0737 -3.1881 -1.1753
## (Intercept)-Sciurus_carolinensis -2.9710 1.2036 -5.7587 -2.8524
## (Intercept)-Vulpes_vulpes -2.0425 2.1651 -5.4398 -2.2429
## (Intercept)-Sus_scrofa -4.4748 1.8014 -8.5415 -4.3834
## Cogon_Patch_Size-Odocoileus_virginianus -0.3284 1.1879 -2.5338 -0.3757
## Cogon_Patch_Size-Canis_latrans 0.9170 1.2808 -0.7089 0.6783
## Cogon_Patch_Size-Sciurus_niger -1.2282 1.8030 -5.3335 -0.9235
## Cogon_Patch_Size-Procyon_lotor -0.5763 0.5870 -1.7770 -0.5562
## Cogon_Patch_Size-Dasypus_novemcinctus -0.3383 0.6713 -1.5989 -0.3671
## Cogon_Patch_Size-Lynx_rufus -0.4800 1.3731 -3.1712 -0.4827
## Cogon_Patch_Size-Didelphis_virginiana 0.8993 0.8052 -0.4733 0.8403
## Cogon_Patch_Size-Sylvilagus_floridanus -1.4139 1.4354 -5.1438 -1.0701
## Cogon_Patch_Size-Sciurus_carolinensis -1.4544 1.4246 -5.1667 -1.1344
## Cogon_Patch_Size-Vulpes_vulpes -1.1248 1.4830 -4.7090 -0.9234
## Cogon_Patch_Size-Sus_scrofa -0.8605 1.3899 -4.4121 -0.6339
## Veg_shannon_index-Odocoileus_virginianus 1.1720 1.0513 -0.9862 1.2096
## Veg_shannon_index-Canis_latrans 1.5233 0.7430 0.0331 1.4852
## Veg_shannon_index-Sciurus_niger 1.7369 1.2039 -0.3172 1.5742
## Veg_shannon_index-Procyon_lotor 1.3793 0.7159 0.0260 1.3652
## Veg_shannon_index-Dasypus_novemcinctus 0.9946 0.6873 -0.4534 1.0314
## Veg_shannon_index-Lynx_rufus 0.9981 1.1173 -1.6533 1.0874
## Veg_shannon_index-Didelphis_virginiana 1.2752 0.7135 -0.2383 1.2834
## Veg_shannon_index-Sylvilagus_floridanus 1.7120 0.8138 0.3106 1.6348
## Veg_shannon_index-Sciurus_carolinensis 0.7576 0.8453 -1.0430 0.8361
## Veg_shannon_index-Vulpes_vulpes 0.8069 0.9740 -1.6095 0.9394
## Veg_shannon_index-Sus_scrofa 2.1846 1.1182 0.5858 1.9649
## total_shrub_cover-Odocoileus_virginianus -0.0717 0.7663 -1.5440 -0.1048
## total_shrub_cover-Canis_latrans 0.2754 0.7971 -0.7594 0.1709
## total_shrub_cover-Sciurus_niger -0.4027 0.8007 -2.2283 -0.3379
## total_shrub_cover-Procyon_lotor -0.7312 0.5557 -1.9359 -0.6807
## total_shrub_cover-Dasypus_novemcinctus -0.1190 0.6026 -1.3621 -0.1067
## total_shrub_cover-Lynx_rufus -0.5033 1.0889 -2.8967 -0.3890
## total_shrub_cover-Didelphis_virginiana -0.4687 0.6682 -1.9534 -0.4017
## total_shrub_cover-Sylvilagus_floridanus -0.3292 0.7672 -2.0227 -0.2641
## total_shrub_cover-Sciurus_carolinensis -0.2516 0.6407 -1.6155 -0.2467
## total_shrub_cover-Vulpes_vulpes -0.4927 0.9287 -2.7877 -0.3766
## total_shrub_cover-Sus_scrofa -0.0753 0.7877 -1.5634 -0.0703
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.5040 1.0173 0.3612 2.5138
## Avg_Cogongrass_Cover-Canis_latrans 2.9253 0.9519 1.3191 2.8740
## Avg_Cogongrass_Cover-Sciurus_niger 2.1351 1.2052 -0.5681 2.2698
## Avg_Cogongrass_Cover-Procyon_lotor 2.7650 0.8814 1.1675 2.7434
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.0303 0.9585 1.3491 2.9460
## Avg_Cogongrass_Cover-Lynx_rufus 2.7733 0.9383 1.0918 2.7280
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.7359 0.8706 1.1337 2.6863
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.2352 0.8817 0.4388 2.2777
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.8331 0.8874 1.2303 2.7729
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.9379 0.9504 1.2507 2.8778
## Avg_Cogongrass_Cover-Sus_scrofa 2.3410 1.0626 0.1632 2.4051
## Tree_Density-Odocoileus_virginianus -0.8060 1.2114 -2.7629 -0.9742
## Tree_Density-Canis_latrans -2.4431 1.3058 -5.4685 -2.1848
## Tree_Density-Sciurus_niger -1.8590 1.5279 -5.2377 -1.7851
## Tree_Density-Procyon_lotor -1.3371 0.7144 -2.7435 -1.3573
## Tree_Density-Dasypus_novemcinctus -3.2972 1.8077 -7.7355 -2.8273
## Tree_Density-Lynx_rufus -0.8014 1.4734 -3.1345 -0.9868
## Tree_Density-Didelphis_virginiana -2.1123 1.1439 -4.9155 -1.9548
## Tree_Density-Sylvilagus_floridanus -2.2496 1.2927 -5.2242 -2.0564
## Tree_Density-Sciurus_carolinensis -2.3289 1.2734 -5.5726 -2.1104
## Tree_Density-Vulpes_vulpes -1.7708 1.5630 -5.1041 -1.7413
## Tree_Density-Sus_scrofa -2.2368 1.5520 -6.0901 -1.9995
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3304 1.2435 -1.3106 1.3689
## Avg_Canopy_Cover-Canis_latrans 0.3049 0.6559 -1.0350 0.3094
## Avg_Canopy_Cover-Sciurus_niger 2.1599 1.4467 -0.5164 2.0587
## Avg_Canopy_Cover-Procyon_lotor 1.6925 0.7128 0.4289 1.6612
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0355 0.7624 0.8528 1.9256
## Avg_Canopy_Cover-Lynx_rufus 1.7545 1.3637 -0.6989 1.6822
## Avg_Canopy_Cover-Didelphis_virginiana 2.6919 1.0212 1.1698 2.5561
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.2763 1.4702 1.3393 3.0165
## Avg_Canopy_Cover-Sciurus_carolinensis 2.4455 0.9740 1.0429 2.2722
## Avg_Canopy_Cover-Vulpes_vulpes 2.1511 1.2463 0.1648 1.9233
## Avg_Canopy_Cover-Sus_scrofa 2.0213 0.8370 0.5322 1.9663
## avg_veg_height-Odocoileus_virginianus -0.7034 0.7083 -2.1796 -0.6811
## avg_veg_height-Canis_latrans -0.7511 0.5756 -1.8859 -0.7724
## avg_veg_height-Sciurus_niger -0.8503 0.7492 -2.4453 -0.8392
## avg_veg_height-Procyon_lotor -0.6166 0.5440 -1.7310 -0.6110
## avg_veg_height-Dasypus_novemcinctus -0.4211 0.5594 -1.5047 -0.4419
## avg_veg_height-Lynx_rufus -0.8020 0.7679 -2.3523 -0.7839
## avg_veg_height-Didelphis_virginiana -0.8283 0.6350 -2.1807 -0.8082
## avg_veg_height-Sylvilagus_floridanus -0.7969 0.6175 -2.0661 -0.7785
## avg_veg_height-Sciurus_carolinensis -0.3539 0.6196 -1.4768 -0.3892
## avg_veg_height-Vulpes_vulpes -0.6547 0.6736 -2.0089 -0.6486
## avg_veg_height-Sus_scrofa -0.6902 0.6818 -2.1206 -0.6829
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 15.9643 1.0844 126
## (Intercept)-Canis_latrans 2.9641 1.0965 249
## (Intercept)-Sciurus_niger 8.9157 1.0758 67
## (Intercept)-Procyon_lotor 2.8790 1.1331 326
## (Intercept)-Dasypus_novemcinctus 0.1603 1.0217 482
## (Intercept)-Lynx_rufus 10.5413 1.1966 82
## (Intercept)-Didelphis_virginiana -0.8212 1.0331 382
## (Intercept)-Sylvilagus_floridanus 0.9899 1.0118 395
## (Intercept)-Sciurus_carolinensis -0.9440 1.0443 275
## (Intercept)-Vulpes_vulpes 3.0738 1.1946 99
## (Intercept)-Sus_scrofa -1.5302 1.0076 191
## Cogon_Patch_Size-Odocoileus_virginianus 2.2351 1.0155 592
## Cogon_Patch_Size-Canis_latrans 3.9077 1.0299 284
## Cogon_Patch_Size-Sciurus_niger 1.4926 1.0269 212
## Cogon_Patch_Size-Procyon_lotor 0.5453 1.0060 846
## Cogon_Patch_Size-Dasypus_novemcinctus 1.0550 1.0477 537
## Cogon_Patch_Size-Lynx_rufus 2.5498 1.0429 323
## Cogon_Patch_Size-Didelphis_virginiana 2.7473 1.0098 262
## Cogon_Patch_Size-Sylvilagus_floridanus 0.5137 1.0126 259
## Cogon_Patch_Size-Sciurus_carolinensis 0.3879 1.0497 295
## Cogon_Patch_Size-Vulpes_vulpes 1.4780 1.0321 289
## Cogon_Patch_Size-Sus_scrofa 1.2081 1.0181 317
## Veg_shannon_index-Odocoileus_virginianus 3.1720 1.0327 537
## Veg_shannon_index-Canis_latrans 3.0405 1.0437 399
## Veg_shannon_index-Sciurus_niger 4.8612 1.0168 323
## Veg_shannon_index-Procyon_lotor 2.8603 1.0493 379
## Veg_shannon_index-Dasypus_novemcinctus 2.2486 1.0963 428
## Veg_shannon_index-Lynx_rufus 2.7531 1.0969 307
## Veg_shannon_index-Didelphis_virginiana 2.6878 1.0522 368
## Veg_shannon_index-Sylvilagus_floridanus 3.5378 1.0126 487
## Veg_shannon_index-Sciurus_carolinensis 2.2247 1.1493 353
## Veg_shannon_index-Vulpes_vulpes 2.4040 1.1787 274
## Veg_shannon_index-Sus_scrofa 4.8786 1.0177 307
## total_shrub_cover-Odocoileus_virginianus 1.5646 1.0087 777
## total_shrub_cover-Canis_latrans 1.8496 1.1872 120
## total_shrub_cover-Sciurus_niger 1.0736 1.0095 441
## total_shrub_cover-Procyon_lotor 0.2203 1.0031 524
## total_shrub_cover-Dasypus_novemcinctus 0.9182 1.0256 465
## total_shrub_cover-Lynx_rufus 1.2204 1.1171 105
## total_shrub_cover-Didelphis_virginiana 0.6570 1.0152 427
## total_shrub_cover-Sylvilagus_floridanus 0.9544 1.0368 409
## total_shrub_cover-Sciurus_carolinensis 0.9901 1.0014 648
## total_shrub_cover-Vulpes_vulpes 1.0142 1.0621 195
## total_shrub_cover-Sus_scrofa 1.4987 1.0209 433
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.5046 1.0422 299
## Avg_Cogongrass_Cover-Canis_latrans 5.1869 1.0329 259
## Avg_Cogongrass_Cover-Sciurus_niger 4.1330 1.0367 234
## Avg_Cogongrass_Cover-Procyon_lotor 4.6489 1.0259 266
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.1849 1.0529 205
## Avg_Cogongrass_Cover-Lynx_rufus 4.7727 1.0173 356
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.6226 1.0435 242
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 3.8528 1.0236 357
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.7773 1.0317 234
## Avg_Cogongrass_Cover-Vulpes_vulpes 4.9083 1.0162 202
## Avg_Cogongrass_Cover-Sus_scrofa 4.3279 1.0203 372
## Tree_Density-Odocoileus_virginianus 2.3199 1.0211 287
## Tree_Density-Canis_latrans -0.6979 1.0289 157
## Tree_Density-Sciurus_niger 0.9728 1.0705 230
## Tree_Density-Procyon_lotor 0.1615 1.0084 715
## Tree_Density-Dasypus_novemcinctus -1.1229 1.0237 132
## Tree_Density-Lynx_rufus 2.8081 1.0849 148
## Tree_Density-Didelphis_virginiana -0.2235 1.0254 307
## Tree_Density-Sylvilagus_floridanus -0.0898 1.0274 296
## Tree_Density-Sciurus_carolinensis -0.2652 1.0052 295
## Tree_Density-Vulpes_vulpes 1.4209 1.0350 99
## Tree_Density-Sus_scrofa 0.1087 1.0223 307
## Avg_Canopy_Cover-Odocoileus_virginianus 3.7081 1.0162 634
## Avg_Canopy_Cover-Canis_latrans 1.5592 1.0100 548
## Avg_Canopy_Cover-Sciurus_niger 5.3214 1.1186 267
## Avg_Canopy_Cover-Procyon_lotor 3.2892 1.0012 562
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.7671 1.0310 228
## Avg_Canopy_Cover-Lynx_rufus 4.5606 1.0537 226
## Avg_Canopy_Cover-Didelphis_virginiana 5.0676 1.0165 416
## Avg_Canopy_Cover-Sylvilagus_floridanus 6.8395 1.0011 263
## Avg_Canopy_Cover-Sciurus_carolinensis 4.8343 1.0088 404
## Avg_Canopy_Cover-Vulpes_vulpes 5.0797 1.0203 256
## Avg_Canopy_Cover-Sus_scrofa 3.7901 1.0083 867
## avg_veg_height-Odocoileus_virginianus 0.6496 1.0182 463
## avg_veg_height-Canis_latrans 0.4284 1.0011 458
## avg_veg_height-Sciurus_niger 0.5463 1.0073 422
## avg_veg_height-Procyon_lotor 0.4779 1.0239 447
## avg_veg_height-Dasypus_novemcinctus 0.7257 1.0030 328
## avg_veg_height-Lynx_rufus 0.7081 1.0219 400
## avg_veg_height-Didelphis_virginiana 0.3447 1.0089 394
## avg_veg_height-Sylvilagus_floridanus 0.3685 1.0039 316
## avg_veg_height-Sciurus_carolinensis 0.9116 1.0085 441
## avg_veg_height-Vulpes_vulpes 0.6426 1.0049 292
## avg_veg_height-Sus_scrofa 0.6369 1.0187 408
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0044 0.0604 -0.1162 0.0058 0.1207
## (Intercept)-Canis_latrans -2.7402 0.1937 -3.1494 -2.7334 -2.3853
## (Intercept)-Sciurus_niger -4.6089 0.4990 -5.6841 -4.5912 -3.7166
## (Intercept)-Procyon_lotor -2.3124 0.1458 -2.6069 -2.3127 -2.0298
## (Intercept)-Dasypus_novemcinctus -1.7331 0.1571 -2.0537 -1.7294 -1.4441
## (Intercept)-Lynx_rufus -3.9733 0.3527 -4.6062 -3.9953 -3.2227
## (Intercept)-Didelphis_virginiana -2.5180 0.2961 -3.1268 -2.5084 -1.9850
## (Intercept)-Sylvilagus_floridanus -3.1554 0.2653 -3.6878 -3.1463 -2.6687
## (Intercept)-Sciurus_carolinensis -2.5941 0.3061 -3.2316 -2.5793 -2.0285
## (Intercept)-Vulpes_vulpes -4.2544 0.7572 -5.8473 -4.2174 -2.8903
## (Intercept)-Sus_scrofa -3.1403 0.5708 -4.3167 -3.1161 -2.0845
## shrub_cover-Odocoileus_virginianus -0.0518 0.0628 -0.1728 -0.0546 0.0719
## shrub_cover-Canis_latrans -0.2922 0.2296 -0.7621 -0.2866 0.1411
## shrub_cover-Sciurus_niger -0.3379 0.4504 -1.2378 -0.3028 0.5038
## shrub_cover-Procyon_lotor 0.2615 0.1578 -0.0547 0.2664 0.5615
## shrub_cover-Dasypus_novemcinctus 0.8455 0.2932 0.2975 0.8454 1.4218
## shrub_cover-Lynx_rufus -0.2217 0.3443 -0.8730 -0.2293 0.4927
## shrub_cover-Didelphis_virginiana 0.8728 0.3452 0.2588 0.8422 1.6234
## shrub_cover-Sylvilagus_floridanus 0.3993 0.3778 -0.3093 0.4016 1.1399
## shrub_cover-Sciurus_carolinensis 0.7677 0.3925 0.0078 0.7535 1.5218
## shrub_cover-Vulpes_vulpes 0.0930 0.5441 -1.0702 0.1113 1.1452
## shrub_cover-Sus_scrofa 0.4670 0.6971 -0.9646 0.4566 1.9558
## veg_height-Odocoileus_virginianus -0.2932 0.0641 -0.4298 -0.2931 -0.1687
## veg_height-Canis_latrans -0.5783 0.1819 -0.9509 -0.5675 -0.2334
## veg_height-Sciurus_niger 0.0183 0.3504 -0.6541 0.0128 0.7689
## veg_height-Procyon_lotor 0.3433 0.1215 0.1039 0.3406 0.5887
## veg_height-Dasypus_novemcinctus 0.2406 0.1334 -0.0105 0.2365 0.5026
## veg_height-Lynx_rufus 0.1002 0.2379 -0.3576 0.1005 0.5469
## veg_height-Didelphis_virginiana 0.4298 0.2329 0.0097 0.4156 0.9079
## veg_height-Sylvilagus_floridanus 0.1608 0.2437 -0.3107 0.1627 0.6344
## veg_height-Sciurus_carolinensis 0.0675 0.2052 -0.3296 0.0639 0.4829
## veg_height-Vulpes_vulpes -0.1678 0.3269 -0.8810 -0.1536 0.4100
## veg_height-Sus_scrofa -0.1216 0.3110 -0.7616 -0.1228 0.4698
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0033 1500
## (Intercept)-Canis_latrans 1.0111 560
## (Intercept)-Sciurus_niger 1.1247 90
## (Intercept)-Procyon_lotor 1.0116 1051
## (Intercept)-Dasypus_novemcinctus 1.0049 1157
## (Intercept)-Lynx_rufus 1.0870 116
## (Intercept)-Didelphis_virginiana 1.0080 569
## (Intercept)-Sylvilagus_floridanus 1.0021 641
## (Intercept)-Sciurus_carolinensis 1.0092 665
## (Intercept)-Vulpes_vulpes 1.2029 116
## (Intercept)-Sus_scrofa 1.0263 500
## shrub_cover-Odocoileus_virginianus 1.0042 1500
## shrub_cover-Canis_latrans 1.0135 754
## shrub_cover-Sciurus_niger 1.0060 271
## shrub_cover-Procyon_lotor 1.0024 1128
## shrub_cover-Dasypus_novemcinctus 1.0013 612
## shrub_cover-Lynx_rufus 1.0449 271
## shrub_cover-Didelphis_virginiana 1.0029 612
## shrub_cover-Sylvilagus_floridanus 1.0132 515
## shrub_cover-Sciurus_carolinensis 1.0139 699
## shrub_cover-Vulpes_vulpes 1.0157 393
## shrub_cover-Sus_scrofa 1.0097 716
## veg_height-Odocoileus_virginianus 1.0043 1500
## veg_height-Canis_latrans 1.0278 607
## veg_height-Sciurus_niger 1.0094 351
## veg_height-Procyon_lotor 1.0023 1147
## veg_height-Dasypus_novemcinctus 1.0044 1371
## veg_height-Lynx_rufus 0.9999 498
## veg_height-Didelphis_virginiana 1.0008 898
## veg_height-Sylvilagus_floridanus 1.0127 785
## veg_height-Sciurus_carolinensis 1.0050 977
## veg_height-Vulpes_vulpes 1.0063 425
## veg_height-Sus_scrofa 0.9996 1025
# Includes cover covariate for detection and only cover for occupancy
ms_cover_cover <- msPGOcc(
occ.formula = occ.cover,
det.formula = det.cover,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6088
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.0339 0.6477 -1.2221 -0.0033 1.3582 1.0971 329
## Avg_Cogongrass_Cover 0.0518 0.3368 -0.6184 0.0523 0.6850 1.0236 458
## total_shrub_cover -0.6361 0.4232 -1.5910 -0.6059 0.0991 1.0165 237
## avg_veg_height 0.1365 0.3361 -0.5160 0.1290 0.7899 1.0536 259
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.5980 3.0433 0.5386 2.8292 11.1568 1.0371 654
## Avg_Cogongrass_Cover 0.3544 0.4267 0.0407 0.2246 1.3879 1.0233 615
## total_shrub_cover 0.7351 1.0032 0.0570 0.4191 3.6099 1.0295 202
## avg_veg_height 0.2448 0.2823 0.0344 0.1646 0.9629 1.0307 677
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.2228 1.2139 0.0648 0.8697 4.3781 1.0161 102
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6465 0.4487 -3.4839 -2.6561 -1.7079 1.0191 1316
## shrub_cover 0.4372 0.2795 -0.1096 0.4361 0.9912 1.0046 517
## veg_height -0.0108 0.1540 -0.3209 -0.0104 0.2888 1.0263 763
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1174 1.4563 0.6619 1.7721 5.5967 1.1808 406
## shrub_cover 0.5835 0.4294 0.1290 0.4588 1.8323 1.0337 144
## veg_height 0.2029 0.1494 0.0581 0.1624 0.5419 1.0477 1138
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.6762 1.5505 0.9920 3.5611
## (Intercept)-Canis_latrans 0.6075 0.7739 -0.8045 0.5790
## (Intercept)-Sciurus_niger -0.3089 1.4191 -2.4772 -0.5055
## (Intercept)-Procyon_lotor 0.8114 0.7789 -0.7443 0.8020
## (Intercept)-Dasypus_novemcinctus -0.4911 0.7187 -1.8876 -0.5072
## (Intercept)-Lynx_rufus 0.2165 1.0330 -1.6360 0.1342
## (Intercept)-Didelphis_virginiana -1.0411 0.7819 -2.6074 -1.0736
## (Intercept)-Sylvilagus_floridanus 0.2264 0.9620 -1.4109 0.1475
## (Intercept)-Sciurus_carolinensis -1.0873 0.8258 -2.7559 -1.1020
## (Intercept)-Vulpes_vulpes -0.5944 1.4648 -3.2361 -0.7145
## (Intercept)-Sus_scrofa -1.3814 1.1182 -3.5108 -1.3850
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.0208 0.5727 -1.1550 0.0116
## Avg_Cogongrass_Cover-Canis_latrans 0.3625 0.4938 -0.5346 0.3470
## Avg_Cogongrass_Cover-Sciurus_niger -0.2789 0.6463 -1.7417 -0.2158
## Avg_Cogongrass_Cover-Procyon_lotor -0.0113 0.4590 -0.9359 -0.0166
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.1669 0.4130 -0.6232 0.1594
## Avg_Cogongrass_Cover-Lynx_rufus 0.3732 0.5683 -0.6110 0.3251
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1893 0.4693 -0.7371 0.1708
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.3160 0.5483 -1.5333 -0.2575
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1212 0.4453 -0.7487 0.1198
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.1648 0.5749 -0.9421 0.1508
## Avg_Cogongrass_Cover-Sus_scrofa -0.1910 0.5946 -1.4765 -0.1552
## total_shrub_cover-Odocoileus_virginianus -0.3506 0.6465 -1.5952 -0.3761
## total_shrub_cover-Canis_latrans 0.1460 0.6077 -0.8529 0.0699
## total_shrub_cover-Sciurus_niger -0.7884 0.7314 -2.3822 -0.7378
## total_shrub_cover-Procyon_lotor -1.1494 0.5761 -2.4701 -1.0654
## total_shrub_cover-Dasypus_novemcinctus -0.3296 0.5611 -1.5414 -0.2707
## total_shrub_cover-Lynx_rufus -1.0377 0.8274 -2.8509 -0.9775
## total_shrub_cover-Didelphis_virginiana -0.6753 0.5599 -1.9000 -0.6218
## total_shrub_cover-Sylvilagus_floridanus -1.1016 0.8962 -3.3677 -0.9772
## total_shrub_cover-Sciurus_carolinensis -0.6302 0.6418 -2.1396 -0.5496
## total_shrub_cover-Vulpes_vulpes -0.7789 0.8888 -2.9384 -0.6800
## total_shrub_cover-Sus_scrofa -0.4643 0.7742 -2.2199 -0.4167
## avg_veg_height-Odocoileus_virginianus 0.1007 0.5332 -0.9883 0.1016
## avg_veg_height-Canis_latrans 0.1387 0.4365 -0.6943 0.1272
## avg_veg_height-Sciurus_niger -0.0869 0.5838 -1.3059 -0.0751
## avg_veg_height-Procyon_lotor 0.1519 0.4297 -0.6738 0.1385
## avg_veg_height-Dasypus_novemcinctus 0.3115 0.4252 -0.4579 0.2896
## avg_veg_height-Lynx_rufus 0.1038 0.5216 -0.9093 0.0976
## avg_veg_height-Didelphis_virginiana 0.0418 0.4707 -0.9123 0.0441
## avg_veg_height-Sylvilagus_floridanus 0.0616 0.4857 -0.9269 0.0560
## avg_veg_height-Sciurus_carolinensis 0.3994 0.4793 -0.4546 0.3613
## avg_veg_height-Vulpes_vulpes 0.1108 0.5062 -0.9004 0.0957
## avg_veg_height-Sus_scrofa 0.1385 0.5055 -0.7625 0.1239
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.1871 1.0424 330
## (Intercept)-Canis_latrans 2.2661 1.0089 642
## (Intercept)-Sciurus_niger 3.0836 1.5707 79
## (Intercept)-Procyon_lotor 2.3299 1.0189 490
## (Intercept)-Dasypus_novemcinctus 0.9423 1.0235 518
## (Intercept)-Lynx_rufus 2.5038 1.0736 301
## (Intercept)-Didelphis_virginiana 0.5122 1.0263 523
## (Intercept)-Sylvilagus_floridanus 2.5087 1.0440 374
## (Intercept)-Sciurus_carolinensis 0.5322 1.0347 562
## (Intercept)-Vulpes_vulpes 2.6869 1.0919 158
## (Intercept)-Sus_scrofa 0.8368 1.0150 261
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2107 1.0352 641
## Avg_Cogongrass_Cover-Canis_latrans 1.4466 1.0233 400
## Avg_Cogongrass_Cover-Sciurus_niger 0.8520 1.0346 528
## Avg_Cogongrass_Cover-Procyon_lotor 0.8801 1.0096 798
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0185 1.0263 742
## Avg_Cogongrass_Cover-Lynx_rufus 1.6355 1.0056 658
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.1649 1.0061 436
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6156 1.0320 630
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0583 1.0123 845
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3512 1.0141 698
## Avg_Cogongrass_Cover-Sus_scrofa 0.8370 1.0124 596
## total_shrub_cover-Odocoileus_virginianus 1.0430 1.0050 905
## total_shrub_cover-Canis_latrans 1.5634 1.0036 372
## total_shrub_cover-Sciurus_niger 0.5773 1.0231 459
## total_shrub_cover-Procyon_lotor -0.2317 1.0123 430
## total_shrub_cover-Dasypus_novemcinctus 0.5782 1.0539 429
## total_shrub_cover-Lynx_rufus 0.3694 1.0419 277
## total_shrub_cover-Didelphis_virginiana 0.2816 1.0047 393
## total_shrub_cover-Sylvilagus_floridanus 0.2487 1.0510 138
## total_shrub_cover-Sciurus_carolinensis 0.4184 1.0252 355
## total_shrub_cover-Vulpes_vulpes 0.7722 1.0405 318
## total_shrub_cover-Sus_scrofa 1.0775 1.0227 202
## avg_veg_height-Odocoileus_virginianus 1.1192 1.0228 360
## avg_veg_height-Canis_latrans 1.0443 1.0023 538
## avg_veg_height-Sciurus_niger 0.9633 1.0649 396
## avg_veg_height-Procyon_lotor 0.9825 1.0428 607
## avg_veg_height-Dasypus_novemcinctus 1.2203 1.0266 546
## avg_veg_height-Lynx_rufus 1.1350 1.0184 551
## avg_veg_height-Didelphis_virginiana 0.9877 1.0410 597
## avg_veg_height-Sylvilagus_floridanus 1.0743 1.0239 483
## avg_veg_height-Sciurus_carolinensis 1.4711 1.0317 415
## avg_veg_height-Vulpes_vulpes 1.1294 1.0481 564
## avg_veg_height-Sus_scrofa 1.1734 1.0145 408
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0012 0.0592 -0.1178 0.0009 0.1179
## (Intercept)-Canis_latrans -2.7858 0.1927 -3.2039 -2.7826 -2.4282
## (Intercept)-Sciurus_niger -4.0489 0.7323 -5.5757 -4.0304 -2.6596
## (Intercept)-Procyon_lotor -2.2908 0.1361 -2.5678 -2.2841 -2.0362
## (Intercept)-Dasypus_novemcinctus -1.7633 0.1758 -2.1442 -1.7490 -1.4576
## (Intercept)-Lynx_rufus -3.6385 0.3634 -4.3553 -3.6181 -2.9414
## (Intercept)-Didelphis_virginiana -2.6369 0.3245 -3.3270 -2.6177 -2.0580
## (Intercept)-Sylvilagus_floridanus -3.3048 0.2933 -3.9019 -3.2933 -2.7546
## (Intercept)-Sciurus_carolinensis -2.7169 0.3383 -3.3748 -2.6950 -2.0913
## (Intercept)-Vulpes_vulpes -4.3249 0.7927 -5.8956 -4.3301 -2.8579
## (Intercept)-Sus_scrofa -3.5345 0.6342 -4.7800 -3.5349 -2.2626
## shrub_cover-Odocoileus_virginianus -0.0533 0.0640 -0.1801 -0.0495 0.0673
## shrub_cover-Canis_latrans -0.2729 0.2377 -0.7285 -0.2702 0.1913
## shrub_cover-Sciurus_niger -0.1159 0.5545 -1.2065 -0.1248 0.9402
## shrub_cover-Procyon_lotor 0.3250 0.1574 0.0114 0.3218 0.6179
## shrub_cover-Dasypus_novemcinctus 0.9662 0.3459 0.3473 0.9426 1.6740
## shrub_cover-Lynx_rufus 0.0308 0.3774 -0.7236 0.0433 0.7290
## shrub_cover-Didelphis_virginiana 1.1160 0.4088 0.4058 1.0996 1.9676
## shrub_cover-Sylvilagus_floridanus 0.7000 0.4458 -0.2505 0.7272 1.5033
## shrub_cover-Sciurus_carolinensis 1.0435 0.4262 0.2723 1.0316 1.9284
## shrub_cover-Vulpes_vulpes 0.1958 0.6023 -0.9882 0.2102 1.3090
## shrub_cover-Sus_scrofa 0.9601 0.8186 -0.5607 0.9385 2.6704
## veg_height-Odocoileus_virginianus -0.2956 0.0686 -0.4324 -0.2930 -0.1704
## veg_height-Canis_latrans -0.6051 0.1807 -0.9587 -0.6016 -0.2626
## veg_height-Sciurus_niger 0.0068 0.4231 -0.7986 -0.0187 0.8919
## veg_height-Procyon_lotor 0.3375 0.1282 0.0730 0.3412 0.5824
## veg_height-Dasypus_novemcinctus 0.2352 0.1343 -0.0379 0.2350 0.5067
## veg_height-Lynx_rufus 0.0246 0.2452 -0.4662 0.0339 0.5122
## veg_height-Didelphis_virginiana 0.4001 0.2500 -0.0672 0.3875 0.9107
## veg_height-Sylvilagus_floridanus 0.0381 0.2552 -0.4490 0.0415 0.5526
## veg_height-Sciurus_carolinensis 0.0651 0.2226 -0.3469 0.0532 0.5228
## veg_height-Vulpes_vulpes -0.1623 0.3229 -0.8473 -0.1463 0.4494
## veg_height-Sus_scrofa -0.1813 0.3260 -0.8651 -0.1771 0.4416
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0091 1195
## (Intercept)-Canis_latrans 1.0037 956
## (Intercept)-Sciurus_niger 1.6185 100
## (Intercept)-Procyon_lotor 1.0072 1157
## (Intercept)-Dasypus_novemcinctus 1.0388 619
## (Intercept)-Lynx_rufus 1.0284 294
## (Intercept)-Didelphis_virginiana 1.0162 294
## (Intercept)-Sylvilagus_floridanus 1.1340 299
## (Intercept)-Sciurus_carolinensis 1.0216 382
## (Intercept)-Vulpes_vulpes 1.1504 116
## (Intercept)-Sus_scrofa 1.0601 136
## shrub_cover-Odocoileus_virginianus 1.0124 1748
## shrub_cover-Canis_latrans 1.0090 394
## shrub_cover-Sciurus_niger 1.2035 222
## shrub_cover-Procyon_lotor 1.0074 1232
## shrub_cover-Dasypus_novemcinctus 1.0730 393
## shrub_cover-Lynx_rufus 1.0293 324
## shrub_cover-Didelphis_virginiana 1.0159 274
## shrub_cover-Sylvilagus_floridanus 1.0579 209
## shrub_cover-Sciurus_carolinensis 1.0356 244
## shrub_cover-Vulpes_vulpes 1.0091 299
## shrub_cover-Sus_scrofa 1.0307 188
## veg_height-Odocoileus_virginianus 1.0085 1500
## veg_height-Canis_latrans 1.0011 836
## veg_height-Sciurus_niger 1.0716 405
## veg_height-Procyon_lotor 1.0211 1174
## veg_height-Dasypus_novemcinctus 1.0035 1289
## veg_height-Lynx_rufus 1.0269 608
## veg_height-Didelphis_virginiana 1.0069 860
## veg_height-Sylvilagus_floridanus 1.0111 542
## veg_height-Sciurus_carolinensis 1.0101 893
## veg_height-Vulpes_vulpes 1.0191 315
## veg_height-Sus_scrofa 1.0294 829
# Includes cover covariate for detection and none for occupancy
ms_cover_null <- msPGOcc(
occ.formula = occ.null,
det.formula = det.cover,
data = data_list,
n.samples = 5000, # number of MCMC samples
n.thin = 4, # thinning parameter for the MCMC chain
n.burn = 3000, # burn-in period for the sampler
n.chains = 3, # number of MCMC chains
n.report = 500, # reporting interval for the sampler
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5448
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1782 0.5521 -1.2374 -0.1819 0.9337 1.011 996
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.9196 2.0499 0.7681 2.4152 7.9886 1.0111 834
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5656 0.4147 -3.3359 -2.5853 -1.6759 1.0032 1500
## shrub_cover 0.2239 0.2299 -0.2510 0.2188 0.6785 0.9995 998
## veg_height 0.0014 0.1555 -0.3227 0.0051 0.3069 1.0172 950
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.8932 1.2523 0.6723 1.5717 5.0463 1.0152 1069
## shrub_cover 0.4384 0.3914 0.0928 0.3337 1.3178 1.0165 579
## veg_height 0.1797 0.1277 0.0528 0.1475 0.5291 1.0035 1129
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.3263 1.0391 1.7440 3.1781 5.6845
## (Intercept)-Canis_latrans 0.3942 0.4128 -0.3874 0.3789 1.2477
## (Intercept)-Sciurus_niger -0.6739 0.8949 -2.0633 -0.7887 1.3617
## (Intercept)-Procyon_lotor 0.7503 0.4089 0.0017 0.7383 1.5872
## (Intercept)-Dasypus_novemcinctus -0.5789 0.3883 -1.3834 -0.5663 0.1621
## (Intercept)-Lynx_rufus 0.5194 0.8730 -0.7597 0.4023 2.6825
## (Intercept)-Didelphis_virginiana -1.2320 0.4719 -2.1587 -1.2350 -0.3119
## (Intercept)-Sylvilagus_floridanus -0.3419 0.5169 -1.2723 -0.3720 0.7671
## (Intercept)-Sciurus_carolinensis -1.2148 0.4666 -2.1542 -1.2088 -0.3190
## (Intercept)-Vulpes_vulpes -1.2143 0.9379 -2.9375 -1.2830 0.9489
## (Intercept)-Sus_scrofa -1.6387 0.6681 -3.0062 -1.6373 -0.3635
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0025 560
## (Intercept)-Canis_latrans 1.0004 1327
## (Intercept)-Sciurus_niger 1.0054 271
## (Intercept)-Procyon_lotor 0.9995 1386
## (Intercept)-Dasypus_novemcinctus 1.0073 1213
## (Intercept)-Lynx_rufus 1.0074 246
## (Intercept)-Didelphis_virginiana 0.9998 1500
## (Intercept)-Sylvilagus_floridanus 1.0070 888
## (Intercept)-Sciurus_carolinensis 1.0119 1500
## (Intercept)-Vulpes_vulpes 1.0334 378
## (Intercept)-Sus_scrofa 1.0210 674
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0047 0.0611 -0.1147 0.0049 0.1241
## (Intercept)-Canis_latrans -2.7276 0.1871 -3.1118 -2.7224 -2.3819
## (Intercept)-Sciurus_niger -3.9028 0.6108 -5.1529 -3.8834 -2.7728
## (Intercept)-Procyon_lotor -2.2915 0.1481 -2.5916 -2.2887 -2.0070
## (Intercept)-Dasypus_novemcinctus -1.7002 0.1543 -1.9978 -1.6999 -1.4093
## (Intercept)-Lynx_rufus -3.7420 0.3743 -4.4600 -3.7445 -3.0210
## (Intercept)-Didelphis_virginiana -2.5045 0.2862 -3.1222 -2.4975 -1.9827
## (Intercept)-Sylvilagus_floridanus -3.1646 0.2943 -3.7706 -3.1433 -2.6624
## (Intercept)-Sciurus_carolinensis -2.5516 0.3162 -3.2403 -2.5284 -1.9610
## (Intercept)-Vulpes_vulpes -4.0047 0.6823 -5.3840 -3.9814 -2.7943
## (Intercept)-Sus_scrofa -3.3084 0.6317 -4.5846 -3.2797 -2.1417
## shrub_cover-Odocoileus_virginianus -0.0502 0.0643 -0.1794 -0.0509 0.0791
## shrub_cover-Canis_latrans -0.2641 0.2215 -0.6883 -0.2659 0.1711
## shrub_cover-Sciurus_niger -0.2520 0.4499 -1.1492 -0.2454 0.6387
## shrub_cover-Procyon_lotor 0.2439 0.1628 -0.0979 0.2522 0.5512
## shrub_cover-Dasypus_novemcinctus 0.7658 0.2854 0.2257 0.7585 1.3616
## shrub_cover-Lynx_rufus -0.2899 0.3479 -0.9942 -0.2811 0.3867
## shrub_cover-Didelphis_virginiana 0.8626 0.3449 0.2436 0.8425 1.5930
## shrub_cover-Sylvilagus_floridanus 0.2515 0.3681 -0.4538 0.2496 0.9452
## shrub_cover-Sciurus_carolinensis 0.7165 0.3694 0.0167 0.7054 1.4779
## shrub_cover-Vulpes_vulpes -0.0649 0.5110 -1.1658 -0.0475 0.8800
## shrub_cover-Sus_scrofa 0.5480 0.7358 -0.7537 0.4928 2.0886
## veg_height-Odocoileus_virginianus -0.2926 0.0635 -0.4145 -0.2931 -0.1713
## veg_height-Canis_latrans -0.5580 0.1812 -0.9284 -0.5547 -0.2068
## veg_height-Sciurus_niger -0.0227 0.3828 -0.7214 -0.0143 0.7776
## veg_height-Procyon_lotor 0.3286 0.1222 0.0970 0.3238 0.5820
## veg_height-Dasypus_novemcinctus 0.2251 0.1313 -0.0344 0.2259 0.4854
## veg_height-Lynx_rufus 0.0362 0.2355 -0.4546 0.0406 0.4960
## veg_height-Didelphis_virginiana 0.3881 0.2307 -0.0441 0.3777 0.8688
## veg_height-Sylvilagus_floridanus 0.1143 0.2320 -0.3278 0.1122 0.5881
## veg_height-Sciurus_carolinensis 0.0537 0.2057 -0.3234 0.0478 0.4808
## veg_height-Vulpes_vulpes -0.1154 0.3063 -0.7947 -0.0919 0.4303
## veg_height-Sus_scrofa -0.1355 0.3269 -0.8299 -0.1165 0.4785
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0043 1500
## (Intercept)-Canis_latrans 1.0046 747
## (Intercept)-Sciurus_niger 1.0209 192
## (Intercept)-Procyon_lotor 1.0030 976
## (Intercept)-Dasypus_novemcinctus 1.0029 1363
## (Intercept)-Lynx_rufus 1.0189 256
## (Intercept)-Didelphis_virginiana 1.0053 855
## (Intercept)-Sylvilagus_floridanus 1.0376 497
## (Intercept)-Sciurus_carolinensis 1.0057 811
## (Intercept)-Vulpes_vulpes 1.0393 208
## (Intercept)-Sus_scrofa 1.0446 409
## shrub_cover-Odocoileus_virginianus 1.0019 1500
## shrub_cover-Canis_latrans 1.0020 787
## shrub_cover-Sciurus_niger 1.0052 402
## shrub_cover-Procyon_lotor 1.0007 965
## shrub_cover-Dasypus_novemcinctus 1.0026 1098
## shrub_cover-Lynx_rufus 1.0060 422
## shrub_cover-Didelphis_virginiana 0.9997 747
## shrub_cover-Sylvilagus_floridanus 1.0202 630
## shrub_cover-Sciurus_carolinensis 1.0110 870
## shrub_cover-Vulpes_vulpes 0.9999 545
## shrub_cover-Sus_scrofa 1.0284 535
## veg_height-Odocoileus_virginianus 1.0025 1500
## veg_height-Canis_latrans 1.0176 638
## veg_height-Sciurus_niger 1.0133 787
## veg_height-Procyon_lotor 1.0174 1193
## veg_height-Dasypus_novemcinctus 1.0011 1364
## veg_height-Lynx_rufus 1.0034 591
## veg_height-Didelphis_virginiana 1.0052 1160
## veg_height-Sylvilagus_floridanus 1.0028 889
## veg_height-Sciurus_carolinensis 0.9997 1045
## veg_height-Vulpes_vulpes 1.0062 631
## veg_height-Sus_scrofa 1.0158 899
#Includes cover for detection and only foraging for occupancy
ms_cover_forage <- msPGOcc(
occ.formula = occ.forage,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5495
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2489 0.5835 -1.4054 -0.2534 0.9128 1.0096 919
## Veg_shannon_index 0.7654 0.3595 0.0924 0.7481 1.4839 1.0291 232
## Avg_Cogongrass_Cover 0.7653 0.3554 0.0639 0.7642 1.4955 1.0392 264
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.8669 2.8933 0.8865 3.1251 11.6266 1.0252 519
## Veg_shannon_index 0.3428 0.4364 0.0380 0.2219 1.3470 1.0356 641
## Avg_Cogongrass_Cover 0.2773 0.3306 0.0361 0.1747 1.1367 1.0987 657
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5092 0.5669 0.0405 0.3285 2.17 1.1087 117
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5563 0.4341 -3.3926 -2.5652 -1.7038 1.0060 809
## shrub_cover 0.2135 0.2434 -0.2622 0.2121 0.7185 1.0135 838
## veg_height -0.0123 0.1596 -0.3257 -0.0151 0.3136 1.0187 919
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.9121 1.1471 0.6697 1.6094 4.9864 1.0016 658
## shrub_cover 0.4358 0.3475 0.0835 0.3392 1.3838 1.0074 670
## veg_height 0.1876 0.1200 0.0501 0.1591 0.4838 1.0211 927
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7051 1.4130 1.5725 3.4649
## (Intercept)-Canis_latrans 0.3814 0.6139 -0.8404 0.3878
## (Intercept)-Sciurus_niger -0.3927 1.2548 -2.2096 -0.5805
## (Intercept)-Procyon_lotor 0.5906 0.6018 -0.6220 0.6120
## (Intercept)-Dasypus_novemcinctus -0.6793 0.5516 -1.7850 -0.6717
## (Intercept)-Lynx_rufus 0.3285 1.1177 -1.4188 0.1798
## (Intercept)-Didelphis_virginiana -1.3726 0.6027 -2.6040 -1.3742
## (Intercept)-Sylvilagus_floridanus -0.4399 0.6555 -1.6816 -0.4412
## (Intercept)-Sciurus_carolinensis -1.4294 0.6472 -2.7696 -1.4249
## (Intercept)-Vulpes_vulpes -1.2061 1.0893 -3.0950 -1.2888
## (Intercept)-Sus_scrofa -2.1882 0.8975 -4.0499 -2.1394
## Veg_shannon_index-Odocoileus_virginianus 0.6827 0.5836 -0.5081 0.7080
## Veg_shannon_index-Canis_latrans 0.8323 0.4792 -0.0807 0.8122
## Veg_shannon_index-Sciurus_niger 0.9329 0.6597 -0.1922 0.8896
## Veg_shannon_index-Procyon_lotor 0.8142 0.4582 -0.0926 0.8104
## Veg_shannon_index-Dasypus_novemcinctus 0.6410 0.4484 -0.2687 0.6496
## Veg_shannon_index-Lynx_rufus 0.4645 0.6105 -0.8591 0.5034
## Veg_shannon_index-Didelphis_virginiana 0.6541 0.4685 -0.3319 0.6720
## Veg_shannon_index-Sylvilagus_floridanus 1.0167 0.5103 0.0735 0.9879
## Veg_shannon_index-Sciurus_carolinensis 0.5623 0.4807 -0.4078 0.5767
## Veg_shannon_index-Vulpes_vulpes 0.6653 0.5431 -0.4146 0.6611
## Veg_shannon_index-Sus_scrofa 1.2957 0.6375 0.2711 1.2171
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.7440 0.5665 -0.3773 0.7482
## Avg_Cogongrass_Cover-Canis_latrans 1.0368 0.4778 0.1744 1.0100
## Avg_Cogongrass_Cover-Sciurus_niger 0.4479 0.6276 -0.9900 0.4874
## Avg_Cogongrass_Cover-Procyon_lotor 0.8128 0.4450 -0.0465 0.8069
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.8743 0.4181 0.0824 0.8593
## Avg_Cogongrass_Cover-Lynx_rufus 0.9242 0.5067 -0.0118 0.9160
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.8559 0.4591 -0.0068 0.8296
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.4899 0.5090 -0.5329 0.4948
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.8614 0.4597 -0.0159 0.8664
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.8537 0.5192 -0.1601 0.8407
## Avg_Cogongrass_Cover-Sus_scrofa 0.5783 0.5654 -0.6391 0.6122
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.8661 1.0230 358
## (Intercept)-Canis_latrans 1.5697 1.0116 848
## (Intercept)-Sciurus_niger 2.7840 1.1089 168
## (Intercept)-Procyon_lotor 1.6712 1.0066 484
## (Intercept)-Dasypus_novemcinctus 0.3852 1.0106 918
## (Intercept)-Lynx_rufus 2.9982 1.0135 227
## (Intercept)-Didelphis_virginiana -0.2131 1.0081 1014
## (Intercept)-Sylvilagus_floridanus 0.8977 1.0177 562
## (Intercept)-Sciurus_carolinensis -0.1977 1.0051 1023
## (Intercept)-Vulpes_vulpes 1.0366 1.0514 164
## (Intercept)-Sus_scrofa -0.5887 1.0027 633
## Veg_shannon_index-Odocoileus_virginianus 1.8138 1.0236 572
## Veg_shannon_index-Canis_latrans 1.7759 1.0132 575
## Veg_shannon_index-Sciurus_niger 2.3588 1.0349 416
## Veg_shannon_index-Procyon_lotor 1.6903 1.0092 571
## Veg_shannon_index-Dasypus_novemcinctus 1.5052 1.0141 387
## Veg_shannon_index-Lynx_rufus 1.5842 1.0027 446
## Veg_shannon_index-Didelphis_virginiana 1.6112 1.0089 521
## Veg_shannon_index-Sylvilagus_floridanus 2.1030 1.0100 636
## Veg_shannon_index-Sciurus_carolinensis 1.4987 1.0204 449
## Veg_shannon_index-Vulpes_vulpes 1.7960 1.0225 559
## Veg_shannon_index-Sus_scrofa 2.7466 1.0214 414
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.8421 1.0458 483
## Avg_Cogongrass_Cover-Canis_latrans 1.9945 1.0239 473
## Avg_Cogongrass_Cover-Sciurus_niger 1.5722 1.0321 336
## Avg_Cogongrass_Cover-Procyon_lotor 1.7118 1.0319 416
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.7305 1.0125 521
## Avg_Cogongrass_Cover-Lynx_rufus 1.9896 1.0122 485
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.8427 1.0214 480
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.4603 1.0219 377
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.7903 1.0115 481
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.9011 1.0305 511
## Avg_Cogongrass_Cover-Sus_scrofa 1.5980 1.0261 513
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0048 0.0603 -0.1145 0.0080 0.1232
## (Intercept)-Canis_latrans -2.7226 0.1834 -3.0952 -2.7065 -2.3811
## (Intercept)-Sciurus_niger -4.0984 0.6601 -5.4119 -4.0857 -2.8247
## (Intercept)-Procyon_lotor -2.2826 0.1421 -2.5667 -2.2765 -2.0134
## (Intercept)-Dasypus_novemcinctus -1.7081 0.1558 -2.0368 -1.7029 -1.4129
## (Intercept)-Lynx_rufus -3.6874 0.3764 -4.4168 -3.6789 -2.9786
## (Intercept)-Didelphis_virginiana -2.5022 0.2832 -3.0818 -2.4923 -1.9791
## (Intercept)-Sylvilagus_floridanus -3.1669 0.3010 -3.7943 -3.1353 -2.6399
## (Intercept)-Sciurus_carolinensis -2.5741 0.3076 -3.2156 -2.5589 -2.0043
## (Intercept)-Vulpes_vulpes -4.1095 0.6900 -5.4244 -4.0565 -2.8538
## (Intercept)-Sus_scrofa -3.1503 0.5664 -4.3226 -3.1361 -2.0705
## shrub_cover-Odocoileus_virginianus -0.0516 0.0639 -0.1744 -0.0508 0.0728
## shrub_cover-Canis_latrans -0.2421 0.2104 -0.6620 -0.2462 0.1718
## shrub_cover-Sciurus_niger -0.3484 0.4764 -1.3796 -0.3340 0.5275
## shrub_cover-Procyon_lotor 0.2490 0.1643 -0.0865 0.2527 0.5500
## shrub_cover-Dasypus_novemcinctus 0.7830 0.2890 0.2590 0.7725 1.3679
## shrub_cover-Lynx_rufus -0.2489 0.3358 -0.9017 -0.2485 0.3926
## shrub_cover-Didelphis_virginiana 0.8812 0.3570 0.2444 0.8605 1.6392
## shrub_cover-Sylvilagus_floridanus 0.2643 0.3919 -0.4893 0.2501 1.0125
## shrub_cover-Sciurus_carolinensis 0.7472 0.3889 0.0091 0.7476 1.5334
## shrub_cover-Vulpes_vulpes -0.0867 0.5388 -1.1645 -0.0711 1.0041
## shrub_cover-Sus_scrofa 0.4303 0.6858 -0.8637 0.3987 1.8784
## veg_height-Odocoileus_virginianus -0.2943 0.0646 -0.4209 -0.2937 -0.1717
## veg_height-Canis_latrans -0.5787 0.1804 -0.9452 -0.5740 -0.2537
## veg_height-Sciurus_niger -0.0272 0.3928 -0.7823 -0.0358 0.7876
## veg_height-Procyon_lotor 0.3330 0.1233 0.0866 0.3375 0.5675
## veg_height-Dasypus_novemcinctus 0.2227 0.1335 -0.0409 0.2219 0.5022
## veg_height-Lynx_rufus -0.0129 0.2390 -0.4849 -0.0092 0.4495
## veg_height-Didelphis_virginiana 0.3845 0.2374 -0.0628 0.3816 0.8798
## veg_height-Sylvilagus_floridanus 0.0997 0.2316 -0.3567 0.0969 0.5658
## veg_height-Sciurus_carolinensis 0.0402 0.2012 -0.3397 0.0341 0.4615
## veg_height-Vulpes_vulpes -0.1768 0.3156 -0.8225 -0.1670 0.4090
## veg_height-Sus_scrofa -0.1480 0.3153 -0.8458 -0.1450 0.4295
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0007 1500
## (Intercept)-Canis_latrans 1.0126 759
## (Intercept)-Sciurus_niger 1.0375 136
## (Intercept)-Procyon_lotor 1.0052 1141
## (Intercept)-Dasypus_novemcinctus 1.0055 1297
## (Intercept)-Lynx_rufus 1.0151 208
## (Intercept)-Didelphis_virginiana 1.0362 485
## (Intercept)-Sylvilagus_floridanus 1.0185 463
## (Intercept)-Sciurus_carolinensis 1.0014 656
## (Intercept)-Vulpes_vulpes 1.0756 164
## (Intercept)-Sus_scrofa 1.0007 673
## shrub_cover-Odocoileus_virginianus 1.0020 1500
## shrub_cover-Canis_latrans 1.0156 887
## shrub_cover-Sciurus_niger 1.0059 282
## shrub_cover-Procyon_lotor 1.0156 1060
## shrub_cover-Dasypus_novemcinctus 1.0121 1134
## shrub_cover-Lynx_rufus 1.0251 533
## shrub_cover-Didelphis_virginiana 1.0310 468
## shrub_cover-Sylvilagus_floridanus 1.0014 578
## shrub_cover-Sciurus_carolinensis 1.0022 632
## shrub_cover-Vulpes_vulpes 1.0063 562
## shrub_cover-Sus_scrofa 1.0057 827
## veg_height-Odocoileus_virginianus 1.0052 1855
## veg_height-Canis_latrans 1.0330 580
## veg_height-Sciurus_niger 1.0181 506
## veg_height-Procyon_lotor 1.0064 1153
## veg_height-Dasypus_novemcinctus 1.0033 1268
## veg_height-Lynx_rufus 1.0134 652
## veg_height-Didelphis_virginiana 1.0031 984
## veg_height-Sylvilagus_floridanus 1.0072 764
## veg_height-Sciurus_carolinensis 1.0004 1094
## veg_height-Vulpes_vulpes 1.0162 524
## veg_height-Sus_scrofa 1.0218 1062
# Includes movement covariates of occupancy and cover for detection
ms_cover_move <- msPGOcc(
occ.formula = occ.move,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.581
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0483 0.6354 -1.2590 -0.0662 1.2220 1.0125 433
## Cogon_Patch_Size -0.2349 0.3857 -1.0921 -0.2050 0.4767 1.0222 482
## Avg_Cogongrass_Cover 0.2491 0.3093 -0.3494 0.2517 0.8615 1.0473 447
## total_shrub_cover -0.5700 0.3910 -1.4156 -0.5369 0.1104 1.0227 238
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.5779 3.2653 0.2890 2.7548 11.7070 1.0867 214
## Cogon_Patch_Size 0.8036 1.0716 0.0604 0.4479 3.7879 1.0408 256
## Avg_Cogongrass_Cover 0.2858 0.3261 0.0354 0.1816 1.1496 1.0667 601
## total_shrub_cover 0.5889 0.8178 0.0457 0.3290 2.7775 1.0947 269
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.5481 1.439 0.1256 1.0944 5.578 1.1735 127
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6234 0.4463 -3.4736 -2.6316 -1.7097 1.0067 1355
## shrub_cover 0.4175 0.2716 -0.0806 0.3990 1.0033 1.0023 415
## veg_height -0.0098 0.1570 -0.3321 -0.0119 0.2968 1.0005 814
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0757 1.4710 0.6792 1.7338 5.4108 1.0019 767
## shrub_cover 0.5207 0.3908 0.1081 0.4119 1.6551 1.0196 460
## veg_height 0.1925 0.1425 0.0542 0.1561 0.5615 1.0177 1030
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.5255 1.8489 0.4681 3.2473
## (Intercept)-Canis_latrans 0.5378 0.7674 -0.9053 0.5159
## (Intercept)-Sciurus_niger -0.3172 1.3275 -2.6312 -0.4312
## (Intercept)-Procyon_lotor 0.7109 0.7790 -0.7740 0.6887
## (Intercept)-Dasypus_novemcinctus -0.5714 0.7440 -2.0408 -0.5440
## (Intercept)-Lynx_rufus 0.0293 1.0132 -1.6823 -0.0082
## (Intercept)-Didelphis_virginiana -1.0704 0.8546 -2.7609 -1.0697
## (Intercept)-Sylvilagus_floridanus 0.0241 0.9761 -1.8168 -0.0439
## (Intercept)-Sciurus_carolinensis -1.0812 0.8554 -2.7494 -1.0888
## (Intercept)-Vulpes_vulpes -0.8735 1.3992 -3.4374 -0.9438
## (Intercept)-Sus_scrofa -1.4792 1.0893 -3.6385 -1.4681
## Cogon_Patch_Size-Odocoileus_virginianus -0.0781 0.6694 -1.3388 -0.0930
## Cogon_Patch_Size-Canis_latrans 0.5666 0.6837 -0.4722 0.4597
## Cogon_Patch_Size-Sciurus_niger -0.5401 0.8566 -2.5449 -0.4302
## Cogon_Patch_Size-Procyon_lotor -0.2828 0.4612 -1.2153 -0.2812
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1001 0.4409 -1.0330 -0.0951
## Cogon_Patch_Size-Lynx_rufus -0.2662 0.7429 -1.6425 -0.2822
## Cogon_Patch_Size-Didelphis_virginiana 0.5036 0.5015 -0.3805 0.4728
## Cogon_Patch_Size-Sylvilagus_floridanus -0.8402 0.8377 -2.9267 -0.6990
## Cogon_Patch_Size-Sciurus_carolinensis -0.6537 0.6903 -2.2910 -0.5538
## Cogon_Patch_Size-Vulpes_vulpes -0.5122 0.8760 -2.5826 -0.4137
## Cogon_Patch_Size-Sus_scrofa -0.4873 0.8016 -2.4484 -0.3826
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2143 0.5238 -0.8266 0.2321
## Avg_Cogongrass_Cover-Canis_latrans 0.3841 0.4460 -0.4248 0.3661
## Avg_Cogongrass_Cover-Sciurus_niger -0.0014 0.6089 -1.2437 0.0161
## Avg_Cogongrass_Cover-Procyon_lotor 0.2195 0.4392 -0.6714 0.2052
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4013 0.3829 -0.3330 0.3896
## Avg_Cogongrass_Cover-Lynx_rufus 0.5187 0.4979 -0.3045 0.4791
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1992 0.4238 -0.6820 0.1980
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0109 0.4976 -1.0019 -0.0007
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4364 0.4335 -0.3741 0.4276
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3705 0.4934 -0.5290 0.3508
## Avg_Cogongrass_Cover-Sus_scrofa 0.0616 0.5827 -1.2060 0.1011
## total_shrub_cover-Odocoileus_virginianus -0.3062 0.6026 -1.4815 -0.3290
## total_shrub_cover-Canis_latrans 0.0668 0.5997 -0.9434 0.0023
## total_shrub_cover-Sciurus_niger -0.7305 0.7039 -2.3688 -0.6664
## total_shrub_cover-Procyon_lotor -0.9966 0.5642 -2.3128 -0.9160
## total_shrub_cover-Dasypus_novemcinctus -0.3325 0.5065 -1.4397 -0.2955
## total_shrub_cover-Lynx_rufus -0.9303 0.7492 -2.5948 -0.8607
## total_shrub_cover-Didelphis_virginiana -0.6516 0.5845 -1.8776 -0.5891
## total_shrub_cover-Sylvilagus_floridanus -0.9118 0.7955 -2.9476 -0.7916
## total_shrub_cover-Sciurus_carolinensis -0.5460 0.5948 -1.8575 -0.4883
## total_shrub_cover-Vulpes_vulpes -0.6736 0.7477 -2.3994 -0.6187
## total_shrub_cover-Sus_scrofa -0.3991 0.7126 -1.8992 -0.3745
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.6337 1.0343 228
## (Intercept)-Canis_latrans 2.1779 1.0024 509
## (Intercept)-Sciurus_niger 2.9361 1.2432 147
## (Intercept)-Procyon_lotor 2.3510 1.0130 732
## (Intercept)-Dasypus_novemcinctus 0.8196 1.0125 564
## (Intercept)-Lynx_rufus 2.1839 1.0700 300
## (Intercept)-Didelphis_virginiana 0.6113 1.0371 458
## (Intercept)-Sylvilagus_floridanus 2.1711 0.9993 406
## (Intercept)-Sciurus_carolinensis 0.6887 1.0032 350
## (Intercept)-Vulpes_vulpes 2.1419 1.1054 167
## (Intercept)-Sus_scrofa 0.6357 1.0087 269
## Cogon_Patch_Size-Odocoileus_virginianus 1.4487 1.0096 963
## Cogon_Patch_Size-Canis_latrans 2.2560 1.0127 484
## Cogon_Patch_Size-Sciurus_niger 0.9782 1.0052 492
## Cogon_Patch_Size-Procyon_lotor 0.6078 1.0183 887
## Cogon_Patch_Size-Dasypus_novemcinctus 0.7617 1.0019 997
## Cogon_Patch_Size-Lynx_rufus 1.3872 1.0136 567
## Cogon_Patch_Size-Didelphis_virginiana 1.5596 1.0067 810
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3783 1.0131 386
## Cogon_Patch_Size-Sciurus_carolinensis 0.3584 1.0085 527
## Cogon_Patch_Size-Vulpes_vulpes 0.9472 1.0331 416
## Cogon_Patch_Size-Sus_scrofa 0.8196 1.0342 411
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2152 1.0322 838
## Avg_Cogongrass_Cover-Canis_latrans 1.4186 1.0130 772
## Avg_Cogongrass_Cover-Sciurus_niger 1.0931 1.0728 344
## Avg_Cogongrass_Cover-Procyon_lotor 1.0853 1.0251 733
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.2424 1.0022 931
## Avg_Cogongrass_Cover-Lynx_rufus 1.7117 1.0235 739
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0162 1.0128 860
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.9465 1.0083 478
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.3546 1.0162 386
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3628 1.0194 612
## Avg_Cogongrass_Cover-Sus_scrofa 1.1277 1.0437 534
## total_shrub_cover-Odocoileus_virginianus 0.9696 1.0268 672
## total_shrub_cover-Canis_latrans 1.4463 1.0242 531
## total_shrub_cover-Sciurus_niger 0.4917 1.0077 339
## total_shrub_cover-Procyon_lotor -0.0740 1.0149 347
## total_shrub_cover-Dasypus_novemcinctus 0.5690 1.0133 432
## total_shrub_cover-Lynx_rufus 0.3162 1.0317 317
## total_shrub_cover-Didelphis_virginiana 0.3073 1.0462 329
## total_shrub_cover-Sylvilagus_floridanus 0.2806 1.0212 214
## total_shrub_cover-Sciurus_carolinensis 0.5072 1.0200 315
## total_shrub_cover-Vulpes_vulpes 0.6356 1.0211 237
## total_shrub_cover-Sus_scrofa 0.9383 1.0126 464
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0049 0.0601 -0.1111 0.0040 0.1270
## (Intercept)-Canis_latrans -2.7591 0.1954 -3.1880 -2.7525 -2.3886
## (Intercept)-Sciurus_niger -4.1290 0.6658 -5.3899 -4.1482 -2.8331
## (Intercept)-Procyon_lotor -2.2970 0.1401 -2.5761 -2.2925 -2.0380
## (Intercept)-Dasypus_novemcinctus -1.7605 0.1726 -2.1063 -1.7530 -1.4416
## (Intercept)-Lynx_rufus -3.5673 0.3533 -4.2867 -3.5365 -2.9489
## (Intercept)-Didelphis_virginiana -2.6072 0.3119 -3.2794 -2.5805 -2.0324
## (Intercept)-Sylvilagus_floridanus -3.3009 0.3000 -3.9240 -3.2811 -2.7639
## (Intercept)-Sciurus_carolinensis -2.7235 0.3360 -3.4084 -2.7140 -2.1129
## (Intercept)-Vulpes_vulpes -4.2455 0.7612 -5.7375 -4.2318 -2.8407
## (Intercept)-Sus_scrofa -3.5092 0.5960 -4.6652 -3.4984 -2.3931
## shrub_cover-Odocoileus_virginianus -0.0519 0.0647 -0.1749 -0.0524 0.0790
## shrub_cover-Canis_latrans -0.2612 0.2325 -0.6992 -0.2610 0.1812
## shrub_cover-Sciurus_niger -0.1266 0.5019 -1.1387 -0.1199 0.8232
## shrub_cover-Procyon_lotor 0.3196 0.1577 0.0096 0.3212 0.6235
## shrub_cover-Dasypus_novemcinctus 0.9372 0.3423 0.2864 0.9229 1.6464
## shrub_cover-Lynx_rufus 0.0565 0.3831 -0.7425 0.0693 0.7648
## shrub_cover-Didelphis_virginiana 1.0741 0.4032 0.3606 1.0474 1.9380
## shrub_cover-Sylvilagus_floridanus 0.6441 0.4187 -0.1842 0.6525 1.4445
## shrub_cover-Sciurus_carolinensis 1.0079 0.4226 0.2145 1.0059 1.8149
## shrub_cover-Vulpes_vulpes 0.2628 0.5959 -0.9702 0.2838 1.4294
## shrub_cover-Sus_scrofa 0.9019 0.7524 -0.5567 0.9019 2.4508
## veg_height-Odocoileus_virginianus -0.2932 0.0641 -0.4169 -0.2944 -0.1650
## veg_height-Canis_latrans -0.5828 0.1836 -0.9638 -0.5735 -0.2425
## veg_height-Sciurus_niger -0.0391 0.3993 -0.7764 -0.0583 0.8247
## veg_height-Procyon_lotor 0.3394 0.1252 0.0958 0.3418 0.5793
## veg_height-Dasypus_novemcinctus 0.2343 0.1386 -0.0300 0.2337 0.5213
## veg_height-Lynx_rufus 0.0400 0.2403 -0.4362 0.0367 0.5169
## veg_height-Didelphis_virginiana 0.3927 0.2362 -0.0481 0.3843 0.8727
## veg_height-Sylvilagus_floridanus 0.0441 0.2410 -0.4097 0.0352 0.5223
## veg_height-Sciurus_carolinensis 0.0875 0.2200 -0.3233 0.0792 0.5601
## veg_height-Vulpes_vulpes -0.1489 0.3187 -0.7777 -0.1461 0.4579
## veg_height-Sus_scrofa -0.1648 0.3196 -0.8230 -0.1497 0.4518
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0035 1500
## (Intercept)-Canis_latrans 1.0074 675
## (Intercept)-Sciurus_niger 1.0659 154
## (Intercept)-Procyon_lotor 1.0006 1192
## (Intercept)-Dasypus_novemcinctus 1.0057 717
## (Intercept)-Lynx_rufus 1.0247 237
## (Intercept)-Didelphis_virginiana 1.0133 369
## (Intercept)-Sylvilagus_floridanus 1.0063 357
## (Intercept)-Sciurus_carolinensis 1.0082 467
## (Intercept)-Vulpes_vulpes 1.0439 152
## (Intercept)-Sus_scrofa 1.0022 264
## shrub_cover-Odocoileus_virginianus 1.0009 1500
## shrub_cover-Canis_latrans 1.0288 626
## shrub_cover-Sciurus_niger 1.0674 332
## shrub_cover-Procyon_lotor 1.0328 1075
## shrub_cover-Dasypus_novemcinctus 1.0203 401
## shrub_cover-Lynx_rufus 1.0285 307
## shrub_cover-Didelphis_virginiana 1.0179 374
## shrub_cover-Sylvilagus_floridanus 1.0383 325
## shrub_cover-Sciurus_carolinensis 1.0141 327
## shrub_cover-Vulpes_vulpes 1.0246 306
## shrub_cover-Sus_scrofa 1.0124 275
## veg_height-Odocoileus_virginianus 1.0012 1631
## veg_height-Canis_latrans 1.0028 668
## veg_height-Sciurus_niger 1.0052 442
## veg_height-Procyon_lotor 1.0014 1073
## veg_height-Dasypus_novemcinctus 1.0123 1254
## veg_height-Lynx_rufus 1.0086 808
## veg_height-Didelphis_virginiana 1.0031 1011
## veg_height-Sylvilagus_floridanus 1.0207 632
## veg_height-Sciurus_carolinensis 1.0002 784
## veg_height-Vulpes_vulpes 1.0267 581
## veg_height-Sus_scrofa 1.0008 955
#Includes cover covariate of detection and only canopy for occupancy
ms_cover_canopy <- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.cover, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.577
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0728 0.7697 -1.5408 -0.0983 1.4912 1.0661 482
## Tree_Density -0.7540 0.4172 -1.6338 -0.7386 -0.0023 1.0382 469
## Avg_Canopy_Cover 1.0826 0.3792 0.3516 1.0704 1.8904 1.0088 513
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 6.7117 5.8944 1.4911 5.1950 22.6184 1.1364 318
## Tree_Density 0.9302 1.8535 0.0482 0.3736 5.6624 1.0765 195
## Avg_Canopy_Cover 0.8099 0.9857 0.0755 0.5320 3.3712 1.0030 318
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4562 0.5258 0.0393 0.2678 1.9466 1.0166 121
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6192 0.4350 -3.4625 -2.6235 -1.7530 1.0009 1270
## shrub_cover 0.2201 0.2417 -0.2230 0.2182 0.7338 1.0032 1218
## veg_height 0.0134 0.1479 -0.2871 0.0152 0.3153 1.0014 1164
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1445 1.3021 0.7589 1.7810 6.0497 1.0681 648
## shrub_cover 0.4719 0.3806 0.0955 0.3700 1.4403 1.0485 665
## veg_height 0.1889 0.1322 0.0534 0.1537 0.5249 1.0075 1184
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.8024 1.7463 2.1689 4.5367 8.8399
## (Intercept)-Canis_latrans 0.4090 0.6421 -0.8575 0.3950 1.7457
## (Intercept)-Sciurus_niger 0.4715 1.9239 -2.1719 0.0765 5.4004
## (Intercept)-Procyon_lotor 0.8238 0.6589 -0.4212 0.8177 2.1540
## (Intercept)-Dasypus_novemcinctus -0.9724 0.6282 -2.2985 -0.9597 0.1590
## (Intercept)-Lynx_rufus 1.3160 1.6435 -1.1227 1.0300 5.5968
## (Intercept)-Didelphis_virginiana -1.7243 0.7547 -3.2098 -1.6993 -0.2618
## (Intercept)-Sylvilagus_floridanus -0.5885 0.7156 -2.0835 -0.5755 0.8526
## (Intercept)-Sciurus_carolinensis -1.8638 0.7686 -3.5146 -1.8086 -0.4478
## (Intercept)-Vulpes_vulpes -0.9040 2.0555 -3.6161 -1.3464 4.8898
## (Intercept)-Sus_scrofa -2.6127 1.0282 -4.9478 -2.5876 -0.7567
## Tree_Density-Odocoileus_virginianus -0.3261 0.7276 -1.4408 -0.4373 1.5948
## Tree_Density-Canis_latrans -0.9286 0.5851 -2.3185 -0.8560 0.0279
## Tree_Density-Sciurus_niger -0.8577 0.8841 -2.9928 -0.7595 0.7018
## Tree_Density-Procyon_lotor -0.4982 0.4037 -1.2896 -0.4993 0.2927
## Tree_Density-Dasypus_novemcinctus -1.3640 0.9090 -3.7920 -1.1528 -0.1947
## Tree_Density-Lynx_rufus 0.0235 0.8346 -1.1962 -0.1157 2.1612
## Tree_Density-Didelphis_virginiana -1.0461 0.7860 -3.0420 -0.9238 0.0575
## Tree_Density-Sylvilagus_floridanus -1.0468 0.7466 -2.9587 -0.9296 0.1107
## Tree_Density-Sciurus_carolinensis -0.9649 0.8097 -3.0636 -0.8500 0.2611
## Tree_Density-Vulpes_vulpes -0.6038 1.0386 -2.4656 -0.6688 1.4693
## Tree_Density-Sus_scrofa -1.0284 0.9419 -3.3775 -0.8730 0.3121
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8198 0.7794 -0.7142 0.8246 2.3460
## Avg_Canopy_Cover-Canis_latrans 0.0104 0.4843 -0.9198 0.0104 0.9210
## Avg_Canopy_Cover-Sciurus_niger 1.0420 0.9478 -0.9114 1.0164 2.8765
## Avg_Canopy_Cover-Procyon_lotor 1.0891 0.4749 0.2317 1.0561 2.0755
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0770 0.4459 0.2378 1.0585 2.0090
## Avg_Canopy_Cover-Lynx_rufus 0.9888 0.7915 -0.4962 0.9689 2.7160
## Avg_Canopy_Cover-Didelphis_virginiana 1.4563 0.5986 0.5177 1.3623 2.8502
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.9570 0.8677 0.6665 1.8143 4.0981
## Avg_Canopy_Cover-Sciurus_carolinensis 1.4023 0.5588 0.4572 1.3612 2.6792
## Avg_Canopy_Cover-Vulpes_vulpes 1.1549 0.6923 -0.0419 1.1157 2.5997
## Avg_Canopy_Cover-Sus_scrofa 1.3451 0.6137 0.3368 1.2791 2.7553
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0890 255
## (Intercept)-Canis_latrans 1.0013 1027
## (Intercept)-Sciurus_niger 1.0377 117
## (Intercept)-Procyon_lotor 1.0011 668
## (Intercept)-Dasypus_novemcinctus 1.0013 853
## (Intercept)-Lynx_rufus 1.0829 135
## (Intercept)-Didelphis_virginiana 1.0081 884
## (Intercept)-Sylvilagus_floridanus 1.0054 993
## (Intercept)-Sciurus_carolinensis 1.0087 643
## (Intercept)-Vulpes_vulpes 1.4919 74
## (Intercept)-Sus_scrofa 1.0462 536
## Tree_Density-Odocoileus_virginianus 1.0234 461
## Tree_Density-Canis_latrans 1.0354 853
## Tree_Density-Sciurus_niger 1.0168 326
## Tree_Density-Procyon_lotor 1.0083 1086
## Tree_Density-Dasypus_novemcinctus 1.0132 269
## Tree_Density-Lynx_rufus 1.0142 296
## Tree_Density-Didelphis_virginiana 1.0340 460
## Tree_Density-Sylvilagus_floridanus 1.0166 347
## Tree_Density-Sciurus_carolinensis 1.0468 491
## Tree_Density-Vulpes_vulpes 1.0419 251
## Tree_Density-Sus_scrofa 1.1826 394
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0076 874
## Avg_Canopy_Cover-Canis_latrans 1.0027 680
## Avg_Canopy_Cover-Sciurus_niger 1.0284 379
## Avg_Canopy_Cover-Procyon_lotor 1.0017 1058
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0112 935
## Avg_Canopy_Cover-Lynx_rufus 1.0307 317
## Avg_Canopy_Cover-Didelphis_virginiana 1.0026 708
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0002 433
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0076 674
## Avg_Canopy_Cover-Vulpes_vulpes 1.0356 556
## Avg_Canopy_Cover-Sus_scrofa 1.0091 730
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0011 0.0607 -0.1206 0.0011 0.1196
## (Intercept)-Canis_latrans -2.7579 0.1893 -3.1434 -2.7539 -2.3946
## (Intercept)-Sciurus_niger -4.4491 0.6341 -5.6398 -4.4971 -3.2270
## (Intercept)-Procyon_lotor -2.2899 0.1424 -2.5833 -2.2848 -2.0274
## (Intercept)-Dasypus_novemcinctus -1.7190 0.1556 -2.0313 -1.7153 -1.4277
## (Intercept)-Lynx_rufus -3.9044 0.3848 -4.6361 -3.9140 -3.1434
## (Intercept)-Didelphis_virginiana -2.5366 0.2795 -3.1004 -2.5221 -1.9996
## (Intercept)-Sylvilagus_floridanus -3.1424 0.2684 -3.6829 -3.1360 -2.6489
## (Intercept)-Sciurus_carolinensis -2.6056 0.3078 -3.2191 -2.5944 -2.0312
## (Intercept)-Vulpes_vulpes -4.3122 0.8225 -5.9265 -4.2217 -2.9158
## (Intercept)-Sus_scrofa -3.1641 0.5923 -4.4444 -3.1194 -2.0617
## shrub_cover-Odocoileus_virginianus -0.0535 0.0635 -0.1753 -0.0535 0.0677
## shrub_cover-Canis_latrans -0.2901 0.2175 -0.7134 -0.2885 0.1308
## shrub_cover-Sciurus_niger -0.3744 0.4362 -1.2910 -0.3467 0.4053
## shrub_cover-Procyon_lotor 0.2524 0.1617 -0.0749 0.2529 0.5634
## shrub_cover-Dasypus_novemcinctus 0.8141 0.2958 0.2552 0.8130 1.3995
## shrub_cover-Lynx_rufus -0.3093 0.3168 -0.9463 -0.2986 0.2872
## shrub_cover-Didelphis_virginiana 0.9072 0.3520 0.2678 0.8988 1.6092
## shrub_cover-Sylvilagus_floridanus 0.3701 0.3782 -0.3585 0.3729 1.0888
## shrub_cover-Sciurus_carolinensis 0.7930 0.3860 0.0633 0.7963 1.5748
## shrub_cover-Vulpes_vulpes -0.0424 0.5103 -1.0728 -0.0360 0.9601
## shrub_cover-Sus_scrofa 0.4794 0.7192 -0.8486 0.4451 2.0284
## veg_height-Odocoileus_virginianus -0.2943 0.0663 -0.4283 -0.2948 -0.1594
## veg_height-Canis_latrans -0.5842 0.1769 -0.9475 -0.5833 -0.2450
## veg_height-Sciurus_niger -0.0509 0.3393 -0.7183 -0.0493 0.6066
## veg_height-Procyon_lotor 0.3345 0.1197 0.0937 0.3354 0.5514
## veg_height-Dasypus_novemcinctus 0.2309 0.1351 -0.0255 0.2309 0.4998
## veg_height-Lynx_rufus 0.0936 0.2320 -0.3812 0.0942 0.5438
## veg_height-Didelphis_virginiana 0.4189 0.2262 0.0062 0.4102 0.8770
## veg_height-Sylvilagus_floridanus 0.1379 0.2297 -0.3334 0.1398 0.5779
## veg_height-Sciurus_carolinensis 0.0784 0.2078 -0.3167 0.0823 0.4999
## veg_height-Vulpes_vulpes -0.1076 0.3287 -0.7915 -0.0983 0.5235
## veg_height-Sus_scrofa -0.1142 0.3359 -0.7867 -0.1076 0.5045
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0021 1217
## (Intercept)-Canis_latrans 1.0209 576
## (Intercept)-Sciurus_niger 1.0202 106
## (Intercept)-Procyon_lotor 1.0064 1140
## (Intercept)-Dasypus_novemcinctus 0.9994 961
## (Intercept)-Lynx_rufus 1.1099 191
## (Intercept)-Didelphis_virginiana 1.0061 811
## (Intercept)-Sylvilagus_floridanus 1.0031 617
## (Intercept)-Sciurus_carolinensis 1.0015 657
## (Intercept)-Vulpes_vulpes 1.1257 82
## (Intercept)-Sus_scrofa 1.0079 588
## shrub_cover-Odocoileus_virginianus 1.0018 1500
## shrub_cover-Canis_latrans 1.0038 782
## shrub_cover-Sciurus_niger 1.0129 290
## shrub_cover-Procyon_lotor 1.0024 1024
## shrub_cover-Dasypus_novemcinctus 1.0103 952
## shrub_cover-Lynx_rufus 1.0375 451
## shrub_cover-Didelphis_virginiana 1.0119 739
## shrub_cover-Sylvilagus_floridanus 0.9997 572
## shrub_cover-Sciurus_carolinensis 1.0258 748
## shrub_cover-Vulpes_vulpes 1.0172 444
## shrub_cover-Sus_scrofa 1.0140 725
## veg_height-Odocoileus_virginianus 1.0051 1561
## veg_height-Canis_latrans 1.0141 869
## veg_height-Sciurus_niger 0.9997 548
## veg_height-Procyon_lotor 1.0023 1129
## veg_height-Dasypus_novemcinctus 1.0021 1500
## veg_height-Lynx_rufus 1.0031 634
## veg_height-Didelphis_virginiana 1.0007 970
## veg_height-Sylvilagus_floridanus 1.0065 889
## veg_height-Sciurus_carolinensis 1.0016 885
## veg_height-Vulpes_vulpes 1.0046 499
## veg_height-Sus_scrofa 1.0417 1074
# Includes cover covariate of detection and quadratic cogongrass cover for occupancy
ms_cover_cogonQ <- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.cover,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.5455
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9383 0.6129 -2.2034 -0.9369 0.2851 1.0050 1134
## Avg_Cogongrass_Cover -0.7868 0.3878 -1.5576 -0.7785 -0.0299 1.0029 426
## I(Avg_Cogongrass_Cover^2) 0.8814 0.3333 0.3198 0.8503 1.6129 1.0130 363
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.6398 3.0579 0.6858 2.7965 10.9895 1.0174 521
## Avg_Cogongrass_Cover 0.4344 0.6177 0.0419 0.2550 2.0212 1.0789 348
## I(Avg_Cogongrass_Cover^2) 0.4590 0.7030 0.0394 0.2371 2.2062 1.0114 316
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4793 0.4973 0.0489 0.3225 1.8375 1.2566 103
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.5759 0.4229 -3.3835 -2.5874 -1.7308 1.0021 1246
## shrub_cover 0.2190 0.2476 -0.2630 0.2173 0.7386 1.0054 997
## veg_height 0.0203 0.1560 -0.2929 0.0245 0.3400 1.0065 958
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 1.8914 1.1912 0.6457 1.6170 4.8597 1.0342 715
## shrub_cover 0.4407 0.3646 0.0815 0.3395 1.4322 1.0060 457
## veg_height 0.1879 0.1456 0.0520 0.1552 0.4733 1.0218 1232
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.8101 1.2978 0.5654 2.7205
## (Intercept)-Canis_latrans -0.4832 0.6626 -1.7856 -0.5063
## (Intercept)-Sciurus_niger -0.8418 1.1337 -2.7003 -0.9704
## (Intercept)-Procyon_lotor -0.1404 0.6262 -1.3727 -0.1172
## (Intercept)-Dasypus_novemcinctus -1.3574 0.6252 -2.6298 -1.3423
## (Intercept)-Lynx_rufus -1.0819 0.9118 -2.8134 -1.1039
## (Intercept)-Didelphis_virginiana -1.8832 0.7400 -3.4544 -1.8581
## (Intercept)-Sylvilagus_floridanus -1.0749 0.7380 -2.5472 -1.0736
## (Intercept)-Sciurus_carolinensis -2.3828 0.7835 -3.9973 -2.3685
## (Intercept)-Vulpes_vulpes -2.1506 1.1936 -4.3664 -2.1879
## (Intercept)-Sus_scrofa -2.4091 0.8968 -4.2403 -2.3953
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7492 0.6426 -1.9600 -0.7588
## Avg_Cogongrass_Cover-Canis_latrans -0.4050 0.5488 -1.3775 -0.4325
## Avg_Cogongrass_Cover-Sciurus_niger -1.0882 0.7335 -2.7268 -1.0313
## Avg_Cogongrass_Cover-Procyon_lotor -0.7101 0.5163 -1.7300 -0.6939
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5690 0.4870 -1.5366 -0.5583
## Avg_Cogongrass_Cover-Lynx_rufus -0.7176 0.5814 -1.8715 -0.7051
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.5544 0.5421 -1.5566 -0.5626
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.2429 0.6589 -2.7248 -1.1614
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8406 0.5357 -1.9098 -0.8050
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8231 0.6340 -2.1194 -0.8031
## Avg_Cogongrass_Cover-Sus_scrofa -1.0557 0.6805 -2.6645 -0.9985
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.1754 0.6932 0.1409 1.0651
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.2669 0.7160 0.2983 1.0974
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.4042 0.6893 -1.1783 0.4482
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.0515 0.5416 0.2394 0.9711
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7816 0.3698 0.1149 0.7742
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.2164 0.5401 0.3482 1.1354
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.6571 0.4352 -0.1260 0.6369
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.7736 0.4547 0.0140 0.7267
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.0093 0.4098 0.2594 0.9654
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.0069 0.5416 0.1567 0.9308
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.4758 0.5944 -0.8712 0.5251
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 5.7659 1.0067 459
## (Intercept)-Canis_latrans 0.8275 1.0038 765
## (Intercept)-Sciurus_niger 1.7515 1.0064 237
## (Intercept)-Procyon_lotor 1.0557 1.0042 1106
## (Intercept)-Dasypus_novemcinctus -0.1610 1.0021 958
## (Intercept)-Lynx_rufus 0.8298 1.0191 447
## (Intercept)-Didelphis_virginiana -0.5311 1.0126 1309
## (Intercept)-Sylvilagus_floridanus 0.3661 1.0040 823
## (Intercept)-Sciurus_carolinensis -0.9062 1.0065 649
## (Intercept)-Vulpes_vulpes 0.5087 1.0171 201
## (Intercept)-Sus_scrofa -0.6850 1.0005 692
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5763 1.0019 734
## Avg_Cogongrass_Cover-Canis_latrans 0.7959 1.0048 775
## Avg_Cogongrass_Cover-Sciurus_niger 0.1956 1.0190 508
## Avg_Cogongrass_Cover-Procyon_lotor 0.2871 1.0000 758
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4363 1.0046 815
## Avg_Cogongrass_Cover-Lynx_rufus 0.3766 1.0098 655
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5822 1.0009 861
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1532 1.0009 399
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1237 1.0039 611
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3930 1.0178 546
## Avg_Cogongrass_Cover-Sus_scrofa 0.0918 1.0028 548
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 2.9485 1.0067 328
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 3.1505 1.0036 303
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.6628 1.0224 281
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.3490 1.0122 562
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5544 1.0059 680
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.4936 1.0014 486
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.6377 1.0063 514
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.8099 1.0054 529
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.9316 1.0176 574
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.3455 1.0483 384
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.5068 1.0015 571
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0045 0.0607 -0.1135 0.0045 0.1160
## (Intercept)-Canis_latrans -2.7454 0.1915 -3.1469 -2.7399 -2.3831
## (Intercept)-Sciurus_niger -4.1399 0.6627 -5.5475 -4.1135 -2.9344
## (Intercept)-Procyon_lotor -2.3124 0.1459 -2.6239 -2.3113 -2.0464
## (Intercept)-Dasypus_novemcinctus -1.7158 0.1570 -2.0303 -1.7154 -1.4261
## (Intercept)-Lynx_rufus -3.5400 0.3521 -4.2401 -3.5328 -2.8484
## (Intercept)-Didelphis_virginiana -2.5508 0.2891 -3.1514 -2.5396 -2.0181
## (Intercept)-Sylvilagus_floridanus -3.1927 0.3125 -3.8233 -3.1889 -2.6297
## (Intercept)-Sciurus_carolinensis -2.5626 0.2962 -3.1897 -2.5508 -2.0160
## (Intercept)-Vulpes_vulpes -4.0813 0.7742 -5.7457 -4.0316 -2.7484
## (Intercept)-Sus_scrofa -3.2016 0.5941 -4.4665 -3.1655 -2.1087
## shrub_cover-Odocoileus_virginianus -0.0556 0.0663 -0.1820 -0.0556 0.0694
## shrub_cover-Canis_latrans -0.2387 0.2141 -0.6800 -0.2299 0.1810
## shrub_cover-Sciurus_niger -0.3241 0.4534 -1.2457 -0.3083 0.5887
## shrub_cover-Procyon_lotor 0.2247 0.1675 -0.1010 0.2311 0.5315
## shrub_cover-Dasypus_novemcinctus 0.7805 0.2900 0.2509 0.7716 1.3566
## shrub_cover-Lynx_rufus -0.1902 0.3344 -0.8123 -0.1969 0.4770
## shrub_cover-Didelphis_virginiana 0.9120 0.3848 0.2247 0.8928 1.7632
## shrub_cover-Sylvilagus_floridanus 0.2158 0.3869 -0.5191 0.2117 1.0281
## shrub_cover-Sciurus_carolinensis 0.7142 0.3844 0.0182 0.6900 1.5339
## shrub_cover-Vulpes_vulpes -0.0115 0.5274 -1.0839 0.0108 1.0293
## shrub_cover-Sus_scrofa 0.4676 0.6972 -0.8601 0.4335 1.9211
## veg_height-Odocoileus_virginianus -0.2928 0.0634 -0.4151 -0.2941 -0.1658
## veg_height-Canis_latrans -0.5650 0.1814 -0.9220 -0.5549 -0.2115
## veg_height-Sciurus_niger 0.0305 0.3843 -0.7041 0.0281 0.8245
## veg_height-Procyon_lotor 0.3358 0.1273 0.0842 0.3377 0.5795
## veg_height-Dasypus_novemcinctus 0.2318 0.1347 -0.0215 0.2261 0.4912
## veg_height-Lynx_rufus 0.0794 0.2277 -0.3536 0.0764 0.5293
## veg_height-Didelphis_virginiana 0.3936 0.2526 -0.0600 0.3869 0.9175
## veg_height-Sylvilagus_floridanus 0.1637 0.2465 -0.3370 0.1615 0.6518
## veg_height-Sciurus_carolinensis 0.0620 0.1970 -0.3211 0.0624 0.4538
## veg_height-Vulpes_vulpes -0.0958 0.2980 -0.6954 -0.0890 0.4481
## veg_height-Sus_scrofa -0.0855 0.3275 -0.7851 -0.0713 0.5227
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0070 1500
## (Intercept)-Canis_latrans 1.0032 735
## (Intercept)-Sciurus_niger 1.0316 126
## (Intercept)-Procyon_lotor 1.0240 760
## (Intercept)-Dasypus_novemcinctus 1.0097 1248
## (Intercept)-Lynx_rufus 1.0344 350
## (Intercept)-Didelphis_virginiana 1.0011 565
## (Intercept)-Sylvilagus_floridanus 1.0150 409
## (Intercept)-Sciurus_carolinensis 1.0133 752
## (Intercept)-Vulpes_vulpes 1.0141 161
## (Intercept)-Sus_scrofa 1.0050 420
## shrub_cover-Odocoileus_virginianus 1.0015 1500
## shrub_cover-Canis_latrans 1.0525 786
## shrub_cover-Sciurus_niger 1.0010 314
## shrub_cover-Procyon_lotor 1.0164 1082
## shrub_cover-Dasypus_novemcinctus 1.0088 1070
## shrub_cover-Lynx_rufus 1.0057 441
## shrub_cover-Didelphis_virginiana 1.0000 497
## shrub_cover-Sylvilagus_floridanus 1.0001 543
## shrub_cover-Sciurus_carolinensis 1.0069 856
## shrub_cover-Vulpes_vulpes 1.0092 552
## shrub_cover-Sus_scrofa 1.0132 600
## veg_height-Odocoileus_virginianus 0.9997 1500
## veg_height-Canis_latrans 1.0112 720
## veg_height-Sciurus_niger 1.0085 584
## veg_height-Procyon_lotor 1.0006 1138
## veg_height-Dasypus_novemcinctus 1.0072 1342
## veg_height-Lynx_rufus 1.0133 806
## veg_height-Didelphis_virginiana 1.0136 660
## veg_height-Sylvilagus_floridanus 1.0084 715
## veg_height-Sciurus_carolinensis 1.0136 889
## veg_height-Vulpes_vulpes 1.0159 597
## veg_height-Sus_scrofa 1.0089 1007
# Includes cover covariate of detection and all covariates and quadratic cogongrass cover for occupancy
ms_cover_fullQ <- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.cover,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_cover_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.cover,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6125
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.8905 1.1301 -2.9768 -0.9481 1.5335 1.0168 575
## Cogon_Patch_Size 0.0812 0.6842 -1.3442 0.1020 1.3145 1.0010 200
## Veg_shannon_index 1.3730 0.6506 0.2522 1.3321 2.7458 1.0053 226
## total_shrub_cover -0.4242 0.4542 -1.3780 -0.4107 0.4486 1.0305 264
## Avg_Cogongrass_Cover 0.4565 0.9910 -1.5413 0.4531 2.4512 1.0106 122
## Tree_Density -1.8492 0.8268 -3.4520 -1.8216 -0.2277 1.1731 187
## Avg_Canopy_Cover 1.9547 0.6689 0.6658 1.9274 3.2916 1.0336 438
## I(Avg_Cogongrass_Cover^2) 1.5910 0.5863 0.4955 1.5789 2.8254 1.0329 133
## avg_veg_height -0.1899 0.4836 -1.1242 -0.1932 0.7355 1.0594 228
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 22.4090 20.6909 4.2337 16.5394 77.0637 1.3165 73
## Cogon_Patch_Size 2.9851 4.1998 0.1188 1.6435 14.1971 1.0247 234
## Veg_shannon_index 1.6392 3.2504 0.0524 0.6243 9.7325 1.0455 161
## total_shrub_cover 0.7321 0.9303 0.0602 0.4237 3.2460 1.0399 406
## Avg_Cogongrass_Cover 1.1660 2.4411 0.0498 0.4894 6.3288 1.1013 463
## Tree_Density 3.4235 5.3881 0.0780 1.5428 20.1601 1.0397 112
## Avg_Canopy_Cover 3.0185 4.5218 0.1831 1.8871 12.2579 1.1670 94
## I(Avg_Cogongrass_Cover^2) 1.0500 1.8401 0.0533 0.4308 5.8366 1.8572 141
## avg_veg_height 0.4696 0.5961 0.0409 0.2663 2.1065 1.0389 549
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.0021 1.3358 0.0498 0.4805 4.8951 1.1073 106
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6228 0.4443 -3.4668 -2.6382 -1.6951 1.0035 1500
## shrub_cover 0.2956 0.2522 -0.1963 0.2988 0.7740 1.0103 527
## veg_height 0.0200 0.1579 -0.2846 0.0211 0.3414 1.0024 510
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2526 1.4453 0.7751 1.8908 5.4698 1.0497 601
## shrub_cover 0.4972 0.3748 0.1086 0.3912 1.4552 1.0177 561
## veg_height 0.1928 0.1316 0.0569 0.1573 0.5449 1.0046 1172
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 7.7297 3.7215 2.8148
## (Intercept)-Canis_latrans -0.9757 1.1840 -3.3173
## (Intercept)-Sciurus_niger 0.7934 2.4933 -3.0205
## (Intercept)-Procyon_lotor -0.2100 1.0711 -2.2684
## (Intercept)-Dasypus_novemcinctus -2.5034 1.0938 -4.8951
## (Intercept)-Lynx_rufus 0.9670 3.3248 -3.2757
## (Intercept)-Didelphis_virginiana -4.1419 1.4721 -7.1998
## (Intercept)-Sylvilagus_floridanus -2.3385 1.4561 -5.3190
## (Intercept)-Sciurus_carolinensis -4.6121 1.5102 -7.8799
## (Intercept)-Vulpes_vulpes -4.4567 2.3057 -8.8191
## (Intercept)-Sus_scrofa -5.8217 2.1746 -10.6216
## Cogon_Patch_Size-Odocoileus_virginianus 0.2149 1.4056 -2.2311
## Cogon_Patch_Size-Canis_latrans 1.7714 1.4682 -0.1372
## Cogon_Patch_Size-Sciurus_niger -0.6675 1.7723 -4.9218
## Cogon_Patch_Size-Procyon_lotor -0.0855 0.7248 -1.5152
## Cogon_Patch_Size-Dasypus_novemcinctus 0.1871 0.7179 -1.2513
## Cogon_Patch_Size-Lynx_rufus 0.0033 1.4208 -2.6863
## Cogon_Patch_Size-Didelphis_virginiana 1.7822 0.9647 0.0432
## Cogon_Patch_Size-Sylvilagus_floridanus -0.8658 1.5360 -4.5895
## Cogon_Patch_Size-Sciurus_carolinensis -0.8261 1.3060 -3.9354
## Cogon_Patch_Size-Vulpes_vulpes -0.5230 1.5855 -4.2813
## Cogon_Patch_Size-Sus_scrofa -0.2479 1.4045 -3.5179
## Veg_shannon_index-Odocoileus_virginianus 1.1732 1.2097 -1.7225
## Veg_shannon_index-Canis_latrans 1.6727 0.8961 0.1404
## Veg_shannon_index-Sciurus_niger 1.9249 1.7822 -0.6822
## Veg_shannon_index-Procyon_lotor 1.4506 0.8205 0.0345
## Veg_shannon_index-Dasypus_novemcinctus 0.9222 0.7824 -0.7681
## Veg_shannon_index-Lynx_rufus 1.3694 1.3273 -1.1047
## Veg_shannon_index-Didelphis_virginiana 1.3417 0.9159 -0.4778
## Veg_shannon_index-Sylvilagus_floridanus 1.8517 1.1208 0.1428
## Veg_shannon_index-Sciurus_carolinensis 0.8571 0.9537 -1.3851
## Veg_shannon_index-Vulpes_vulpes 1.0029 1.1818 -1.6886
## Veg_shannon_index-Sus_scrofa 2.3488 1.4569 0.3607
## total_shrub_cover-Odocoileus_virginianus -0.2080 0.7837 -1.7396
## total_shrub_cover-Canis_latrans 0.0994 0.6370 -1.0445
## total_shrub_cover-Sciurus_niger -0.6005 0.8974 -2.5689
## total_shrub_cover-Procyon_lotor -0.9349 0.6260 -2.3819
## total_shrub_cover-Dasypus_novemcinctus -0.1954 0.6220 -1.4453
## total_shrub_cover-Lynx_rufus -0.6730 0.9416 -2.8292
## total_shrub_cover-Didelphis_virginiana -0.5940 0.7183 -2.1791
## total_shrub_cover-Sylvilagus_floridanus -0.4948 0.8099 -2.3301
## total_shrub_cover-Sciurus_carolinensis -0.3697 0.7760 -2.0707
## total_shrub_cover-Vulpes_vulpes -0.5734 0.8686 -2.4547
## total_shrub_cover-Sus_scrofa -0.2173 0.8336 -1.8333
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.3738 1.3408 -2.3937
## Avg_Cogongrass_Cover-Canis_latrans 0.6563 1.2109 -1.7403
## Avg_Cogongrass_Cover-Sciurus_niger 0.0417 1.5361 -3.3611
## Avg_Cogongrass_Cover-Procyon_lotor 0.6016 1.2027 -1.7630
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0403 1.3194 -1.4126
## Avg_Cogongrass_Cover-Lynx_rufus 0.4992 1.3185 -2.1231
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5795 1.2401 -1.8849
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.0361 1.3736 -2.9540
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4498 1.2516 -2.1509
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.5669 1.2933 -2.0595
## Avg_Cogongrass_Cover-Sus_scrofa 0.2534 1.3907 -2.6856
## Tree_Density-Odocoileus_virginianus -0.9400 1.2665 -3.0900
## Tree_Density-Canis_latrans -2.5951 1.2847 -5.7249
## Tree_Density-Sciurus_niger -1.6249 1.5740 -4.7762
## Tree_Density-Procyon_lotor -1.7576 0.9758 -3.6842
## Tree_Density-Dasypus_novemcinctus -3.7364 1.9669 -8.8345
## Tree_Density-Lynx_rufus -0.6697 1.8054 -3.3928
## Tree_Density-Didelphis_virginiana -2.1992 1.3397 -5.1615
## Tree_Density-Sylvilagus_floridanus -2.4611 1.5554 -6.2358
## Tree_Density-Sciurus_carolinensis -2.5881 1.6704 -6.6937
## Tree_Density-Vulpes_vulpes -1.8512 1.6642 -5.4202
## Tree_Density-Sus_scrofa -2.2970 1.7277 -6.3753
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3229 1.4797 -1.5963
## Avg_Canopy_Cover-Canis_latrans 0.0975 0.7141 -1.2584
## Avg_Canopy_Cover-Sciurus_niger 2.5760 1.7399 -0.3032
## Avg_Canopy_Cover-Procyon_lotor 1.5978 0.8354 0.0748
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.1133 0.7977 0.7342
## Avg_Canopy_Cover-Lynx_rufus 1.6973 1.5298 -0.8527
## Avg_Canopy_Cover-Didelphis_virginiana 3.0566 1.2823 1.2241
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.8205 1.9520 1.2577
## Avg_Canopy_Cover-Sciurus_carolinensis 2.8107 1.2144 1.0741
## Avg_Canopy_Cover-Vulpes_vulpes 2.5719 1.6052 0.4484
## Avg_Canopy_Cover-Sus_scrofa 2.1079 0.9663 0.5021
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.8972 1.2003 0.1115
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.0402 0.9888 0.5268
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.1302 1.1980 -1.6481
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.9933 0.9866 0.5171
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4825 0.7553 0.1460
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.1456 1.1745 0.4977
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2267 0.7335 -0.1729
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.4090 0.8332 -0.0320
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7563 0.7972 0.4481
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.8853 0.9998 0.3797
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.1812 1.0552 -1.1754
## avg_veg_height-Odocoileus_virginianus -0.1813 0.7631 -1.7732
## avg_veg_height-Canis_latrans -0.2977 0.6121 -1.5340
## avg_veg_height-Sciurus_niger -0.3083 0.7901 -1.9325
## avg_veg_height-Procyon_lotor -0.0315 0.6457 -1.3586
## avg_veg_height-Dasypus_novemcinctus 0.1302 0.6202 -1.0280
## avg_veg_height-Lynx_rufus -0.3759 0.8376 -2.2214
## avg_veg_height-Didelphis_virginiana -0.3825 0.7222 -1.9109
## avg_veg_height-Sylvilagus_floridanus -0.2313 0.6904 -1.7100
## avg_veg_height-Sciurus_carolinensis 0.0948 0.6887 -1.1824
## avg_veg_height-Vulpes_vulpes -0.3248 0.8087 -1.9618
## avg_veg_height-Sus_scrofa -0.1903 0.7027 -1.6263
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.9234 16.4995 1.2269 108
## (Intercept)-Canis_latrans -0.9978 1.4963 1.0128 488
## (Intercept)-Sciurus_niger 0.3493 6.9552 1.1411 58
## (Intercept)-Procyon_lotor -0.2255 2.0150 1.0137 471
## (Intercept)-Dasypus_novemcinctus -2.3783 -0.6235 1.0104 427
## (Intercept)-Lynx_rufus 0.2545 10.2904 1.2510 55
## (Intercept)-Didelphis_virginiana -3.9851 -1.4572 1.0189 326
## (Intercept)-Sylvilagus_floridanus -2.2843 0.4372 1.0342 342
## (Intercept)-Sciurus_carolinensis -4.4625 -2.0054 1.0608 191
## (Intercept)-Vulpes_vulpes -4.5094 0.4292 1.0545 140
## (Intercept)-Sus_scrofa -5.5750 -2.1883 1.1177 163
## Cogon_Patch_Size-Odocoileus_virginianus 0.1223 3.1818 1.0257 337
## Cogon_Patch_Size-Canis_latrans 1.5049 5.3372 1.0267 328
## Cogon_Patch_Size-Sciurus_niger -0.3915 2.2829 1.0015 195
## Cogon_Patch_Size-Procyon_lotor -0.0792 1.2514 1.0137 452
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2111 1.6274 1.0096 558
## Cogon_Patch_Size-Lynx_rufus -0.0411 3.1997 1.0186 220
## Cogon_Patch_Size-Didelphis_virginiana 1.7348 3.8087 1.0188 328
## Cogon_Patch_Size-Sylvilagus_floridanus -0.5833 1.2909 1.0230 345
## Cogon_Patch_Size-Sciurus_carolinensis -0.5886 1.0687 1.0099 417
## Cogon_Patch_Size-Vulpes_vulpes -0.3354 2.0157 1.0071 283
## Cogon_Patch_Size-Sus_scrofa -0.0627 1.9449 1.0231 351
## Veg_shannon_index-Odocoileus_virginianus 1.1951 3.4831 1.0200 470
## Veg_shannon_index-Canis_latrans 1.5838 3.7479 1.0057 312
## Veg_shannon_index-Sciurus_niger 1.6416 6.2592 1.0079 154
## Veg_shannon_index-Procyon_lotor 1.3830 3.1753 1.0120 358
## Veg_shannon_index-Dasypus_novemcinctus 0.9293 2.3925 1.0051 499
## Veg_shannon_index-Lynx_rufus 1.2772 4.5199 1.0293 212
## Veg_shannon_index-Didelphis_virginiana 1.3114 3.2616 1.0008 542
## Veg_shannon_index-Sylvilagus_floridanus 1.6939 4.4623 1.0144 216
## Veg_shannon_index-Sciurus_carolinensis 0.9415 2.5684 1.0134 380
## Veg_shannon_index-Vulpes_vulpes 1.0808 3.1735 1.0164 464
## Veg_shannon_index-Sus_scrofa 2.0679 6.4134 1.0246 169
## total_shrub_cover-Odocoileus_virginianus -0.2270 1.4630 1.0120 621
## total_shrub_cover-Canis_latrans 0.0458 1.4644 1.0116 346
## total_shrub_cover-Sciurus_niger -0.5256 0.9499 1.0096 329
## total_shrub_cover-Procyon_lotor -0.8514 0.0916 1.0402 507
## total_shrub_cover-Dasypus_novemcinctus -0.1719 0.9540 1.0074 580
## total_shrub_cover-Lynx_rufus -0.6096 1.0192 1.0543 208
## total_shrub_cover-Didelphis_virginiana -0.5687 0.6617 1.0042 661
## total_shrub_cover-Sylvilagus_floridanus -0.4710 1.0282 1.0193 564
## total_shrub_cover-Sciurus_carolinensis -0.3376 1.0428 1.0040 555
## total_shrub_cover-Vulpes_vulpes -0.5353 1.0948 1.0387 449
## total_shrub_cover-Sus_scrofa -0.2274 1.4476 1.0058 492
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.4187 3.0416 0.9996 258
## Avg_Cogongrass_Cover-Canis_latrans 0.6791 3.0263 1.0077 162
## Avg_Cogongrass_Cover-Sciurus_niger 0.1457 2.5013 1.0212 213
## Avg_Cogongrass_Cover-Procyon_lotor 0.6466 2.8814 1.0035 146
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9441 3.8240 1.0172 160
## Avg_Cogongrass_Cover-Lynx_rufus 0.5348 3.0603 1.0082 163
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5478 3.1355 1.0075 165
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.1544 2.4574 1.0004 204
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.5098 2.8342 1.0231 195
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.5712 3.1877 1.0008 200
## Avg_Cogongrass_Cover-Sus_scrofa 0.3429 2.6320 1.0101 181
## Tree_Density-Odocoileus_virginianus -1.0615 1.9341 1.0902 147
## Tree_Density-Canis_latrans -2.4139 -0.5586 1.0762 288
## Tree_Density-Sciurus_niger -1.6974 1.9264 1.2609 206
## Tree_Density-Procyon_lotor -1.7209 0.0878 1.0868 368
## Tree_Density-Dasypus_novemcinctus -3.2796 -1.1515 1.0646 163
## Tree_Density-Lynx_rufus -0.9320 3.7017 1.0555 145
## Tree_Density-Didelphis_virginiana -2.0621 0.2115 1.0379 424
## Tree_Density-Sylvilagus_floridanus -2.2655 -0.0104 1.1445 228
## Tree_Density-Sciurus_carolinensis -2.3068 -0.0270 1.0663 263
## Tree_Density-Vulpes_vulpes -1.8613 1.7618 1.1593 208
## Tree_Density-Sus_scrofa -2.0938 0.5653 1.1002 339
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3400 4.1838 1.0230 451
## Avg_Canopy_Cover-Canis_latrans 0.0675 1.5243 1.0458 371
## Avg_Canopy_Cover-Sciurus_niger 2.3547 6.4272 1.1951 262
## Avg_Canopy_Cover-Procyon_lotor 1.5333 3.3120 1.0054 594
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0414 3.8287 1.0308 386
## Avg_Canopy_Cover-Lynx_rufus 1.5898 5.3377 1.0240 197
## Avg_Canopy_Cover-Didelphis_virginiana 2.7941 6.1536 1.0141 290
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.4424 8.3815 1.0464 111
## Avg_Canopy_Cover-Sciurus_carolinensis 2.6191 5.7212 1.0264 266
## Avg_Canopy_Cover-Vulpes_vulpes 2.3110 6.0993 1.0666 98
## Avg_Canopy_Cover-Sus_scrofa 2.0155 4.3647 1.0670 364
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.7061 4.9989 1.1170 155
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.8886 4.4808 1.1085 198
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.2453 3.2719 1.1747 151
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.8657 4.4570 1.1105 167
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4085 3.1617 1.0024 256
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.9313 5.2584 1.2322 115
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2039 2.6603 1.0143 204
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3306 3.2158 1.0671 209
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6846 3.6100 1.0212 319
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.7255 4.1257 1.1592 184
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.2539 3.0215 1.0626 277
## avg_veg_height-Odocoileus_virginianus -0.1595 1.2606 1.0713 450
## avg_veg_height-Canis_latrans -0.3091 0.8879 1.0496 276
## avg_veg_height-Sciurus_niger -0.2598 1.0512 1.0583 271
## avg_veg_height-Procyon_lotor -0.0217 1.2000 1.0343 187
## avg_veg_height-Dasypus_novemcinctus 0.1124 1.4357 1.0112 373
## avg_veg_height-Lynx_rufus -0.3143 1.1128 1.0239 338
## avg_veg_height-Didelphis_virginiana -0.3344 0.9040 1.0438 305
## avg_veg_height-Sylvilagus_floridanus -0.2488 1.0936 1.0226 362
## avg_veg_height-Sciurus_carolinensis 0.0722 1.5553 1.0055 556
## avg_veg_height-Vulpes_vulpes -0.2953 1.1726 1.0402 348
## avg_veg_height-Sus_scrofa -0.1946 1.2223 1.0283 474
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0054 0.0585 -0.1124 0.0067 0.1194
## (Intercept)-Canis_latrans -2.7134 0.1874 -3.1043 -2.7076 -2.3588
## (Intercept)-Sciurus_niger -4.7090 0.4981 -5.7312 -4.6983 -3.8088
## (Intercept)-Procyon_lotor -2.3089 0.1466 -2.6053 -2.3070 -2.0369
## (Intercept)-Dasypus_novemcinctus -1.7433 0.1627 -2.0780 -1.7392 -1.4385
## (Intercept)-Lynx_rufus -3.8840 0.3591 -4.5824 -3.9051 -3.1322
## (Intercept)-Didelphis_virginiana -2.5263 0.2842 -3.0991 -2.5103 -1.9970
## (Intercept)-Sylvilagus_floridanus -3.1799 0.2724 -3.7545 -3.1685 -2.6787
## (Intercept)-Sciurus_carolinensis -2.6481 0.3164 -3.2595 -2.6499 -2.0579
## (Intercept)-Vulpes_vulpes -4.1184 0.6825 -5.5690 -4.0613 -2.9249
## (Intercept)-Sus_scrofa -3.2376 0.5740 -4.4145 -3.2567 -2.1000
## shrub_cover-Odocoileus_virginianus -0.0535 0.0611 -0.1749 -0.0523 0.0582
## shrub_cover-Canis_latrans -0.2538 0.2253 -0.6791 -0.2478 0.1964
## shrub_cover-Sciurus_niger -0.3595 0.4685 -1.3442 -0.3502 0.5005
## shrub_cover-Procyon_lotor 0.2666 0.1642 -0.0715 0.2673 0.5981
## shrub_cover-Dasypus_novemcinctus 0.8943 0.3021 0.3260 0.8782 1.5029
## shrub_cover-Lynx_rufus -0.2063 0.3578 -0.9291 -0.2037 0.5067
## shrub_cover-Didelphis_virginiana 0.9150 0.3600 0.2723 0.8939 1.6533
## shrub_cover-Sylvilagus_floridanus 0.5093 0.3756 -0.2283 0.5104 1.2703
## shrub_cover-Sciurus_carolinensis 0.8688 0.4013 0.0984 0.8687 1.6966
## shrub_cover-Vulpes_vulpes 0.1273 0.5327 -0.9753 0.1389 1.1518
## shrub_cover-Sus_scrofa 0.6378 0.7483 -0.8351 0.6411 2.1667
## veg_height-Odocoileus_virginianus -0.2948 0.0636 -0.4176 -0.2963 -0.1681
## veg_height-Canis_latrans -0.5371 0.1781 -0.8850 -0.5334 -0.2162
## veg_height-Sciurus_niger 0.0074 0.3647 -0.6739 -0.0145 0.7732
## veg_height-Procyon_lotor 0.3524 0.1233 0.1080 0.3508 0.5953
## veg_height-Dasypus_novemcinctus 0.2494 0.1372 -0.0170 0.2481 0.5143
## veg_height-Lynx_rufus 0.1196 0.2351 -0.3690 0.1244 0.5667
## veg_height-Didelphis_virginiana 0.3995 0.2425 -0.0378 0.3899 0.9337
## veg_height-Sylvilagus_floridanus 0.1347 0.2401 -0.3117 0.1266 0.6177
## veg_height-Sciurus_carolinensis 0.0976 0.2144 -0.2942 0.0947 0.5230
## veg_height-Vulpes_vulpes -0.1837 0.3055 -0.8345 -0.1693 0.3902
## veg_height-Sus_scrofa -0.1275 0.3124 -0.7828 -0.1190 0.4573
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0033 1500
## (Intercept)-Canis_latrans 1.0064 781
## (Intercept)-Sciurus_niger 1.0437 191
## (Intercept)-Procyon_lotor 1.0083 892
## (Intercept)-Dasypus_novemcinctus 1.0015 1062
## (Intercept)-Lynx_rufus 1.0291 125
## (Intercept)-Didelphis_virginiana 1.0478 570
## (Intercept)-Sylvilagus_floridanus 1.0147 638
## (Intercept)-Sciurus_carolinensis 1.0109 631
## (Intercept)-Vulpes_vulpes 1.0088 139
## (Intercept)-Sus_scrofa 1.0375 377
## shrub_cover-Odocoileus_virginianus 1.0026 1677
## shrub_cover-Canis_latrans 1.0068 766
## shrub_cover-Sciurus_niger 1.0194 285
## shrub_cover-Procyon_lotor 1.0142 1110
## shrub_cover-Dasypus_novemcinctus 1.0047 605
## shrub_cover-Lynx_rufus 1.0288 202
## shrub_cover-Didelphis_virginiana 1.0684 549
## shrub_cover-Sylvilagus_floridanus 1.0090 614
## shrub_cover-Sciurus_carolinensis 1.0228 502
## shrub_cover-Vulpes_vulpes 1.0008 634
## shrub_cover-Sus_scrofa 1.0369 424
## veg_height-Odocoileus_virginianus 1.0017 1500
## veg_height-Canis_latrans 1.0022 826
## veg_height-Sciurus_niger 1.0081 350
## veg_height-Procyon_lotor 1.0044 1019
## veg_height-Dasypus_novemcinctus 1.0010 1191
## veg_height-Lynx_rufus 1.0054 365
## veg_height-Didelphis_virginiana 1.0042 842
## veg_height-Sylvilagus_floridanus 1.0126 501
## veg_height-Sciurus_carolinensis 1.0057 1024
## veg_height-Vulpes_vulpes 1.0056 535
## veg_height-Sus_scrofa 1.0073 888
#Includes quadratic week covariate of detection and only null for occupancy
ms_weekQ_null<- msPGOcc(
occ.formula = occ.null,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6872
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1931 0.5472 -1.2682 -0.1942 0.9036 1.02 665
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.0529 2.0666 0.8262 2.5099 8.2732 1.0208 951
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.2889 0.4365 -3.1304 -2.2956 -1.3409 1.0019 1500
## week 0.3570 0.2428 -0.1415 0.3712 0.7915 1.0043 954
## I(week^2) -0.2925 0.1044 -0.5060 -0.2869 -0.0952 1.0261 722
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1144 1.2693 0.7565 1.8115 5.3863 1.0132 765
## week 0.4203 0.3307 0.0988 0.3354 1.2541 1.0110 501
## I(week^2) 0.0763 0.0667 0.0223 0.0593 0.2230 1.1806 495
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.4055 1.0908 1.7647 3.2479 6.0095
## (Intercept)-Canis_latrans 0.3190 0.4143 -0.4652 0.3063 1.1549
## (Intercept)-Sciurus_niger -0.7111 0.9065 -2.1834 -0.8341 1.5724
## (Intercept)-Procyon_lotor 0.7129 0.4028 -0.0471 0.7007 1.5296
## (Intercept)-Dasypus_novemcinctus -0.6480 0.3732 -1.3778 -0.6492 0.0468
## (Intercept)-Lynx_rufus 0.3768 0.8259 -0.9155 0.2604 2.4666
## (Intercept)-Didelphis_virginiana -1.3487 0.4350 -2.2354 -1.3503 -0.5611
## (Intercept)-Sylvilagus_floridanus -0.3098 0.5280 -1.2307 -0.3556 0.8145
## (Intercept)-Sciurus_carolinensis -1.3297 0.4667 -2.2721 -1.3211 -0.4396
## (Intercept)-Vulpes_vulpes -0.8234 1.3284 -2.6805 -1.1044 2.6470
## (Intercept)-Sus_scrofa -1.8275 0.6620 -3.1551 -1.8263 -0.5108
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0053 514
## (Intercept)-Canis_latrans 1.0011 1240
## (Intercept)-Sciurus_niger 1.0116 227
## (Intercept)-Procyon_lotor 1.0066 1389
## (Intercept)-Dasypus_novemcinctus 1.0011 1500
## (Intercept)-Lynx_rufus 1.0069 331
## (Intercept)-Didelphis_virginiana 1.0000 1546
## (Intercept)-Sylvilagus_floridanus 1.0243 656
## (Intercept)-Sciurus_carolinensis 1.0058 1500
## (Intercept)-Vulpes_vulpes 1.1417 82
## (Intercept)-Sus_scrofa 1.0025 602
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5246 0.0811 0.3652 0.5256 0.6834
## (Intercept)-Canis_latrans -2.4312 0.1968 -2.8351 -2.4195 -2.0740
## (Intercept)-Sciurus_niger -3.8004 0.6091 -5.0443 -3.7828 -2.6813
## (Intercept)-Procyon_lotor -2.1560 0.1519 -2.4617 -2.1528 -1.8686
## (Intercept)-Dasypus_novemcinctus -1.4387 0.1538 -1.7435 -1.4367 -1.1459
## (Intercept)-Lynx_rufus -3.4558 0.3616 -4.1542 -3.4511 -2.7602
## (Intercept)-Didelphis_virginiana -2.1050 0.2719 -2.6689 -2.1025 -1.5840
## (Intercept)-Sylvilagus_floridanus -3.0654 0.3370 -3.7706 -3.0478 -2.4362
## (Intercept)-Sciurus_carolinensis -2.2528 0.2992 -2.8695 -2.2456 -1.7065
## (Intercept)-Vulpes_vulpes -3.9539 0.8110 -5.5998 -3.8901 -2.5468
## (Intercept)-Sus_scrofa -2.8694 0.5357 -4.1073 -2.8117 -2.0278
## week-Odocoileus_virginianus 1.2756 0.1239 1.0236 1.2748 1.5181
## week-Canis_latrans 0.5875 0.2658 0.0783 0.5889 1.1092
## week-Sciurus_niger -0.3844 0.5648 -1.6145 -0.3439 0.6088
## week-Procyon_lotor 0.2057 0.2118 -0.2144 0.2033 0.6329
## week-Dasypus_novemcinctus 0.1041 0.2240 -0.3323 0.1074 0.5343
## week-Lynx_rufus 0.4018 0.3540 -0.2835 0.4008 1.0997
## week-Didelphis_virginiana 0.0644 0.3742 -0.7004 0.0785 0.8029
## week-Sylvilagus_floridanus 0.0681 0.3384 -0.5799 0.0757 0.7400
## week-Sciurus_carolinensis 0.8138 0.3643 0.1464 0.7970 1.5961
## week-Vulpes_vulpes 0.1903 0.5050 -0.8749 0.2078 1.1322
## week-Sus_scrofa 0.6833 0.4368 -0.1785 0.6624 1.5627
## I(week^2)-Odocoileus_virginianus -0.5257 0.0511 -0.6267 -0.5255 -0.4226
## I(week^2)-Canis_latrans -0.2441 0.1081 -0.4560 -0.2466 -0.0309
## I(week^2)-Sciurus_niger -0.2902 0.2535 -0.8682 -0.2706 0.1412
## I(week^2)-Procyon_lotor -0.1319 0.0907 -0.3096 -0.1341 0.0455
## I(week^2)-Dasypus_novemcinctus -0.1813 0.1068 -0.4077 -0.1773 0.0250
## I(week^2)-Lynx_rufus -0.2495 0.1570 -0.5706 -0.2481 0.0360
## I(week^2)-Didelphis_virginiana -0.4135 0.2240 -0.9206 -0.3968 -0.0214
## I(week^2)-Sylvilagus_floridanus -0.1854 0.1586 -0.5066 -0.1832 0.1239
## I(week^2)-Sciurus_carolinensis -0.2913 0.1481 -0.5945 -0.2898 -0.0123
## I(week^2)-Vulpes_vulpes -0.4288 0.2792 -0.9994 -0.4008 -0.0108
## I(week^2)-Sus_scrofa -0.2477 0.1765 -0.6086 -0.2486 0.0976
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0113 1500
## (Intercept)-Canis_latrans 1.0223 836
## (Intercept)-Sciurus_niger 1.0209 205
## (Intercept)-Procyon_lotor 1.0110 1284
## (Intercept)-Dasypus_novemcinctus 0.9994 1500
## (Intercept)-Lynx_rufus 1.0100 305
## (Intercept)-Didelphis_virginiana 1.0122 1211
## (Intercept)-Sylvilagus_floridanus 1.0480 488
## (Intercept)-Sciurus_carolinensis 1.0096 877
## (Intercept)-Vulpes_vulpes 1.1048 97
## (Intercept)-Sus_scrofa 1.0079 357
## week-Odocoileus_virginianus 1.0012 1373
## week-Canis_latrans 1.0017 1091
## week-Sciurus_niger 1.0016 400
## week-Procyon_lotor 1.0093 1394
## week-Dasypus_novemcinctus 1.0018 1280
## week-Lynx_rufus 1.0049 680
## week-Didelphis_virginiana 1.0305 859
## week-Sylvilagus_floridanus 1.0067 889
## week-Sciurus_carolinensis 1.0073 1261
## week-Vulpes_vulpes 1.0129 455
## week-Sus_scrofa 1.0058 1084
## I(week^2)-Odocoileus_virginianus 1.0052 1590
## I(week^2)-Canis_latrans 1.0093 1229
## I(week^2)-Sciurus_niger 1.1164 267
## I(week^2)-Procyon_lotor 1.0114 1284
## I(week^2)-Dasypus_novemcinctus 1.0037 1373
## I(week^2)-Lynx_rufus 1.0047 704
## I(week^2)-Didelphis_virginiana 1.0530 368
## I(week^2)-Sylvilagus_floridanus 1.0058 776
## I(week^2)-Sciurus_carolinensis 1.0079 1360
## I(week^2)-Vulpes_vulpes 1.0565 272
## I(week^2)-Sus_scrofa 1.0093 1156
#Includes quadratic week covariate of detection and full for occupancy
ms_weekQ_full<- msPGOcc(
occ.formula = occ.full,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7417
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1435 1.0099 -2.0808 -0.1652 1.9092 1.0135 656
## Cogon_Patch_Size -0.4920 0.5949 -1.7962 -0.4525 0.5940 1.0094 383
## Veg_shannon_index 1.3370 0.5548 0.2311 1.3385 2.4696 1.0418 215
## total_shrub_cover -0.1395 0.3490 -0.8910 -0.1369 0.5220 1.0200 421
## Avg_Cogongrass_Cover 2.6945 0.7061 1.4242 2.6425 4.2161 1.0165 140
## Tree_Density -1.6979 0.6545 -3.0514 -1.6833 -0.4692 1.0206 308
## Avg_Canopy_Cover 1.7529 0.5229 0.7308 1.7299 2.7867 1.0117 342
## avg_veg_height -0.6486 0.4161 -1.4498 -0.6644 0.2032 1.0053 252
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 17.9946 15.8408 3.8870 13.2461 61.4474 1.2795 88
## Cogon_Patch_Size 2.2575 2.9176 0.1110 1.2953 10.4838 1.0794 262
## Veg_shannon_index 1.0156 1.8736 0.0543 0.4814 5.1783 1.1657 192
## total_shrub_cover 0.4521 0.5570 0.0448 0.2661 2.0438 1.0055 542
## Avg_Cogongrass_Cover 0.7137 1.2380 0.0445 0.3397 3.9433 1.2005 275
## Tree_Density 2.5706 4.1329 0.0623 1.0689 14.3388 1.0065 131
## Avg_Canopy_Cover 1.5170 2.0792 0.0830 0.8738 6.8458 1.0466 385
## avg_veg_height 0.3421 0.4200 0.0375 0.2183 1.3453 1.0446 639
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.021 1.0407 0.0707 0.6502 3.7342 1.2047 120
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3624 0.4808 -3.2907 -2.3744 -1.2973 1.0119 1500
## week 0.3441 0.2357 -0.1553 0.3606 0.7816 1.0003 1148
## I(week^2) -0.2828 0.1058 -0.5061 -0.2782 -0.0858 1.0096 764
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5216 1.5163 0.9062 2.1373 6.5904 1.0099 649
## week 0.4163 0.3243 0.1029 0.3265 1.2791 1.0193 590
## I(week^2) 0.0759 0.0597 0.0216 0.0606 0.2231 1.0045 549
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 8.0653 3.3922 3.4274 7.5414
## (Intercept)-Canis_latrans 0.5045 1.0013 -1.0466 0.3949
## (Intercept)-Sciurus_niger 1.2385 2.0301 -2.1552 1.0309
## (Intercept)-Procyon_lotor 0.9227 0.8557 -0.8661 0.9236
## (Intercept)-Dasypus_novemcinctus -1.5203 0.9113 -3.5874 -1.4587
## (Intercept)-Lynx_rufus 2.5175 3.4213 -1.5011 1.6995
## (Intercept)-Didelphis_virginiana -2.9262 1.0693 -5.1965 -2.8447
## (Intercept)-Sylvilagus_floridanus -1.3664 1.0999 -3.8275 -1.3270
## (Intercept)-Sciurus_carolinensis -3.0869 1.1131 -5.3554 -2.9922
## (Intercept)-Vulpes_vulpes -1.4144 2.5472 -4.9584 -1.9326
## (Intercept)-Sus_scrofa -4.6311 1.5159 -8.1618 -4.4801
## Cogon_Patch_Size-Odocoileus_virginianus -0.3865 1.1666 -2.6184 -0.3979
## Cogon_Patch_Size-Canis_latrans 0.8646 1.0548 -0.6653 0.6788
## Cogon_Patch_Size-Sciurus_niger -1.1672 1.5636 -4.5880 -0.9404
## Cogon_Patch_Size-Procyon_lotor -0.5438 0.6084 -1.7859 -0.5144
## Cogon_Patch_Size-Dasypus_novemcinctus -0.5061 0.5709 -1.7582 -0.4715
## Cogon_Patch_Size-Lynx_rufus -0.5835 1.2004 -2.7799 -0.6220
## Cogon_Patch_Size-Didelphis_virginiana 0.9631 0.7540 -0.2784 0.8879
## Cogon_Patch_Size-Sylvilagus_floridanus -1.5164 1.3896 -5.3224 -1.1719
## Cogon_Patch_Size-Sciurus_carolinensis -1.4498 1.1866 -4.5600 -1.2178
## Cogon_Patch_Size-Vulpes_vulpes -0.9069 1.4549 -4.1408 -0.7952
## Cogon_Patch_Size-Sus_scrofa -0.8214 1.2471 -3.7102 -0.6184
## Veg_shannon_index-Odocoileus_virginianus 1.2029 0.9827 -0.8516 1.2207
## Veg_shannon_index-Canis_latrans 1.6516 0.7261 0.3001 1.6102
## Veg_shannon_index-Sciurus_niger 1.7098 1.1028 -0.2771 1.6166
## Veg_shannon_index-Procyon_lotor 1.4120 0.7043 0.0709 1.3848
## Veg_shannon_index-Dasypus_novemcinctus 1.0936 0.6587 -0.1998 1.0812
## Veg_shannon_index-Lynx_rufus 1.0646 1.1356 -1.6373 1.1377
## Veg_shannon_index-Didelphis_virginiana 1.2916 0.7381 -0.2377 1.2810
## Veg_shannon_index-Sylvilagus_floridanus 1.7159 0.8071 0.3007 1.6312
## Veg_shannon_index-Sciurus_carolinensis 0.8656 0.7853 -0.8167 0.9246
## Veg_shannon_index-Vulpes_vulpes 0.9228 1.0298 -1.3680 1.0394
## Veg_shannon_index-Sus_scrofa 2.2422 1.0832 0.6991 2.0336
## total_shrub_cover-Odocoileus_virginianus 0.0168 0.6864 -1.2977 0.0051
## total_shrub_cover-Canis_latrans 0.1142 0.4793 -0.7696 0.0981
## total_shrub_cover-Sciurus_niger -0.3164 0.7143 -1.9176 -0.2756
## total_shrub_cover-Procyon_lotor -0.5755 0.5225 -1.7534 -0.5364
## total_shrub_cover-Dasypus_novemcinctus 0.1001 0.4615 -0.7806 0.0816
## total_shrub_cover-Lynx_rufus -0.4216 0.7498 -2.2576 -0.3539
## total_shrub_cover-Didelphis_virginiana -0.2594 0.5658 -1.5392 -0.2188
## total_shrub_cover-Sylvilagus_floridanus -0.0803 0.5740 -1.2415 -0.0703
## total_shrub_cover-Sciurus_carolinensis -0.0190 0.5381 -1.0257 -0.0317
## total_shrub_cover-Vulpes_vulpes -0.2543 0.6682 -1.6595 -0.2118
## total_shrub_cover-Sus_scrofa 0.0739 0.6356 -1.1635 0.0436
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.6426 1.0796 0.7287 2.5713
## Avg_Cogongrass_Cover-Canis_latrans 2.9113 0.8796 1.4232 2.8737
## Avg_Cogongrass_Cover-Sciurus_niger 2.3696 1.1409 -0.1351 2.4290
## Avg_Cogongrass_Cover-Procyon_lotor 2.8949 0.8935 1.3013 2.8093
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.0860 0.9642 1.4843 2.9593
## Avg_Cogongrass_Cover-Lynx_rufus 2.9062 0.9469 1.1645 2.8378
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.8180 0.8509 1.3023 2.7764
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.3785 0.8997 0.6900 2.3647
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.9291 0.9086 1.3101 2.8422
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.9886 1.0365 1.3118 2.8767
## Avg_Cogongrass_Cover-Sus_scrofa 2.4438 1.0106 0.2410 2.4671
## Tree_Density-Odocoileus_virginianus -0.7399 1.1767 -2.6054 -0.9375
## Tree_Density-Canis_latrans -2.2049 1.0691 -4.7131 -2.0166
## Tree_Density-Sciurus_niger -1.7951 1.5147 -5.0229 -1.7346
## Tree_Density-Procyon_lotor -1.3452 0.7211 -2.7468 -1.3602
## Tree_Density-Dasypus_novemcinctus -3.1568 1.6951 -7.4352 -2.7351
## Tree_Density-Lynx_rufus -0.5907 1.4792 -2.8055 -0.8531
## Tree_Density-Didelphis_virginiana -2.0946 1.0341 -4.5722 -1.9193
## Tree_Density-Sylvilagus_floridanus -2.3103 1.2876 -5.4575 -2.0951
## Tree_Density-Sciurus_carolinensis -2.3722 1.2717 -5.8450 -2.1510
## Tree_Density-Vulpes_vulpes -1.7593 1.4433 -4.7900 -1.7005
## Tree_Density-Sus_scrofa -2.1517 1.4163 -5.7464 -1.9444
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3298 1.1120 -1.1345 1.3985
## Avg_Canopy_Cover-Canis_latrans 0.4640 0.6698 -0.8454 0.4619
## Avg_Canopy_Cover-Sciurus_niger 2.1470 1.3190 -0.2645 2.0456
## Avg_Canopy_Cover-Procyon_lotor 1.7375 0.6504 0.5780 1.7094
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.8997 0.6223 0.7914 1.8560
## Avg_Canopy_Cover-Lynx_rufus 1.4603 1.1516 -0.8129 1.4503
## Avg_Canopy_Cover-Didelphis_virginiana 2.4333 0.7968 1.1218 2.3392
## Avg_Canopy_Cover-Sylvilagus_floridanus 2.8654 1.2432 1.1132 2.6527
## Avg_Canopy_Cover-Sciurus_carolinensis 2.1197 0.7169 0.9441 2.0533
## Avg_Canopy_Cover-Vulpes_vulpes 1.9891 1.0951 0.1323 1.9009
## Avg_Canopy_Cover-Sus_scrofa 1.8934 0.7030 0.6709 1.8236
## avg_veg_height-Odocoileus_virginianus -0.6562 0.6663 -1.9822 -0.6621
## avg_veg_height-Canis_latrans -0.8414 0.5371 -1.9735 -0.8338
## avg_veg_height-Sciurus_niger -0.7959 0.7017 -2.2998 -0.7664
## avg_veg_height-Procyon_lotor -0.5396 0.5182 -1.5553 -0.5410
## avg_veg_height-Dasypus_novemcinctus -0.4666 0.5384 -1.4996 -0.4745
## avg_veg_height-Lynx_rufus -0.6989 0.7007 -2.0195 -0.7084
## avg_veg_height-Didelphis_virginiana -0.7428 0.5718 -1.8976 -0.7248
## avg_veg_height-Sylvilagus_floridanus -0.7941 0.5818 -1.9735 -0.7899
## avg_veg_height-Sciurus_carolinensis -0.3543 0.6075 -1.4600 -0.3811
## avg_veg_height-Vulpes_vulpes -0.6688 0.6392 -1.9082 -0.6920
## avg_veg_height-Sus_scrofa -0.6956 0.5906 -1.8469 -0.7074
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 16.2953 1.1904 110
## (Intercept)-Canis_latrans 2.4577 1.0528 265
## (Intercept)-Sciurus_niger 6.1809 1.0086 174
## (Intercept)-Procyon_lotor 2.6621 1.0302 491
## (Intercept)-Dasypus_novemcinctus 0.0767 1.0157 378
## (Intercept)-Lynx_rufus 12.1966 1.5642 40
## (Intercept)-Didelphis_virginiana -1.0123 1.0122 494
## (Intercept)-Sylvilagus_floridanus 0.7454 1.0113 481
## (Intercept)-Sciurus_carolinensis -0.9723 1.0104 563
## (Intercept)-Vulpes_vulpes 4.3767 1.0299 93
## (Intercept)-Sus_scrofa -2.0240 1.0448 213
## Cogon_Patch_Size-Odocoileus_virginianus 2.1531 1.0201 882
## Cogon_Patch_Size-Canis_latrans 3.5347 1.0882 565
## Cogon_Patch_Size-Sciurus_niger 1.3492 1.0919 233
## Cogon_Patch_Size-Procyon_lotor 0.6184 1.0141 532
## Cogon_Patch_Size-Dasypus_novemcinctus 0.5646 1.0222 532
## Cogon_Patch_Size-Lynx_rufus 2.0927 1.0273 275
## Cogon_Patch_Size-Didelphis_virginiana 2.5525 1.0475 371
## Cogon_Patch_Size-Sylvilagus_floridanus 0.2598 1.0775 255
## Cogon_Patch_Size-Sciurus_carolinensis 0.2224 1.0262 286
## Cogon_Patch_Size-Vulpes_vulpes 1.7556 1.0562 271
## Cogon_Patch_Size-Sus_scrofa 1.1187 1.0011 408
## Veg_shannon_index-Odocoileus_virginianus 3.1964 1.0173 471
## Veg_shannon_index-Canis_latrans 3.3005 1.0225 380
## Veg_shannon_index-Sciurus_niger 4.1635 1.0124 282
## Veg_shannon_index-Procyon_lotor 2.8875 1.0199 333
## Veg_shannon_index-Dasypus_novemcinctus 2.3190 1.0333 364
## Veg_shannon_index-Lynx_rufus 3.0282 1.0455 243
## Veg_shannon_index-Didelphis_virginiana 2.7738 1.0281 360
## Veg_shannon_index-Sylvilagus_floridanus 3.6033 1.0256 372
## Veg_shannon_index-Sciurus_carolinensis 2.2574 1.0686 314
## Veg_shannon_index-Vulpes_vulpes 2.6415 1.0721 296
## Veg_shannon_index-Sus_scrofa 4.9883 1.0256 201
## total_shrub_cover-Odocoileus_virginianus 1.4914 1.0064 731
## total_shrub_cover-Canis_latrans 1.0839 1.0131 725
## total_shrub_cover-Sciurus_niger 0.9917 1.0160 664
## total_shrub_cover-Procyon_lotor 0.3684 1.0076 657
## total_shrub_cover-Dasypus_novemcinctus 1.0628 0.9993 769
## total_shrub_cover-Lynx_rufus 0.9643 1.0412 441
## total_shrub_cover-Didelphis_virginiana 0.7669 1.0084 836
## total_shrub_cover-Sylvilagus_floridanus 0.9765 1.0072 654
## total_shrub_cover-Sciurus_carolinensis 1.0844 1.0062 804
## total_shrub_cover-Vulpes_vulpes 0.9729 1.0211 653
## total_shrub_cover-Sus_scrofa 1.4728 1.0056 891
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.8754 1.0298 240
## Avg_Cogongrass_Cover-Canis_latrans 4.8560 1.0025 175
## Avg_Cogongrass_Cover-Sciurus_niger 4.5092 1.0165 272
## Avg_Cogongrass_Cover-Procyon_lotor 4.7925 1.0026 203
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.3167 1.0225 139
## Avg_Cogongrass_Cover-Lynx_rufus 4.9846 1.0148 220
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.6851 1.0158 171
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 4.1672 1.0278 236
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.9255 1.0222 167
## Avg_Cogongrass_Cover-Vulpes_vulpes 5.3260 1.0255 201
## Avg_Cogongrass_Cover-Sus_scrofa 4.3609 1.0266 208
## Tree_Density-Odocoileus_virginianus 2.2097 1.0411 278
## Tree_Density-Canis_latrans -0.5478 1.0063 252
## Tree_Density-Sciurus_niger 1.2245 1.0704 243
## Tree_Density-Procyon_lotor 0.1256 1.0085 622
## Tree_Density-Dasypus_novemcinctus -1.0651 1.0059 158
## Tree_Density-Lynx_rufus 3.0724 1.0511 135
## Tree_Density-Didelphis_virginiana -0.5445 1.0160 369
## Tree_Density-Sylvilagus_floridanus -0.3246 1.0096 379
## Tree_Density-Sciurus_carolinensis -0.5805 1.0074 231
## Tree_Density-Vulpes_vulpes 1.2766 1.0287 311
## Tree_Density-Sus_scrofa 0.0894 1.0053 393
## Avg_Canopy_Cover-Odocoileus_virginianus 3.4706 1.0204 540
## Avg_Canopy_Cover-Canis_latrans 1.7710 1.0340 411
## Avg_Canopy_Cover-Sciurus_niger 5.1049 1.0120 293
## Avg_Canopy_Cover-Procyon_lotor 3.1150 1.0055 486
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.3432 1.0016 432
## Avg_Canopy_Cover-Lynx_rufus 3.8164 1.0199 298
## Avg_Canopy_Cover-Didelphis_virginiana 4.2098 1.0008 313
## Avg_Canopy_Cover-Sylvilagus_floridanus 6.0805 0.9997 284
## Avg_Canopy_Cover-Sciurus_carolinensis 3.7023 1.0093 465
## Avg_Canopy_Cover-Vulpes_vulpes 4.5594 1.0254 364
## Avg_Canopy_Cover-Sus_scrofa 3.5257 1.0085 610
## avg_veg_height-Odocoileus_virginianus 0.6365 1.0103 587
## avg_veg_height-Canis_latrans 0.1600 1.0187 313
## avg_veg_height-Sciurus_niger 0.4741 1.0277 283
## avg_veg_height-Procyon_lotor 0.5185 1.0044 475
## avg_veg_height-Dasypus_novemcinctus 0.6616 1.0065 427
## avg_veg_height-Lynx_rufus 0.6388 1.0215 381
## avg_veg_height-Didelphis_virginiana 0.3474 1.0140 450
## avg_veg_height-Sylvilagus_floridanus 0.3166 1.0008 531
## avg_veg_height-Sciurus_carolinensis 0.9722 1.0069 521
## avg_veg_height-Vulpes_vulpes 0.6044 1.0219 389
## avg_veg_height-Sus_scrofa 0.4475 1.0111 384
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5264 0.0790 0.3723 0.5237 0.6803
## (Intercept)-Canis_latrans -2.4456 0.1915 -2.8316 -2.4386 -2.0853
## (Intercept)-Sciurus_niger -4.5221 0.4673 -5.5016 -4.5129 -3.6588
## (Intercept)-Procyon_lotor -2.1619 0.1536 -2.4687 -2.1612 -1.8859
## (Intercept)-Dasypus_novemcinctus -1.4309 0.1537 -1.7305 -1.4305 -1.1247
## (Intercept)-Lynx_rufus -3.6555 0.3776 -4.3834 -3.6688 -2.8981
## (Intercept)-Didelphis_virginiana -2.0936 0.2598 -2.6276 -2.0966 -1.6090
## (Intercept)-Sylvilagus_floridanus -3.0463 0.2914 -3.6509 -3.0413 -2.5140
## (Intercept)-Sciurus_carolinensis -2.2271 0.2718 -2.7888 -2.2239 -1.7183
## (Intercept)-Vulpes_vulpes -4.1679 0.7721 -5.7051 -4.1410 -2.7500
## (Intercept)-Sus_scrofa -2.6738 0.4472 -3.6473 -2.6391 -1.9086
## week-Odocoileus_virginianus 1.2769 0.1224 1.0408 1.2770 1.5057
## week-Canis_latrans 0.5783 0.2609 0.0688 0.5785 1.0889
## week-Sciurus_niger -0.3659 0.5125 -1.4518 -0.3251 0.5074
## week-Procyon_lotor 0.2113 0.2089 -0.1870 0.2129 0.6363
## week-Dasypus_novemcinctus 0.1175 0.2220 -0.3155 0.1182 0.5617
## week-Lynx_rufus 0.3787 0.3352 -0.2668 0.3702 1.0305
## week-Didelphis_virginiana 0.0465 0.3762 -0.7203 0.0571 0.7438
## week-Sylvilagus_floridanus 0.0486 0.3392 -0.6023 0.0453 0.7370
## week-Sciurus_carolinensis 0.7976 0.3532 0.1477 0.7932 1.5128
## week-Vulpes_vulpes 0.1727 0.5038 -0.8917 0.1922 1.0833
## week-Sus_scrofa 0.6813 0.4369 -0.1498 0.6671 1.5951
## I(week^2)-Odocoileus_virginianus -0.5275 0.0500 -0.6252 -0.5282 -0.4276
## I(week^2)-Canis_latrans -0.2395 0.1071 -0.4520 -0.2388 -0.0275
## I(week^2)-Sciurus_niger -0.2914 0.2349 -0.8181 -0.2751 0.1287
## I(week^2)-Procyon_lotor -0.1353 0.0918 -0.3153 -0.1378 0.0438
## I(week^2)-Dasypus_novemcinctus -0.1808 0.1010 -0.3936 -0.1788 0.0105
## I(week^2)-Lynx_rufus -0.2322 0.1512 -0.5428 -0.2308 0.0508
## I(week^2)-Didelphis_virginiana -0.4235 0.2080 -0.8954 -0.4060 -0.0606
## I(week^2)-Sylvilagus_floridanus -0.1691 0.1555 -0.4979 -0.1602 0.1262
## I(week^2)-Sciurus_carolinensis -0.2800 0.1406 -0.5707 -0.2746 -0.0131
## I(week^2)-Vulpes_vulpes -0.4004 0.2450 -0.9373 -0.3866 0.0260
## I(week^2)-Sus_scrofa -0.2384 0.1781 -0.6119 -0.2304 0.0920
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0110 1500
## (Intercept)-Canis_latrans 1.0116 726
## (Intercept)-Sciurus_niger 1.0181 168
## (Intercept)-Procyon_lotor 0.9999 1363
## (Intercept)-Dasypus_novemcinctus 1.0033 1500
## (Intercept)-Lynx_rufus 1.2665 143
## (Intercept)-Didelphis_virginiana 1.0039 1321
## (Intercept)-Sylvilagus_floridanus 1.0003 728
## (Intercept)-Sciurus_carolinensis 1.0157 1068
## (Intercept)-Vulpes_vulpes 1.0120 81
## (Intercept)-Sus_scrofa 1.0047 958
## week-Odocoileus_virginianus 1.0041 1500
## week-Canis_latrans 1.0018 1081
## week-Sciurus_niger 1.0047 234
## week-Procyon_lotor 1.0005 1244
## week-Dasypus_novemcinctus 1.0035 1500
## week-Lynx_rufus 1.0046 648
## week-Didelphis_virginiana 1.0087 640
## week-Sylvilagus_floridanus 1.0094 821
## week-Sciurus_carolinensis 1.0041 1245
## week-Vulpes_vulpes 1.0124 612
## week-Sus_scrofa 1.0007 1154
## I(week^2)-Odocoileus_virginianus 1.0065 1500
## I(week^2)-Canis_latrans 1.0022 915
## I(week^2)-Sciurus_niger 1.0789 227
## I(week^2)-Procyon_lotor 1.0006 1202
## I(week^2)-Dasypus_novemcinctus 1.0067 1372
## I(week^2)-Lynx_rufus 1.0052 661
## I(week^2)-Didelphis_virginiana 1.0022 638
## I(week^2)-Sylvilagus_floridanus 1.0125 726
## I(week^2)-Sciurus_carolinensis 1.0022 1326
## I(week^2)-Vulpes_vulpes 1.0292 373
## I(week^2)-Sus_scrofa 1.0097 1335
#Includes quadratic week covariate of detection and only cover for occupancy
ms_weekQ_cover<- msPGOcc(
occ.formula = occ.cover,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6913
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2237 0.6204 -1.3993 -0.2426 1.0151 1.0019 613
## Avg_Cogongrass_Cover 0.1242 0.3039 -0.4637 0.1352 0.6886 1.0203 423
## total_shrub_cover -0.2599 0.2780 -0.8480 -0.2496 0.2804 1.0076 837
## avg_veg_height 0.0375 0.2986 -0.5487 0.0270 0.6376 1.0024 395
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.1022 3.1328 0.7721 3.2223 12.1362 1.0052 398
## Avg_Cogongrass_Cover 0.2968 0.3223 0.0351 0.2016 1.0941 1.0236 527
## total_shrub_cover 0.3572 0.3986 0.0476 0.2235 1.5064 1.0454 454
## avg_veg_height 0.2050 0.2157 0.0307 0.1407 0.7323 1.0237 863
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.92 0.9083 0.0578 0.6472 3.4513 1.1199 103
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3124 0.4375 -3.1629 -2.3194 -1.4248 1.0018 1571
## week 0.3533 0.2362 -0.1342 0.3623 0.8001 1.0109 976
## I(week^2) -0.2801 0.1012 -0.4850 -0.2762 -0.0879 1.0278 701
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2235 1.3892 0.7877 1.8899 5.7211 1.0357 669
## week 0.4220 0.3072 0.1042 0.3309 1.2902 1.0010 990
## I(week^2) 0.0724 0.0483 0.0232 0.0584 0.2058 1.0564 1021
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7990 1.5075 1.4229 3.6669
## (Intercept)-Canis_latrans 0.3464 0.6904 -0.9545 0.3157
## (Intercept)-Sciurus_niger -0.5515 1.2221 -2.5072 -0.7260
## (Intercept)-Procyon_lotor 0.6432 0.7014 -0.7614 0.6338
## (Intercept)-Dasypus_novemcinctus -0.7452 0.6142 -2.0262 -0.7280
## (Intercept)-Lynx_rufus 0.0048 0.9322 -1.6064 -0.0699
## (Intercept)-Didelphis_virginiana -1.4597 0.6737 -2.8459 -1.4434
## (Intercept)-Sylvilagus_floridanus -0.3081 0.8077 -1.7230 -0.3345
## (Intercept)-Sciurus_carolinensis -1.5353 0.6885 -2.9546 -1.4998
## (Intercept)-Vulpes_vulpes -0.8790 1.6815 -3.4360 -1.1117
## (Intercept)-Sus_scrofa -2.0558 0.9102 -3.9884 -2.0492
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1076 0.5180 -0.9629 0.1026
## Avg_Cogongrass_Cover-Canis_latrans 0.3734 0.4447 -0.4314 0.3607
## Avg_Cogongrass_Cover-Sciurus_niger -0.2081 0.6169 -1.5779 -0.1436
## Avg_Cogongrass_Cover-Procyon_lotor 0.0976 0.4407 -0.7862 0.0962
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.2326 0.3909 -0.5645 0.2364
## Avg_Cogongrass_Cover-Lynx_rufus 0.3983 0.4728 -0.4322 0.3586
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2992 0.4096 -0.5185 0.2947
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.2153 0.4805 -1.2485 -0.1918
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2409 0.4047 -0.5347 0.2392
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2240 0.4988 -0.7368 0.2076
## Avg_Cogongrass_Cover-Sus_scrofa -0.1577 0.5508 -1.3436 -0.1042
## total_shrub_cover-Odocoileus_virginianus -0.1743 0.5440 -1.3159 -0.1693
## total_shrub_cover-Canis_latrans 0.1044 0.4193 -0.6479 0.0851
## total_shrub_cover-Sciurus_niger -0.5074 0.5347 -1.7183 -0.4523
## total_shrub_cover-Procyon_lotor -0.7113 0.4715 -1.7683 -0.6670
## total_shrub_cover-Dasypus_novemcinctus -0.0399 0.3425 -0.6642 -0.0484
## total_shrub_cover-Lynx_rufus -0.6402 0.5832 -2.0031 -0.5646
## total_shrub_cover-Didelphis_virginiana -0.2101 0.3909 -0.9927 -0.2040
## total_shrub_cover-Sylvilagus_floridanus -0.3094 0.4664 -1.2479 -0.2921
## total_shrub_cover-Sciurus_carolinensis -0.1031 0.3844 -0.8288 -0.1130
## total_shrub_cover-Vulpes_vulpes -0.3255 0.5611 -1.5778 -0.2906
## total_shrub_cover-Sus_scrofa 0.0337 0.5070 -0.8822 -0.0002
## avg_veg_height-Odocoileus_virginianus 0.0149 0.4668 -0.9416 0.0285
## avg_veg_height-Canis_latrans -0.0339 0.4068 -0.8400 -0.0302
## avg_veg_height-Sciurus_niger -0.1118 0.4940 -1.1378 -0.1043
## avg_veg_height-Procyon_lotor 0.1249 0.3992 -0.6304 0.0998
## avg_veg_height-Dasypus_novemcinctus 0.1965 0.3835 -0.5444 0.1915
## avg_veg_height-Lynx_rufus 0.0551 0.4719 -0.8899 0.0390
## avg_veg_height-Didelphis_virginiana 0.0037 0.4032 -0.7921 0.0023
## avg_veg_height-Sylvilagus_floridanus -0.1019 0.4369 -0.9726 -0.0896
## avg_veg_height-Sciurus_carolinensis 0.2637 0.4156 -0.4830 0.2439
## avg_veg_height-Vulpes_vulpes -0.0148 0.4671 -0.9893 -0.0101
## avg_veg_height-Sus_scrofa -0.0068 0.4436 -0.8868 -0.0021
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.2367 1.0031 292
## (Intercept)-Canis_latrans 1.7561 1.0035 883
## (Intercept)-Sciurus_niger 2.5273 1.0867 147
## (Intercept)-Procyon_lotor 2.0715 1.0043 627
## (Intercept)-Dasypus_novemcinctus 0.4192 1.0068 542
## (Intercept)-Lynx_rufus 2.0466 1.0433 433
## (Intercept)-Didelphis_virginiana -0.1107 1.0110 884
## (Intercept)-Sylvilagus_floridanus 1.3926 1.0029 411
## (Intercept)-Sciurus_carolinensis -0.2433 0.9992 858
## (Intercept)-Vulpes_vulpes 3.5659 1.0184 96
## (Intercept)-Sus_scrofa -0.3538 1.0063 651
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1697 1.0028 732
## Avg_Cogongrass_Cover-Canis_latrans 1.2950 1.0009 770
## Avg_Cogongrass_Cover-Sciurus_niger 0.8414 1.0255 572
## Avg_Cogongrass_Cover-Procyon_lotor 0.9532 1.0193 692
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9961 1.0158 807
## Avg_Cogongrass_Cover-Lynx_rufus 1.4414 1.0098 628
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.1259 1.0056 773
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6426 1.0078 651
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0513 1.0072 830
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2458 1.0047 643
## Avg_Cogongrass_Cover-Sus_scrofa 0.8124 1.0154 699
## total_shrub_cover-Odocoileus_virginianus 0.9136 1.0007 1166
## total_shrub_cover-Canis_latrans 1.0338 1.0056 990
## total_shrub_cover-Sciurus_niger 0.4113 1.0046 710
## total_shrub_cover-Procyon_lotor 0.0840 1.0053 819
## total_shrub_cover-Dasypus_novemcinctus 0.6730 1.0151 1283
## total_shrub_cover-Lynx_rufus 0.3222 1.0184 482
## total_shrub_cover-Didelphis_virginiana 0.6013 1.0007 1027
## total_shrub_cover-Sylvilagus_floridanus 0.5755 1.0038 825
## total_shrub_cover-Sciurus_carolinensis 0.6471 1.0002 1573
## total_shrub_cover-Vulpes_vulpes 0.7134 1.0055 858
## total_shrub_cover-Sus_scrofa 1.1183 1.0012 985
## avg_veg_height-Odocoileus_virginianus 0.9099 1.0149 850
## avg_veg_height-Canis_latrans 0.7702 1.0038 562
## avg_veg_height-Sciurus_niger 0.8483 1.0146 601
## avg_veg_height-Procyon_lotor 0.9547 1.0005 749
## avg_veg_height-Dasypus_novemcinctus 1.0133 1.0019 776
## avg_veg_height-Lynx_rufus 1.0186 1.0136 700
## avg_veg_height-Didelphis_virginiana 0.7967 1.0107 698
## avg_veg_height-Sylvilagus_floridanus 0.7538 1.0054 676
## avg_veg_height-Sciurus_carolinensis 1.1002 1.0031 751
## avg_veg_height-Vulpes_vulpes 0.8554 1.0082 670
## avg_veg_height-Sus_scrofa 0.8750 1.0020 704
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5257 0.0790 0.3722 0.5263 0.6773
## (Intercept)-Canis_latrans -2.4473 0.2018 -2.8598 -2.4365 -2.0825
## (Intercept)-Sciurus_niger -3.9247 0.6137 -5.2606 -3.8809 -2.8491
## (Intercept)-Procyon_lotor -2.1683 0.1541 -2.4894 -2.1638 -1.8826
## (Intercept)-Dasypus_novemcinctus -1.4428 0.1541 -1.7415 -1.4406 -1.1475
## (Intercept)-Lynx_rufus -3.3983 0.3244 -4.0529 -3.3971 -2.7892
## (Intercept)-Didelphis_virginiana -2.1094 0.2721 -2.6604 -2.1019 -1.6060
## (Intercept)-Sylvilagus_floridanus -3.1219 0.3366 -3.8340 -3.0916 -2.5398
## (Intercept)-Sciurus_carolinensis -2.2801 0.2934 -2.9070 -2.2579 -1.7438
## (Intercept)-Vulpes_vulpes -3.9800 0.8322 -5.6905 -3.9448 -2.5064
## (Intercept)-Sus_scrofa -2.8085 0.4914 -3.8633 -2.7746 -1.9259
## week-Odocoileus_virginianus 1.2814 0.1261 1.0290 1.2814 1.5246
## week-Canis_latrans 0.5819 0.2683 0.0728 0.5710 1.1165
## week-Sciurus_niger -0.3864 0.5216 -1.4465 -0.3639 0.5435
## week-Procyon_lotor 0.1898 0.2118 -0.2269 0.1794 0.5939
## week-Dasypus_novemcinctus 0.0999 0.2224 -0.3313 0.0988 0.5264
## week-Lynx_rufus 0.3514 0.3585 -0.3212 0.3402 1.0382
## week-Didelphis_virginiana 0.0590 0.3654 -0.6842 0.0675 0.7434
## week-Sylvilagus_floridanus 0.0643 0.3438 -0.6092 0.0706 0.7468
## week-Sciurus_carolinensis 0.7926 0.3707 0.0906 0.7836 1.5581
## week-Vulpes_vulpes 0.1950 0.5061 -0.8333 0.2097 1.1283
## week-Sus_scrofa 0.6686 0.4536 -0.1898 0.6566 1.5674
## I(week^2)-Odocoileus_virginianus -0.5276 0.0514 -0.6245 -0.5273 -0.4281
## I(week^2)-Canis_latrans -0.2461 0.1111 -0.4766 -0.2427 -0.0328
## I(week^2)-Sciurus_niger -0.2742 0.2414 -0.7840 -0.2627 0.1724
## I(week^2)-Procyon_lotor -0.1294 0.0920 -0.3203 -0.1257 0.0436
## I(week^2)-Dasypus_novemcinctus -0.1763 0.1017 -0.3763 -0.1754 0.0233
## I(week^2)-Lynx_rufus -0.2379 0.1543 -0.5629 -0.2295 0.0479
## I(week^2)-Didelphis_virginiana -0.4115 0.1990 -0.8419 -0.4000 -0.0761
## I(week^2)-Sylvilagus_floridanus -0.1701 0.1618 -0.5141 -0.1659 0.1376
## I(week^2)-Sciurus_carolinensis -0.2795 0.1466 -0.5884 -0.2764 -0.0090
## I(week^2)-Vulpes_vulpes -0.4022 0.2444 -0.9439 -0.3809 0.0020
## I(week^2)-Sus_scrofa -0.2414 0.1812 -0.6185 -0.2354 0.0893
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0000 1500
## (Intercept)-Canis_latrans 1.0104 891
## (Intercept)-Sciurus_niger 1.0331 133
## (Intercept)-Procyon_lotor 1.0217 1269
## (Intercept)-Dasypus_novemcinctus 1.0085 1828
## (Intercept)-Lynx_rufus 1.0093 374
## (Intercept)-Didelphis_virginiana 1.0104 1039
## (Intercept)-Sylvilagus_floridanus 1.0663 375
## (Intercept)-Sciurus_carolinensis 1.0025 788
## (Intercept)-Vulpes_vulpes 1.0283 89
## (Intercept)-Sus_scrofa 1.0082 628
## week-Odocoileus_virginianus 0.9998 1391
## week-Canis_latrans 1.0062 1094
## week-Sciurus_niger 1.0433 346
## week-Procyon_lotor 1.0008 1228
## week-Dasypus_novemcinctus 1.0179 1500
## week-Lynx_rufus 1.0233 847
## week-Didelphis_virginiana 1.0093 1080
## week-Sylvilagus_floridanus 1.0189 918
## week-Sciurus_carolinensis 1.0028 1228
## week-Vulpes_vulpes 1.0193 565
## week-Sus_scrofa 1.0089 1145
## I(week^2)-Odocoileus_virginianus 0.9991 1152
## I(week^2)-Canis_latrans 1.0018 1073
## I(week^2)-Sciurus_niger 1.0035 430
## I(week^2)-Procyon_lotor 1.0027 1126
## I(week^2)-Dasypus_novemcinctus 1.0011 1332
## I(week^2)-Lynx_rufus 1.0233 751
## I(week^2)-Didelphis_virginiana 1.0185 629
## I(week^2)-Sylvilagus_floridanus 1.0205 674
## I(week^2)-Sciurus_carolinensis 1.0068 1132
## I(week^2)-Vulpes_vulpes 1.0610 416
## I(week^2)-Sus_scrofa 1.0148 1023
#Includes quadratic week covariate of detection and only canopy for occupancy
ms_weekQ_canopy<- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7065
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1943 0.7914 -1.6739 -0.2255 1.4330 1.0106 297
## Tree_Density -0.7900 0.4094 -1.7222 -0.7663 -0.0403 1.0034 557
## Avg_Canopy_Cover 1.0540 0.3483 0.4228 1.0215 1.7502 1.0203 497
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 7.2129 6.2385 1.5942 5.3193 24.2108 1.0370 214
## Tree_Density 0.7725 1.2911 0.0468 0.3598 4.0329 1.0587 437
## Avg_Canopy_Cover 0.5494 0.6285 0.0652 0.3831 2.0319 1.1649 440
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4314 0.4531 0.0431 0.2841 1.5931 1.0088 183
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3160 0.4644 -3.1914 -2.3433 -1.3670 1.0025 1308
## week 0.3542 0.2345 -0.1490 0.3602 0.8183 1.0137 1021
## I(week^2) -0.2826 0.1029 -0.4940 -0.2790 -0.0978 1.0092 764
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.3602 1.4629 0.8010 1.9762 6.3272 1.0177 609
## week 0.4058 0.3094 0.1049 0.3218 1.2128 1.0029 559
## I(week^2) 0.0706 0.0593 0.0214 0.0563 0.2069 1.1082 532
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.9018 1.9258 2.2375 4.4917 10.0082
## (Intercept)-Canis_latrans 0.3146 0.6541 -0.8529 0.2946 1.7516
## (Intercept)-Sciurus_niger 0.1969 1.6933 -2.3590 -0.0690 4.3056
## (Intercept)-Procyon_lotor 0.7632 0.6092 -0.4143 0.7514 1.9735
## (Intercept)-Dasypus_novemcinctus -1.0582 0.6132 -2.3390 -1.0151 0.0405
## (Intercept)-Lynx_rufus 1.4294 2.0928 -1.1415 0.9074 6.4160
## (Intercept)-Didelphis_virginiana -1.9625 0.6956 -3.4141 -1.9306 -0.6188
## (Intercept)-Sylvilagus_floridanus -0.6777 0.7590 -2.1164 -0.7064 0.8922
## (Intercept)-Sciurus_carolinensis -2.0248 0.7249 -3.5292 -2.0233 -0.6715
## (Intercept)-Vulpes_vulpes -1.3074 1.7895 -3.8703 -1.6265 3.3824
## (Intercept)-Sus_scrofa -2.8200 0.9570 -4.9140 -2.7206 -1.1497
## Tree_Density-Odocoileus_virginianus -0.4185 0.6752 -1.4785 -0.4834 1.1287
## Tree_Density-Canis_latrans -0.8910 0.5334 -2.0676 -0.8432 0.0288
## Tree_Density-Sciurus_niger -0.8284 0.7531 -2.4203 -0.7856 0.5494
## Tree_Density-Procyon_lotor -0.4821 0.4401 -1.2968 -0.4857 0.3673
## Tree_Density-Dasypus_novemcinctus -1.3934 0.8820 -3.6432 -1.2006 -0.1905
## Tree_Density-Lynx_rufus -0.0788 0.7981 -1.3341 -0.1990 1.8810
## Tree_Density-Didelphis_virginiana -1.0426 0.7141 -2.7202 -0.9546 0.1013
## Tree_Density-Sylvilagus_floridanus -1.1052 0.7992 -2.9606 -0.9861 0.0474
## Tree_Density-Sciurus_carolinensis -0.9902 0.7518 -2.8338 -0.8907 0.2336
## Tree_Density-Vulpes_vulpes -0.7215 0.7595 -2.3530 -0.6937 0.7061
## Tree_Density-Sus_scrofa -1.0386 0.8919 -3.1614 -0.8954 0.2087
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8750 0.6935 -0.4790 0.8675 2.3031
## Avg_Canopy_Cover-Canis_latrans 0.1622 0.4778 -0.7817 0.1710 1.0991
## Avg_Canopy_Cover-Sciurus_niger 1.0727 0.8074 -0.4456 1.0332 2.8829
## Avg_Canopy_Cover-Procyon_lotor 1.0564 0.4488 0.2123 1.0341 1.9807
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0347 0.4181 0.2212 1.0188 1.9077
## Avg_Canopy_Cover-Lynx_rufus 0.9616 0.7112 -0.3423 0.8952 2.4991
## Avg_Canopy_Cover-Didelphis_virginiana 1.2639 0.4849 0.4725 1.2236 2.3775
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.6728 0.7871 0.5764 1.5265 3.6491
## Avg_Canopy_Cover-Sciurus_carolinensis 1.2571 0.4718 0.4247 1.2218 2.2877
## Avg_Canopy_Cover-Vulpes_vulpes 1.1116 0.6165 0.0475 1.0615 2.4527
## Avg_Canopy_Cover-Sus_scrofa 1.2783 0.5396 0.3391 1.2302 2.4921
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0126 180
## (Intercept)-Canis_latrans 1.0134 923
## (Intercept)-Sciurus_niger 1.1611 122
## (Intercept)-Procyon_lotor 1.0092 981
## (Intercept)-Dasypus_novemcinctus 1.0117 854
## (Intercept)-Lynx_rufus 1.0182 79
## (Intercept)-Didelphis_virginiana 1.0231 1056
## (Intercept)-Sylvilagus_floridanus 1.0067 656
## (Intercept)-Sciurus_carolinensis 1.0007 961
## (Intercept)-Vulpes_vulpes 1.1714 83
## (Intercept)-Sus_scrofa 1.0044 576
## Tree_Density-Odocoileus_virginianus 1.0095 517
## Tree_Density-Canis_latrans 1.0115 1132
## Tree_Density-Sciurus_niger 1.0464 591
## Tree_Density-Procyon_lotor 1.0085 991
## Tree_Density-Dasypus_novemcinctus 1.0176 399
## Tree_Density-Lynx_rufus 1.0058 213
## Tree_Density-Didelphis_virginiana 1.0009 742
## Tree_Density-Sylvilagus_floridanus 1.0012 522
## Tree_Density-Sciurus_carolinensis 1.0073 804
## Tree_Density-Vulpes_vulpes 1.0162 642
## Tree_Density-Sus_scrofa 1.0225 625
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0200 923
## Avg_Canopy_Cover-Canis_latrans 1.0193 1020
## Avg_Canopy_Cover-Sciurus_niger 1.0333 442
## Avg_Canopy_Cover-Procyon_lotor 1.0076 946
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0196 1234
## Avg_Canopy_Cover-Lynx_rufus 1.0014 420
## Avg_Canopy_Cover-Didelphis_virginiana 1.0094 687
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0491 420
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0154 1008
## Avg_Canopy_Cover-Vulpes_vulpes 1.0280 593
## Avg_Canopy_Cover-Sus_scrofa 1.0056 702
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5209 0.0799 0.3668 0.5201 0.6774
## (Intercept)-Canis_latrans -2.4641 0.2045 -2.8836 -2.4574 -2.0817
## (Intercept)-Sciurus_niger -4.2602 0.6348 -5.4715 -4.2640 -3.0015
## (Intercept)-Procyon_lotor -2.1570 0.1510 -2.4544 -2.1501 -1.8731
## (Intercept)-Dasypus_novemcinctus -1.4441 0.1590 -1.7601 -1.4419 -1.1277
## (Intercept)-Lynx_rufus -3.6354 0.3824 -4.3395 -3.6527 -2.8845
## (Intercept)-Didelphis_virginiana -2.1168 0.2666 -2.6696 -2.1131 -1.6146
## (Intercept)-Sylvilagus_floridanus -3.0228 0.3096 -3.6636 -3.0098 -2.4465
## (Intercept)-Sciurus_carolinensis -2.2520 0.2802 -2.8106 -2.2468 -1.7403
## (Intercept)-Vulpes_vulpes -3.9483 0.7654 -5.4839 -3.9282 -2.5482
## (Intercept)-Sus_scrofa -2.7320 0.4815 -3.7496 -2.7031 -1.8755
## week-Odocoileus_virginianus 1.2735 0.1204 1.0339 1.2761 1.4948
## week-Canis_latrans 0.5784 0.2650 0.0808 0.5651 1.1074
## week-Sciurus_niger -0.3637 0.5224 -1.4956 -0.3458 0.5722
## week-Procyon_lotor 0.2104 0.2113 -0.2089 0.2096 0.6170
## week-Dasypus_novemcinctus 0.0999 0.2281 -0.3483 0.1005 0.5498
## week-Lynx_rufus 0.3799 0.3481 -0.2887 0.3768 1.0544
## week-Didelphis_virginiana 0.0666 0.3580 -0.6740 0.0729 0.7651
## week-Sylvilagus_floridanus 0.0694 0.3405 -0.5794 0.0840 0.7147
## week-Sciurus_carolinensis 0.7836 0.3593 0.1140 0.7771 1.5068
## week-Vulpes_vulpes 0.2048 0.5310 -0.9120 0.2300 1.1679
## week-Sus_scrofa 0.6808 0.4433 -0.1614 0.6613 1.5916
## I(week^2)-Odocoileus_virginianus -0.5244 0.0490 -0.6185 -0.5258 -0.4289
## I(week^2)-Canis_latrans -0.2437 0.1079 -0.4465 -0.2387 -0.0371
## I(week^2)-Sciurus_niger -0.2656 0.2318 -0.7566 -0.2653 0.1711
## I(week^2)-Procyon_lotor -0.1329 0.0917 -0.3109 -0.1344 0.0414
## I(week^2)-Dasypus_novemcinctus -0.1800 0.1078 -0.3948 -0.1757 0.0218
## I(week^2)-Lynx_rufus -0.2402 0.1486 -0.5278 -0.2396 0.0337
## I(week^2)-Didelphis_virginiana -0.4017 0.2062 -0.8453 -0.3865 -0.0485
## I(week^2)-Sylvilagus_floridanus -0.1842 0.1539 -0.4944 -0.1833 0.1160
## I(week^2)-Sciurus_carolinensis -0.2775 0.1429 -0.5780 -0.2729 0.0007
## I(week^2)-Vulpes_vulpes -0.4030 0.2582 -0.9779 -0.3789 0.0019
## I(week^2)-Sus_scrofa -0.2456 0.1749 -0.5975 -0.2392 0.0853
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0000 1500
## (Intercept)-Canis_latrans 1.0212 717
## (Intercept)-Sciurus_niger 1.0346 119
## (Intercept)-Procyon_lotor 1.0041 1250
## (Intercept)-Dasypus_novemcinctus 1.0016 1651
## (Intercept)-Lynx_rufus 1.0014 128
## (Intercept)-Didelphis_virginiana 1.0123 939
## (Intercept)-Sylvilagus_floridanus 1.0090 532
## (Intercept)-Sciurus_carolinensis 1.0043 1198
## (Intercept)-Vulpes_vulpes 1.1090 135
## (Intercept)-Sus_scrofa 1.0434 643
## week-Odocoileus_virginianus 0.9993 1633
## week-Canis_latrans 1.0003 1061
## week-Sciurus_niger 1.0137 330
## week-Procyon_lotor 1.0033 1296
## week-Dasypus_novemcinctus 1.0060 1248
## week-Lynx_rufus 1.0211 577
## week-Didelphis_virginiana 1.0003 736
## week-Sylvilagus_floridanus 1.0044 978
## week-Sciurus_carolinensis 1.0074 1181
## week-Vulpes_vulpes 1.0133 557
## week-Sus_scrofa 1.0097 1105
## I(week^2)-Odocoileus_virginianus 1.0009 1500
## I(week^2)-Canis_latrans 1.0020 987
## I(week^2)-Sciurus_niger 1.0296 414
## I(week^2)-Procyon_lotor 1.0077 1240
## I(week^2)-Dasypus_novemcinctus 1.0053 1157
## I(week^2)-Lynx_rufus 1.0021 582
## I(week^2)-Didelphis_virginiana 1.0048 511
## I(week^2)-Sylvilagus_floridanus 1.0056 883
## I(week^2)-Sciurus_carolinensis 1.0123 1234
## I(week^2)-Vulpes_vulpes 1.0259 359
## I(week^2)-Sus_scrofa 1.0021 1245
#Includes quadratic week covariate of detection and only movement for occupancy
ms_weekQ_move<- msPGOcc(
occ.formula = occ.move,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6882
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.3594 0.6461 -1.5483 -0.3857 0.9626 1.0098 576
## Cogon_Patch_Size -0.2966 0.4083 -1.1340 -0.2728 0.4780 1.0113 578
## Avg_Cogongrass_Cover 0.2652 0.2753 -0.2819 0.2608 0.8033 1.0075 490
## total_shrub_cover -0.2108 0.2622 -0.7556 -0.2128 0.3100 1.0061 680
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.2126 3.5909 0.7540 3.3030 13.3056 1.0455 502
## Cogon_Patch_Size 1.0383 1.5026 0.0779 0.5963 4.5719 1.1425 350
## Avg_Cogongrass_Cover 0.2930 0.3726 0.0345 0.1817 1.1920 1.0128 673
## total_shrub_cover 0.3051 0.3147 0.0376 0.2102 1.1291 1.0063 723
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.2122 1.1032 0.0652 0.9101 4.0871 1.07 125
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.2967 0.4318 -3.1968 -2.2966 -1.4108 1.0144 1500
## week 0.3446 0.2385 -0.1640 0.3555 0.7916 1.0041 985
## I(week^2) -0.2830 0.1025 -0.4823 -0.2848 -0.0701 1.0022 845
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.1745 1.4122 0.7297 1.8116 6.0454 1.0027 653
## week 0.4497 0.3358 0.1141 0.3606 1.3490 1.0158 426
## I(week^2) 0.0708 0.0563 0.0218 0.0574 0.1958 1.0300 1227
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.6512 1.6432 0.9378 3.4783
## (Intercept)-Canis_latrans 0.4073 0.7710 -1.0652 0.3672
## (Intercept)-Sciurus_niger -0.9052 1.1131 -2.9833 -0.9716
## (Intercept)-Procyon_lotor 0.5678 0.7265 -0.9506 0.5751
## (Intercept)-Dasypus_novemcinctus -0.7715 0.6692 -2.1355 -0.7602
## (Intercept)-Lynx_rufus -0.2273 0.9251 -1.8375 -0.2974
## (Intercept)-Didelphis_virginiana -1.4476 0.7574 -2.9927 -1.4578
## (Intercept)-Sylvilagus_floridanus -0.4345 0.9434 -2.0573 -0.4923
## (Intercept)-Sciurus_carolinensis -1.7055 0.7740 -3.4615 -1.6552
## (Intercept)-Vulpes_vulpes -1.0785 1.5807 -3.4807 -1.3226
## (Intercept)-Sus_scrofa -2.1801 0.9386 -4.2598 -2.1356
## Cogon_Patch_Size-Odocoileus_virginianus -0.0875 0.7293 -1.3928 -0.1222
## Cogon_Patch_Size-Canis_latrans 0.6668 0.7034 -0.3861 0.5519
## Cogon_Patch_Size-Sciurus_niger -0.7570 0.9523 -3.1818 -0.6162
## Cogon_Patch_Size-Procyon_lotor -0.3021 0.4648 -1.1853 -0.3030
## Cogon_Patch_Size-Dasypus_novemcinctus -0.2005 0.4252 -1.1107 -0.1988
## Cogon_Patch_Size-Lynx_rufus -0.3233 0.7826 -1.5980 -0.3733
## Cogon_Patch_Size-Didelphis_virginiana 0.5730 0.5096 -0.3123 0.5389
## Cogon_Patch_Size-Sylvilagus_floridanus -0.9946 0.9138 -3.2694 -0.8398
## Cogon_Patch_Size-Sciurus_carolinensis -0.8284 0.7323 -2.4711 -0.6858
## Cogon_Patch_Size-Vulpes_vulpes -0.6112 1.0249 -2.8606 -0.5214
## Cogon_Patch_Size-Sus_scrofa -0.5681 0.8226 -2.5149 -0.4356
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2600 0.5354 -0.7282 0.2511
## Avg_Cogongrass_Cover-Canis_latrans 0.3425 0.3977 -0.4172 0.3330
## Avg_Cogongrass_Cover-Sciurus_niger -0.0530 0.5615 -1.2795 -0.0208
## Avg_Cogongrass_Cover-Procyon_lotor 0.3028 0.4018 -0.4449 0.2955
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.4418 0.3586 -0.2208 0.4265
## Avg_Cogongrass_Cover-Lynx_rufus 0.5555 0.4713 -0.2180 0.5040
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2673 0.3917 -0.5731 0.2808
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0051 0.4747 -1.0157 0.0254
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4848 0.3986 -0.2637 0.4685
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3571 0.4647 -0.5619 0.3594
## Avg_Cogongrass_Cover-Sus_scrofa 0.0006 0.5508 -1.3026 0.0567
## total_shrub_cover-Odocoileus_virginianus -0.1126 0.5178 -1.1530 -0.1163
## total_shrub_cover-Canis_latrans 0.0716 0.4284 -0.6763 0.0530
## total_shrub_cover-Sciurus_niger -0.4130 0.5056 -1.5110 -0.3796
## total_shrub_cover-Procyon_lotor -0.6443 0.4443 -1.6171 -0.6011
## total_shrub_cover-Dasypus_novemcinctus -0.0366 0.3351 -0.6829 -0.0478
## total_shrub_cover-Lynx_rufus -0.5321 0.5276 -1.6687 -0.4899
## total_shrub_cover-Didelphis_virginiana -0.2424 0.3893 -1.1021 -0.2360
## total_shrub_cover-Sylvilagus_floridanus -0.2125 0.4587 -1.1470 -0.1971
## total_shrub_cover-Sciurus_carolinensis -0.0546 0.3933 -0.8655 -0.0596
## total_shrub_cover-Vulpes_vulpes -0.2260 0.5087 -1.2331 -0.2020
## total_shrub_cover-Sus_scrofa 0.0793 0.4997 -0.8315 0.0373
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.3805 1.0771 307
## (Intercept)-Canis_latrans 1.9891 1.0066 591
## (Intercept)-Sciurus_niger 1.5285 1.0237 293
## (Intercept)-Procyon_lotor 1.9522 1.0118 554
## (Intercept)-Dasypus_novemcinctus 0.5632 1.0062 721
## (Intercept)-Lynx_rufus 1.7333 1.0671 425
## (Intercept)-Didelphis_virginiana 0.0080 1.0358 690
## (Intercept)-Sylvilagus_floridanus 1.5315 1.1044 380
## (Intercept)-Sciurus_carolinensis -0.2582 1.0075 465
## (Intercept)-Vulpes_vulpes 2.8458 1.0370 121
## (Intercept)-Sus_scrofa -0.5123 1.0346 609
## Cogon_Patch_Size-Odocoileus_virginianus 1.4139 1.0111 786
## Cogon_Patch_Size-Canis_latrans 2.3274 1.0272 635
## Cogon_Patch_Size-Sciurus_niger 0.7723 1.0069 477
## Cogon_Patch_Size-Procyon_lotor 0.6453 1.0004 921
## Cogon_Patch_Size-Dasypus_novemcinctus 0.6060 1.0011 1333
## Cogon_Patch_Size-Lynx_rufus 1.4567 1.0064 508
## Cogon_Patch_Size-Didelphis_virginiana 1.6657 1.0014 723
## Cogon_Patch_Size-Sylvilagus_floridanus 0.2821 1.0127 443
## Cogon_Patch_Size-Sciurus_carolinensis 0.2483 1.0123 422
## Cogon_Patch_Size-Vulpes_vulpes 1.1272 1.0535 297
## Cogon_Patch_Size-Sus_scrofa 0.7877 1.0208 762
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.3165 1.0028 966
## Avg_Cogongrass_Cover-Canis_latrans 1.1727 1.0010 959
## Avg_Cogongrass_Cover-Sciurus_niger 0.9404 1.0034 678
## Avg_Cogongrass_Cover-Procyon_lotor 1.1267 1.0040 946
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1799 1.0054 1172
## Avg_Cogongrass_Cover-Lynx_rufus 1.7331 1.0045 603
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9833 1.0044 1089
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.8781 1.0340 584
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.2840 1.0002 975
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2769 1.0015 1007
## Avg_Cogongrass_Cover-Sus_scrofa 0.9415 1.0168 752
## total_shrub_cover-Odocoileus_virginianus 0.9351 1.0042 1085
## total_shrub_cover-Canis_latrans 1.0322 1.0073 922
## total_shrub_cover-Sciurus_niger 0.4855 1.0008 937
## total_shrub_cover-Procyon_lotor 0.1242 1.0060 911
## total_shrub_cover-Dasypus_novemcinctus 0.6586 1.0118 1234
## total_shrub_cover-Lynx_rufus 0.3563 1.0010 684
## total_shrub_cover-Didelphis_virginiana 0.5333 1.0016 1104
## total_shrub_cover-Sylvilagus_floridanus 0.6238 1.0107 716
## total_shrub_cover-Sciurus_carolinensis 0.7803 1.0136 1228
## total_shrub_cover-Vulpes_vulpes 0.7499 1.0024 893
## total_shrub_cover-Sus_scrofa 1.1926 1.0024 1045
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5222 0.0811 0.3625 0.5214 0.6873
## (Intercept)-Canis_latrans -2.4295 0.1902 -2.8037 -2.4218 -2.0742
## (Intercept)-Sciurus_niger -3.8652 0.6063 -5.0989 -3.8264 -2.8178
## (Intercept)-Procyon_lotor -2.1753 0.1483 -2.4747 -2.1699 -1.8957
## (Intercept)-Dasypus_novemcinctus -1.4371 0.1562 -1.7542 -1.4340 -1.1462
## (Intercept)-Lynx_rufus -3.3264 0.3335 -4.0073 -3.3094 -2.7073
## (Intercept)-Didelphis_virginiana -2.1206 0.2730 -2.6801 -2.1096 -1.6171
## (Intercept)-Sylvilagus_floridanus -3.1361 0.3457 -3.8766 -3.1134 -2.5085
## (Intercept)-Sciurus_carolinensis -2.2553 0.2876 -2.8332 -2.2481 -1.7337
## (Intercept)-Vulpes_vulpes -3.9355 0.7590 -5.5124 -3.9029 -2.5931
## (Intercept)-Sus_scrofa -2.8042 0.5030 -3.8703 -2.7649 -1.9150
## week-Odocoileus_virginianus 1.2795 0.1201 1.0455 1.2787 1.5155
## week-Canis_latrans 0.5842 0.2587 0.0860 0.5848 1.1197
## week-Sciurus_niger -0.4619 0.5559 -1.7372 -0.4041 0.4394
## week-Procyon_lotor 0.1911 0.2087 -0.2135 0.1977 0.5926
## week-Dasypus_novemcinctus 0.1020 0.2274 -0.3403 0.1048 0.5497
## week-Lynx_rufus 0.3853 0.3382 -0.2883 0.3777 1.0536
## week-Didelphis_virginiana 0.0696 0.3620 -0.6237 0.0790 0.7313
## week-Sylvilagus_floridanus 0.0570 0.3471 -0.5962 0.0623 0.7409
## week-Sciurus_carolinensis 0.8028 0.3611 0.0924 0.7862 1.5637
## week-Vulpes_vulpes 0.1698 0.5391 -0.9553 0.1880 1.1517
## week-Sus_scrofa 0.6852 0.4460 -0.1767 0.6645 1.6123
## I(week^2)-Odocoileus_virginianus -0.5273 0.0515 -0.6270 -0.5272 -0.4263
## I(week^2)-Canis_latrans -0.2459 0.1054 -0.4640 -0.2456 -0.0427
## I(week^2)-Sciurus_niger -0.2931 0.2256 -0.7439 -0.2859 0.1539
## I(week^2)-Procyon_lotor -0.1250 0.0892 -0.2929 -0.1279 0.0519
## I(week^2)-Dasypus_novemcinctus -0.1783 0.1025 -0.3830 -0.1779 0.0210
## I(week^2)-Lynx_rufus -0.2387 0.1544 -0.5493 -0.2330 0.0592
## I(week^2)-Didelphis_virginiana -0.4036 0.2027 -0.8365 -0.3896 -0.0500
## I(week^2)-Sylvilagus_floridanus -0.1842 0.1655 -0.5343 -0.1821 0.1265
## I(week^2)-Sciurus_carolinensis -0.2845 0.1424 -0.5818 -0.2778 -0.0116
## I(week^2)-Vulpes_vulpes -0.3933 0.2356 -0.9181 -0.3800 0.0284
## I(week^2)-Sus_scrofa -0.2429 0.1721 -0.5819 -0.2390 0.0849
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0147 1500
## (Intercept)-Canis_latrans 1.0020 741
## (Intercept)-Sciurus_niger 1.0547 198
## (Intercept)-Procyon_lotor 1.0092 1311
## (Intercept)-Dasypus_novemcinctus 1.0067 1340
## (Intercept)-Lynx_rufus 1.0297 286
## (Intercept)-Didelphis_virginiana 1.0182 1167
## (Intercept)-Sylvilagus_floridanus 1.0804 363
## (Intercept)-Sciurus_carolinensis 1.0053 1190
## (Intercept)-Vulpes_vulpes 1.0140 130
## (Intercept)-Sus_scrofa 1.0070 605
## week-Odocoileus_virginianus 1.0035 1500
## week-Canis_latrans 1.0184 1141
## week-Sciurus_niger 1.0135 317
## week-Procyon_lotor 1.0028 1221
## week-Dasypus_novemcinctus 1.0121 1166
## week-Lynx_rufus 1.0060 906
## week-Didelphis_virginiana 1.0103 872
## week-Sylvilagus_floridanus 1.0094 862
## week-Sciurus_carolinensis 1.0099 1201
## week-Vulpes_vulpes 1.0166 496
## week-Sus_scrofa 1.0018 1261
## I(week^2)-Odocoileus_virginianus 1.0048 1500
## I(week^2)-Canis_latrans 1.0133 1191
## I(week^2)-Sciurus_niger 1.0256 418
## I(week^2)-Procyon_lotor 1.0012 1188
## I(week^2)-Dasypus_novemcinctus 1.0016 1266
## I(week^2)-Lynx_rufus 1.0015 781
## I(week^2)-Didelphis_virginiana 1.0001 574
## I(week^2)-Sylvilagus_floridanus 1.0053 707
## I(week^2)-Sciurus_carolinensis 1.0066 1335
## I(week^2)-Vulpes_vulpes 1.0003 515
## I(week^2)-Sus_scrofa 1.0049 1229
#Includes quadratic week covariate of detection and only foraging for occupancy
ms_weekQ_forage<- msPGOcc(
occ.formula = occ.forage,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.706
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2172 0.6307 -1.5111 -0.2197 1.0240 1.0054 609
## Veg_shannon_index 0.8279 0.3860 0.1412 0.8208 1.6016 1.0064 231
## Avg_Cogongrass_Cover 0.8253 0.3673 0.1561 0.8209 1.5783 1.0112 290
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.0794 3.1063 0.8694 3.2561 12.3255 1.0089 574
## Veg_shannon_index 0.3901 0.4787 0.0413 0.2314 1.7749 1.0495 521
## Avg_Cogongrass_Cover 0.2804 0.3610 0.0349 0.1664 1.2009 1.0045 610
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.6533 0.7382 0.0558 0.419 2.6484 1.0222 111
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3050 0.4600 -3.1471 -2.3266 -1.4064 1.0096 1500
## week 0.3516 0.2452 -0.1790 0.3608 0.8185 1.0109 816
## I(week^2) -0.2852 0.1038 -0.4994 -0.2824 -0.0821 1.0301 753
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4186 1.5800 0.8558 2.0482 6.2484 1.0304 403
## week 0.4463 0.3586 0.1007 0.3513 1.4016 1.0118 689
## I(week^2) 0.0710 0.0536 0.0225 0.0579 0.1978 1.0433 662
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.7204 1.4014 1.3887 3.5616
## (Intercept)-Canis_latrans 0.2227 0.6248 -1.0065 0.2319
## (Intercept)-Sciurus_niger -0.0407 1.3375 -2.1366 -0.2953
## (Intercept)-Procyon_lotor 0.5412 0.6110 -0.7063 0.5348
## (Intercept)-Dasypus_novemcinctus -0.7525 0.5856 -1.9453 -0.7352
## (Intercept)-Lynx_rufus 0.1755 1.1036 -1.4517 0.0239
## (Intercept)-Didelphis_virginiana -1.4846 0.6344 -2.7344 -1.4601
## (Intercept)-Sylvilagus_floridanus -0.3390 0.8095 -1.8591 -0.3940
## (Intercept)-Sciurus_carolinensis -1.5524 0.6372 -2.8912 -1.5296
## (Intercept)-Vulpes_vulpes -0.7246 1.4864 -3.1236 -0.9276
## (Intercept)-Sus_scrofa -2.3550 0.9172 -4.3008 -2.3122
## Veg_shannon_index-Odocoileus_virginianus 0.7613 0.6291 -0.3957 0.7344
## Veg_shannon_index-Canis_latrans 0.9398 0.4819 0.0834 0.9189
## Veg_shannon_index-Sciurus_niger 1.0014 0.7428 -0.2311 0.9385
## Veg_shannon_index-Procyon_lotor 0.8675 0.4671 -0.0122 0.8636
## Veg_shannon_index-Dasypus_novemcinctus 0.6594 0.4728 -0.2571 0.6504
## Veg_shannon_index-Lynx_rufus 0.5063 0.6458 -0.8964 0.5313
## Veg_shannon_index-Didelphis_virginiana 0.6693 0.4876 -0.3089 0.6712
## Veg_shannon_index-Sylvilagus_floridanus 1.0995 0.5825 0.1030 1.0523
## Veg_shannon_index-Sciurus_carolinensis 0.6001 0.5013 -0.3873 0.6108
## Veg_shannon_index-Vulpes_vulpes 0.7055 0.5720 -0.3408 0.6982
## Veg_shannon_index-Sus_scrofa 1.3906 0.7053 0.2249 1.2961
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.8414 0.5725 -0.1977 0.8121
## Avg_Cogongrass_Cover-Canis_latrans 1.0409 0.4653 0.1883 1.0229
## Avg_Cogongrass_Cover-Sciurus_niger 0.5169 0.6817 -1.0064 0.5605
## Avg_Cogongrass_Cover-Procyon_lotor 0.9215 0.4640 0.0614 0.9021
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9032 0.4335 0.0860 0.8870
## Avg_Cogongrass_Cover-Lynx_rufus 0.9840 0.5315 -0.0330 0.9561
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9127 0.4527 0.0112 0.9101
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5702 0.5149 -0.5072 0.5785
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.9123 0.4592 0.0207 0.9026
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.8857 0.5429 -0.1930 0.8706
## Avg_Cogongrass_Cover-Sus_scrofa 0.6186 0.5721 -0.5770 0.6580
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.0358 1.0227 290
## (Intercept)-Canis_latrans 1.4487 0.9996 969
## (Intercept)-Sciurus_niger 3.0065 1.0116 129
## (Intercept)-Procyon_lotor 1.7506 1.0044 695
## (Intercept)-Dasypus_novemcinctus 0.3553 1.0117 1104
## (Intercept)-Lynx_rufus 2.9433 1.0116 247
## (Intercept)-Didelphis_virginiana -0.2057 1.0007 1112
## (Intercept)-Sylvilagus_floridanus 1.5420 1.0005 492
## (Intercept)-Sciurus_carolinensis -0.3322 1.0168 903
## (Intercept)-Vulpes_vulpes 2.8760 1.2181 116
## (Intercept)-Sus_scrofa -0.7597 1.0084 404
## Veg_shannon_index-Odocoileus_virginianus 2.0853 1.0039 529
## Veg_shannon_index-Canis_latrans 1.9287 1.0008 562
## Veg_shannon_index-Sciurus_niger 2.6508 1.0200 365
## Veg_shannon_index-Procyon_lotor 1.8101 1.0035 407
## Veg_shannon_index-Dasypus_novemcinctus 1.5967 1.0020 550
## Veg_shannon_index-Lynx_rufus 1.6268 1.0220 507
## Veg_shannon_index-Didelphis_virginiana 1.6124 1.0014 588
## Veg_shannon_index-Sylvilagus_floridanus 2.3990 1.0062 347
## Veg_shannon_index-Sciurus_carolinensis 1.5239 1.0095 545
## Veg_shannon_index-Vulpes_vulpes 1.9001 1.0071 433
## Veg_shannon_index-Sus_scrofa 3.0800 1.0105 334
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.0888 1.0017 551
## Avg_Cogongrass_Cover-Canis_latrans 2.0337 1.0178 429
## Avg_Cogongrass_Cover-Sciurus_niger 1.8137 1.0189 478
## Avg_Cogongrass_Cover-Procyon_lotor 1.8890 1.0016 519
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.8048 1.0034 339
## Avg_Cogongrass_Cover-Lynx_rufus 2.1504 1.0031 430
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.7966 1.0056 507
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.5702 1.0009 425
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.8445 1.0168 451
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.0333 1.0016 503
## Avg_Cogongrass_Cover-Sus_scrofa 1.6757 1.0023 513
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5253 0.0773 0.3703 0.5244 0.6722
## (Intercept)-Canis_latrans -2.4258 0.1897 -2.8032 -2.4178 -2.0786
## (Intercept)-Sciurus_niger -4.2383 0.6586 -5.5506 -4.2314 -3.0121
## (Intercept)-Procyon_lotor -2.1699 0.1537 -2.4785 -2.1652 -1.8688
## (Intercept)-Dasypus_novemcinctus -1.4409 0.1611 -1.7587 -1.4377 -1.1386
## (Intercept)-Lynx_rufus -3.4144 0.3633 -4.1855 -3.4044 -2.7547
## (Intercept)-Didelphis_virginiana -2.1101 0.2725 -2.6784 -2.0989 -1.6288
## (Intercept)-Sylvilagus_floridanus -3.1377 0.3417 -3.8387 -3.1151 -2.4962
## (Intercept)-Sciurus_carolinensis -2.2540 0.2808 -2.8257 -2.2444 -1.7457
## (Intercept)-Vulpes_vulpes -4.1574 0.7787 -5.6407 -4.1697 -2.6308
## (Intercept)-Sus_scrofa -2.7845 0.4823 -3.7567 -2.7494 -1.9371
## week-Odocoileus_virginianus 1.2838 0.1234 1.0461 1.2853 1.5267
## week-Canis_latrans 0.5872 0.2739 0.0506 0.5783 1.1236
## week-Sciurus_niger -0.4440 0.5570 -1.6556 -0.4134 0.4915
## week-Procyon_lotor 0.2020 0.2081 -0.2007 0.1939 0.6075
## week-Dasypus_novemcinctus 0.1141 0.2296 -0.3441 0.1159 0.5684
## week-Lynx_rufus 0.3918 0.3431 -0.2796 0.3857 1.0696
## week-Didelphis_virginiana 0.0768 0.3717 -0.6586 0.0904 0.7476
## week-Sylvilagus_floridanus 0.0539 0.3417 -0.6262 0.0663 0.7231
## week-Sciurus_carolinensis 0.8156 0.3696 0.1408 0.8055 1.5827
## week-Vulpes_vulpes 0.2151 0.5106 -0.7789 0.2137 1.1848
## week-Sus_scrofa 0.6942 0.4414 -0.1861 0.6853 1.5924
## I(week^2)-Odocoileus_virginianus -0.5292 0.0509 -0.6290 -0.5274 -0.4306
## I(week^2)-Canis_latrans -0.2422 0.1096 -0.4539 -0.2432 -0.0311
## I(week^2)-Sciurus_niger -0.3079 0.2354 -0.7966 -0.2988 0.1229
## I(week^2)-Procyon_lotor -0.1274 0.0880 -0.3040 -0.1267 0.0395
## I(week^2)-Dasypus_novemcinctus -0.1791 0.1034 -0.3903 -0.1787 0.0105
## I(week^2)-Lynx_rufus -0.2387 0.1510 -0.5324 -0.2416 0.0537
## I(week^2)-Didelphis_virginiana -0.4099 0.2076 -0.8497 -0.3894 -0.0604
## I(week^2)-Sylvilagus_floridanus -0.1821 0.1614 -0.5156 -0.1789 0.1202
## I(week^2)-Sciurus_carolinensis -0.2868 0.1454 -0.5886 -0.2797 -0.0128
## I(week^2)-Vulpes_vulpes -0.3983 0.2552 -0.9653 -0.3743 0.0340
## I(week^2)-Sus_scrofa -0.2397 0.1765 -0.5947 -0.2360 0.0909
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0059 1613
## (Intercept)-Canis_latrans 1.0037 1083
## (Intercept)-Sciurus_niger 1.0315 109
## (Intercept)-Procyon_lotor 0.9996 1170
## (Intercept)-Dasypus_novemcinctus 1.0056 1500
## (Intercept)-Lynx_rufus 1.0098 286
## (Intercept)-Didelphis_virginiana 1.0048 1177
## (Intercept)-Sylvilagus_floridanus 1.0089 428
## (Intercept)-Sciurus_carolinensis 1.0029 1044
## (Intercept)-Vulpes_vulpes 1.0761 123
## (Intercept)-Sus_scrofa 1.0038 685
## week-Odocoileus_virginianus 1.0034 1500
## week-Canis_latrans 1.0133 882
## week-Sciurus_niger 1.0028 312
## week-Procyon_lotor 0.9995 1325
## week-Dasypus_novemcinctus 1.0033 1239
## week-Lynx_rufus 1.0025 693
## week-Didelphis_virginiana 1.0047 893
## week-Sylvilagus_floridanus 1.0009 904
## week-Sciurus_carolinensis 1.0053 1158
## week-Vulpes_vulpes 1.0265 541
## week-Sus_scrofa 1.0110 959
## I(week^2)-Odocoileus_virginianus 1.0006 1514
## I(week^2)-Canis_latrans 1.0103 1334
## I(week^2)-Sciurus_niger 1.0166 383
## I(week^2)-Procyon_lotor 0.9999 1256
## I(week^2)-Dasypus_novemcinctus 1.0006 1306
## I(week^2)-Lynx_rufus 1.0031 684
## I(week^2)-Didelphis_virginiana 1.0205 590
## I(week^2)-Sylvilagus_floridanus 1.0376 693
## I(week^2)-Sciurus_carolinensis 1.0007 1034
## I(week^2)-Vulpes_vulpes 1.0294 353
## I(week^2)-Sus_scrofa 1.0167 1265
#Includes quadratic week covariate of detection and only cogon for occupancy
ms_weekQ_cogon<- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6858
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.2472 0.5888 -1.3934 -0.2632 0.9853 1.0238 752
## Avg_Cogongrass_Cover 0.2066 0.2334 -0.2605 0.2059 0.6726 1.0070 580
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.3533 2.5900 0.6656 2.6872 10.6205 1.0059 407
## Avg_Cogongrass_Cover 0.2581 0.3083 0.0326 0.1652 1.0931 1.0268 752
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.8169 0.8165 0.0801 0.582 3.0646 1.0084 199
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.2893 0.4536 -3.1210 -2.3047 -1.3167 1.0232 1500
## week 0.3634 0.2381 -0.1151 0.3702 0.8212 1.0019 734
## I(week^2) -0.2831 0.0980 -0.4715 -0.2826 -0.0895 0.9999 873
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2425 1.4436 0.7395 1.8942 6.1418 1.0355 526
## week 0.4426 0.3385 0.1015 0.3576 1.3322 1.0086 579
## I(week^2) 0.0718 0.0549 0.0211 0.0581 0.2106 1.0096 912
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.3661 1.3850 1.0249 3.2126
## (Intercept)-Canis_latrans 0.2937 0.6288 -0.9164 0.3018
## (Intercept)-Sciurus_niger -0.4654 1.3207 -2.3967 -0.6647
## (Intercept)-Procyon_lotor 0.5104 0.5937 -0.6462 0.5200
## (Intercept)-Dasypus_novemcinctus -0.6795 0.5982 -1.8946 -0.6716
## (Intercept)-Lynx_rufus -0.0455 0.9411 -1.7895 -0.1082
## (Intercept)-Didelphis_virginiana -1.3877 0.6792 -2.8266 -1.3760
## (Intercept)-Sylvilagus_floridanus -0.2048 1.0084 -1.6754 -0.3100
## (Intercept)-Sciurus_carolinensis -1.4507 0.6527 -2.8300 -1.4234
## (Intercept)-Vulpes_vulpes -0.9423 1.2349 -3.0254 -1.0467
## (Intercept)-Sus_scrofa -1.8766 0.7987 -3.4815 -1.8428
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1842 0.4730 -0.7137 0.1781
## Avg_Cogongrass_Cover-Canis_latrans 0.3675 0.3563 -0.2606 0.3406
## Avg_Cogongrass_Cover-Sciurus_niger -0.0969 0.5038 -1.1471 -0.0544
## Avg_Cogongrass_Cover-Procyon_lotor 0.2649 0.3625 -0.4014 0.2532
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3419 0.3088 -0.2573 0.3408
## Avg_Cogongrass_Cover-Lynx_rufus 0.4504 0.4101 -0.2836 0.4204
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3508 0.3468 -0.2944 0.3402
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1166 0.4230 -1.0310 -0.1035
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3368 0.3378 -0.3220 0.3291
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2822 0.4308 -0.5492 0.2689
## Avg_Cogongrass_Cover-Sus_scrofa -0.0612 0.4755 -1.1659 -0.0172
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.6424 1.0086 346
## (Intercept)-Canis_latrans 1.5503 0.9995 775
## (Intercept)-Sciurus_niger 3.2346 1.0869 110
## (Intercept)-Procyon_lotor 1.6218 1.0082 867
## (Intercept)-Dasypus_novemcinctus 0.5159 1.0220 1008
## (Intercept)-Lynx_rufus 1.9704 1.0132 313
## (Intercept)-Didelphis_virginiana -0.0901 1.0009 673
## (Intercept)-Sylvilagus_floridanus 2.5968 1.1084 120
## (Intercept)-Sciurus_carolinensis -0.2532 1.0013 1073
## (Intercept)-Vulpes_vulpes 1.6227 1.0448 138
## (Intercept)-Sus_scrofa -0.3075 1.0024 613
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.1299 1.0180 1090
## Avg_Cogongrass_Cover-Canis_latrans 1.1164 1.0024 1088
## Avg_Cogongrass_Cover-Sciurus_niger 0.7895 1.0041 790
## Avg_Cogongrass_Cover-Procyon_lotor 1.0193 1.0027 982
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9624 1.0015 1267
## Avg_Cogongrass_Cover-Lynx_rufus 1.2701 1.0086 949
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0736 1.0119 1212
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6775 1.0045 818
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0254 1.0120 1331
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.1056 1.0104 1107
## Avg_Cogongrass_Cover-Sus_scrofa 0.7449 1.0107 988
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5251 0.0817 0.3695 0.5233 0.6903
## (Intercept)-Canis_latrans -2.4391 0.1949 -2.8552 -2.4334 -2.0985
## (Intercept)-Sciurus_niger -3.8886 0.6461 -5.1914 -3.8461 -2.7651
## (Intercept)-Procyon_lotor -2.1610 0.1486 -2.4439 -2.1634 -1.8645
## (Intercept)-Dasypus_novemcinctus -1.4441 0.1573 -1.7704 -1.4407 -1.1338
## (Intercept)-Lynx_rufus -3.4038 0.3523 -4.1249 -3.4026 -2.7369
## (Intercept)-Didelphis_virginiana -2.1229 0.2903 -2.7251 -2.0992 -1.5792
## (Intercept)-Sylvilagus_floridanus -3.1308 0.3644 -4.0019 -3.0920 -2.5278
## (Intercept)-Sciurus_carolinensis -2.2510 0.2845 -2.8436 -2.2353 -1.7385
## (Intercept)-Vulpes_vulpes -4.0001 0.7981 -5.5792 -3.9553 -2.5455
## (Intercept)-Sus_scrofa -2.8240 0.5093 -3.9204 -2.7902 -1.9405
## week-Odocoileus_virginianus 1.2804 0.1213 1.0482 1.2752 1.5156
## week-Canis_latrans 0.5856 0.2538 0.1106 0.5826 1.1021
## week-Sciurus_niger -0.3998 0.5495 -1.6488 -0.3406 0.5239
## week-Procyon_lotor 0.2085 0.2108 -0.1932 0.2056 0.6382
## week-Dasypus_novemcinctus 0.1028 0.2198 -0.3189 0.1068 0.5222
## week-Lynx_rufus 0.3889 0.3477 -0.2850 0.3832 1.0836
## week-Didelphis_virginiana 0.0496 0.3644 -0.6948 0.0498 0.7390
## week-Sylvilagus_floridanus 0.0948 0.3344 -0.5562 0.1009 0.7720
## week-Sciurus_carolinensis 0.8099 0.3594 0.1359 0.7889 1.5743
## week-Vulpes_vulpes 0.2020 0.5192 -0.8418 0.2162 1.1732
## week-Sus_scrofa 0.7087 0.4424 -0.1277 0.6974 1.6966
## I(week^2)-Odocoileus_virginianus -0.5277 0.0504 -0.6271 -0.5271 -0.4292
## I(week^2)-Canis_latrans -0.2398 0.1054 -0.4497 -0.2398 -0.0338
## I(week^2)-Sciurus_niger -0.2817 0.2288 -0.7751 -0.2712 0.1440
## I(week^2)-Procyon_lotor -0.1350 0.0913 -0.3192 -0.1348 0.0420
## I(week^2)-Dasypus_novemcinctus -0.1751 0.1013 -0.3726 -0.1708 0.0074
## I(week^2)-Lynx_rufus -0.2425 0.1441 -0.5375 -0.2401 0.0288
## I(week^2)-Didelphis_virginiana -0.4153 0.2085 -0.8655 -0.4003 -0.0559
## I(week^2)-Sylvilagus_floridanus -0.1821 0.1546 -0.5040 -0.1801 0.1106
## I(week^2)-Sciurus_carolinensis -0.2831 0.1412 -0.5790 -0.2738 -0.0222
## I(week^2)-Vulpes_vulpes -0.4120 0.2521 -0.9740 -0.3875 0.0026
## I(week^2)-Sus_scrofa -0.2441 0.1765 -0.5943 -0.2387 0.0994
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0070 1500
## (Intercept)-Canis_latrans 1.0025 952
## (Intercept)-Sciurus_niger 1.1460 99
## (Intercept)-Procyon_lotor 1.0029 1154
## (Intercept)-Dasypus_novemcinctus 1.0170 1361
## (Intercept)-Lynx_rufus 1.0182 287
## (Intercept)-Didelphis_virginiana 1.0083 1247
## (Intercept)-Sylvilagus_floridanus 1.1388 216
## (Intercept)-Sciurus_carolinensis 1.0236 1339
## (Intercept)-Vulpes_vulpes 1.1270 104
## (Intercept)-Sus_scrofa 1.0042 581
## week-Odocoileus_virginianus 1.0040 1500
## week-Canis_latrans 1.0040 1096
## week-Sciurus_niger 1.0131 283
## week-Procyon_lotor 1.0042 863
## week-Dasypus_novemcinctus 1.0090 1500
## week-Lynx_rufus 1.0013 604
## week-Didelphis_virginiana 1.0004 828
## week-Sylvilagus_floridanus 1.0065 973
## week-Sciurus_carolinensis 1.0009 1029
## week-Vulpes_vulpes 1.0156 480
## week-Sus_scrofa 1.0009 1210
## I(week^2)-Odocoileus_virginianus 1.0037 1500
## I(week^2)-Canis_latrans 1.0012 1141
## I(week^2)-Sciurus_niger 1.0012 429
## I(week^2)-Procyon_lotor 1.0001 1068
## I(week^2)-Dasypus_novemcinctus 1.0145 1384
## I(week^2)-Lynx_rufus 1.0007 714
## I(week^2)-Didelphis_virginiana 1.0119 568
## I(week^2)-Sylvilagus_floridanus 1.0380 798
## I(week^2)-Sciurus_carolinensis 1.0020 1054
## I(week^2)-Vulpes_vulpes 1.0099 485
## I(week^2)-Sus_scrofa 1.0064 1197
# Includes quadratic week covariate of detection and quadratic cogon for occupancy
ms_weekQ_cogonQ<- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.6712
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9785 0.6043 -2.2033 -0.9792 0.2179 0.9999 656
## Avg_Cogongrass_Cover -0.7618 0.3562 -1.4855 -0.7550 -0.0368 1.0079 405
## I(Avg_Cogongrass_Cover^2) 0.8409 0.3356 0.2433 0.8319 1.4705 1.0448 221
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.6569 2.7236 0.7622 2.9720 10.3427 1.0225 674
## Avg_Cogongrass_Cover 0.3415 0.4176 0.0398 0.2108 1.4136 1.0063 696
## I(Avg_Cogongrass_Cover^2) 0.4333 0.7995 0.0362 0.2017 2.5234 1.3498 129
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5131 0.4645 0.0546 0.3801 1.7339 1.0097 260
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.2737 0.4229 -3.0753 -2.2842 -1.4375 1.0136 1500
## week 0.3666 0.2317 -0.1077 0.3713 0.8101 1.0273 1040
## I(week^2) -0.2858 0.1038 -0.4976 -0.2837 -0.0793 0.9999 1023
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.0374 1.2380 0.7376 1.7260 5.3888 0.9997 1232
## week 0.4092 0.2980 0.0976 0.3310 1.2445 1.0198 543
## I(week^2) 0.0736 0.0728 0.0234 0.0566 0.2133 1.0651 449
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.8602 1.3866 0.6440 2.7002
## (Intercept)-Canis_latrans -0.5050 0.6446 -1.7542 -0.5063
## (Intercept)-Sciurus_niger -1.1375 1.1154 -2.9699 -1.2418
## (Intercept)-Procyon_lotor -0.2305 0.6277 -1.5249 -0.2129
## (Intercept)-Dasypus_novemcinctus -1.4092 0.6326 -2.6779 -1.3996
## (Intercept)-Lynx_rufus -1.2164 0.8589 -2.6256 -1.2767
## (Intercept)-Didelphis_virginiana -2.0712 0.7186 -3.6392 -2.0440
## (Intercept)-Sylvilagus_floridanus -1.0711 0.7795 -2.6400 -1.0783
## (Intercept)-Sciurus_carolinensis -2.4403 0.7131 -3.9139 -2.4278
## (Intercept)-Vulpes_vulpes -2.2394 1.1048 -4.2825 -2.3113
## (Intercept)-Sus_scrofa -2.4918 0.8515 -4.1723 -2.4596
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7622 0.6220 -2.0803 -0.7408
## Avg_Cogongrass_Cover-Canis_latrans -0.5001 0.4952 -1.3985 -0.5261
## Avg_Cogongrass_Cover-Sciurus_niger -0.9948 0.6309 -2.4647 -0.9386
## Avg_Cogongrass_Cover-Procyon_lotor -0.6445 0.4778 -1.5591 -0.6657
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5776 0.4775 -1.4734 -0.5778
## Avg_Cogongrass_Cover-Lynx_rufus -0.6578 0.5156 -1.6714 -0.6667
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.5251 0.5171 -1.4700 -0.5416
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.1355 0.5625 -2.3327 -1.1079
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8086 0.4921 -1.8322 -0.7996
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8149 0.5591 -2.0257 -0.7994
## Avg_Cogongrass_Cover-Sus_scrofa -1.0404 0.6007 -2.3531 -1.0083
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.1036 0.7113 0.0505 0.9929
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.1627 0.7166 0.2058 1.0118
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.3949 0.6589 -1.0905 0.4484
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.0761 0.6546 0.2277 0.9719
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7352 0.3466 0.0659 0.7328
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.1591 0.5033 0.3680 1.0939
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.6215 0.3909 -0.1435 0.6222
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.8100 0.6311 -0.0411 0.7459
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 0.9695 0.3707 0.2893 0.9419
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 0.9585 0.5070 0.1261 0.9170
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.4073 0.5701 -0.9599 0.4757
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.1322 1.0180 455
## (Intercept)-Canis_latrans 0.7129 1.0026 944
## (Intercept)-Sciurus_niger 1.4203 1.0487 186
## (Intercept)-Procyon_lotor 0.9822 1.0197 674
## (Intercept)-Dasypus_novemcinctus -0.1782 1.0048 1006
## (Intercept)-Lynx_rufus 0.6931 1.0338 393
## (Intercept)-Didelphis_virginiana -0.7535 1.0034 896
## (Intercept)-Sylvilagus_floridanus 0.4955 1.0029 655
## (Intercept)-Sciurus_carolinensis -1.1380 0.9997 650
## (Intercept)-Vulpes_vulpes 0.0888 1.0180 258
## (Intercept)-Sus_scrofa -0.9292 1.0123 711
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.4849 1.0085 685
## Avg_Cogongrass_Cover-Canis_latrans 0.5613 1.0154 906
## Avg_Cogongrass_Cover-Sciurus_niger 0.0781 1.0042 537
## Avg_Cogongrass_Cover-Procyon_lotor 0.3764 1.0178 741
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3376 1.0008 791
## Avg_Cogongrass_Cover-Lynx_rufus 0.3909 1.0382 677
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.6287 1.0044 744
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1079 1.0021 569
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1679 1.0005 611
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2523 1.0101 597
## Avg_Cogongrass_Cover-Sus_scrofa 0.0056 1.0018 677
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 2.9511 1.1763 230
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 3.0686 1.0785 228
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.4992 1.0553 295
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.7543 1.1715 203
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4260 1.0038 886
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.3504 1.0271 449
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.3683 1.0176 662
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 2.0494 1.1561 136
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7611 1.0026 516
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.1447 1.0690 217
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.3190 1.0700 321
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5225 0.0794 0.3695 0.5246 0.6771
## (Intercept)-Canis_latrans -2.4490 0.1936 -2.8481 -2.4420 -2.0868
## (Intercept)-Sciurus_niger -3.8582 0.5868 -5.0900 -3.8173 -2.7693
## (Intercept)-Procyon_lotor -2.1592 0.1522 -2.4583 -2.1586 -1.8696
## (Intercept)-Dasypus_novemcinctus -1.4400 0.1552 -1.7647 -1.4357 -1.1396
## (Intercept)-Lynx_rufus -3.2376 0.3308 -3.9108 -3.2304 -2.6317
## (Intercept)-Didelphis_virginiana -2.1412 0.2723 -2.7314 -2.1208 -1.6358
## (Intercept)-Sylvilagus_floridanus -3.1021 0.3260 -3.7344 -3.0945 -2.4818
## (Intercept)-Sciurus_carolinensis -2.2523 0.2811 -2.8203 -2.2465 -1.7079
## (Intercept)-Vulpes_vulpes -3.8011 0.7096 -5.2113 -3.7791 -2.5054
## (Intercept)-Sus_scrofa -2.8153 0.5072 -3.9447 -2.7695 -1.9513
## week-Odocoileus_virginianus 1.2725 0.1216 1.0333 1.2710 1.5095
## week-Canis_latrans 0.5876 0.2604 0.1116 0.5829 1.0929
## week-Sciurus_niger -0.3325 0.5355 -1.4884 -0.2840 0.5721
## week-Procyon_lotor 0.2191 0.2130 -0.1978 0.2212 0.6335
## week-Dasypus_novemcinctus 0.1026 0.2165 -0.2991 0.0964 0.5351
## week-Lynx_rufus 0.4010 0.3639 -0.2946 0.3970 1.1109
## week-Didelphis_virginiana 0.0565 0.3628 -0.7123 0.0787 0.7079
## week-Sylvilagus_floridanus 0.0680 0.3454 -0.6313 0.0704 0.7232
## week-Sciurus_carolinensis 0.7984 0.3598 0.1400 0.7784 1.5612
## week-Vulpes_vulpes 0.2075 0.5404 -0.8986 0.2170 1.2448
## week-Sus_scrofa 0.6805 0.4414 -0.1494 0.6745 1.6059
## I(week^2)-Odocoileus_virginianus -0.5258 0.0498 -0.6243 -0.5258 -0.4271
## I(week^2)-Canis_latrans -0.2482 0.1094 -0.4598 -0.2459 -0.0438
## I(week^2)-Sciurus_niger -0.2687 0.2285 -0.7534 -0.2600 0.1716
## I(week^2)-Procyon_lotor -0.1354 0.0908 -0.3112 -0.1360 0.0427
## I(week^2)-Dasypus_novemcinctus -0.1787 0.1012 -0.3840 -0.1785 0.0106
## I(week^2)-Lynx_rufus -0.2433 0.1562 -0.5576 -0.2430 0.0642
## I(week^2)-Didelphis_virginiana -0.4176 0.2095 -0.8940 -0.4007 -0.0593
## I(week^2)-Sylvilagus_floridanus -0.1918 0.1561 -0.5002 -0.1873 0.1122
## I(week^2)-Sciurus_carolinensis -0.2826 0.1432 -0.5702 -0.2774 -0.0226
## I(week^2)-Vulpes_vulpes -0.4107 0.2635 -1.0210 -0.3794 0.0040
## I(week^2)-Sus_scrofa -0.2439 0.1760 -0.6141 -0.2383 0.0912
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 0.9994 1500
## (Intercept)-Canis_latrans 1.0361 960
## (Intercept)-Sciurus_niger 1.0072 183
## (Intercept)-Procyon_lotor 1.0197 1073
## (Intercept)-Dasypus_novemcinctus 1.0033 1500
## (Intercept)-Lynx_rufus 1.0259 403
## (Intercept)-Didelphis_virginiana 1.0039 1204
## (Intercept)-Sylvilagus_floridanus 1.0305 516
## (Intercept)-Sciurus_carolinensis 1.0017 1133
## (Intercept)-Vulpes_vulpes 1.0049 215
## (Intercept)-Sus_scrofa 1.0443 564
## week-Odocoileus_virginianus 1.0103 1372
## week-Canis_latrans 1.0015 1098
## week-Sciurus_niger 1.1206 400
## week-Procyon_lotor 1.0032 1243
## week-Dasypus_novemcinctus 1.0052 1500
## week-Lynx_rufus 1.0126 849
## week-Didelphis_virginiana 1.0159 786
## week-Sylvilagus_floridanus 1.0254 862
## week-Sciurus_carolinensis 1.0114 1050
## week-Vulpes_vulpes 1.0036 496
## week-Sus_scrofa 1.0119 1148
## I(week^2)-Odocoileus_virginianus 1.0098 1383
## I(week^2)-Canis_latrans 1.0021 1066
## I(week^2)-Sciurus_niger 1.0291 300
## I(week^2)-Procyon_lotor 1.0025 1257
## I(week^2)-Dasypus_novemcinctus 1.0073 1277
## I(week^2)-Lynx_rufus 1.0052 1144
## I(week^2)-Didelphis_virginiana 1.0152 574
## I(week^2)-Sylvilagus_floridanus 1.0000 939
## I(week^2)-Sciurus_carolinensis 1.0018 1177
## I(week^2)-Vulpes_vulpes 1.0108 379
## I(week^2)-Sus_scrofa 1.0015 1327
# Includes quadratic week covariate of detection and all covariates and quadratic cogon for occupancy
ms_weekQ_fullQ<- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.week.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_weekQ_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.week.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7375
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -1.0657 1.1315 -3.1898 -1.1017 1.3395 1.0004 556
## Cogon_Patch_Size 0.0332 0.7265 -1.4933 0.0842 1.2971 1.0401 397
## Veg_shannon_index 1.4065 0.6111 0.2630 1.4089 2.6188 1.0390 327
## total_shrub_cover -0.2119 0.4011 -1.0345 -0.1847 0.5180 1.0190 453
## Avg_Cogongrass_Cover 0.6437 0.9210 -0.9947 0.5785 2.6335 1.0513 122
## Tree_Density -1.9055 0.7572 -3.4090 -1.9019 -0.3640 1.0449 179
## Avg_Canopy_Cover 1.8161 0.5599 0.8049 1.7788 3.0404 1.0234 318
## I(Avg_Cogongrass_Cover^2) 1.6010 0.5644 0.5400 1.5727 2.8318 1.0469 164
## avg_veg_height -0.2677 0.4952 -1.2479 -0.2549 0.6887 1.1145 237
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 23.0743 21.5661 4.9226 16.7299 83.5140 1.3506 95
## Cogon_Patch_Size 3.4650 4.8395 0.1663 2.0521 16.5823 1.1554 290
## Veg_shannon_index 1.6379 3.8199 0.0567 0.6516 9.2452 1.5734 105
## total_shrub_cover 0.6121 1.0741 0.0414 0.3431 2.6668 1.1548 529
## Avg_Cogongrass_Cover 1.0078 1.8236 0.0453 0.4330 5.3547 1.1224 370
## Tree_Density 3.9861 11.8847 0.0798 1.1979 26.6571 1.8871 94
## Avg_Canopy_Cover 2.1551 2.5055 0.1260 1.3688 8.6758 1.2054 199
## I(Avg_Cogongrass_Cover^2) 0.9023 1.5065 0.0466 0.4125 4.7844 1.1801 161
## avg_veg_height 0.4887 0.7384 0.0432 0.2793 2.0160 1.1415 589
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.3256 1.581 0.0579 0.7786 6.0095 1.2372 69
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3167 0.4857 -3.2290 -2.3300 -1.2871 1.0080 1222
## week 0.3598 0.2315 -0.1203 0.3691 0.7782 1.0017 973
## I(week^2) -0.2870 0.1036 -0.4879 -0.2829 -0.0920 1.0015 712
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5124 1.4950 0.9175 2.1246 6.4367 1.0004 1357
## week 0.4233 0.2988 0.1011 0.3474 1.2395 1.0116 665
## I(week^2) 0.0717 0.0512 0.0216 0.0581 0.2058 1.0501 728
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 7.7179 4.0652 2.6419
## (Intercept)-Canis_latrans -1.1291 1.0785 -3.3691
## (Intercept)-Sciurus_niger 1.0926 2.6128 -2.7610
## (Intercept)-Procyon_lotor -0.3732 1.0407 -2.4649
## (Intercept)-Dasypus_novemcinctus -2.8483 1.2247 -5.5739
## (Intercept)-Lynx_rufus 0.1505 2.4605 -3.6731
## (Intercept)-Didelphis_virginiana -4.4315 1.4187 -7.4994
## (Intercept)-Sylvilagus_floridanus -2.5737 1.3842 -5.4274
## (Intercept)-Sciurus_carolinensis -5.1253 1.6047 -8.8051
## (Intercept)-Vulpes_vulpes -3.9924 3.0182 -8.7666
## (Intercept)-Sus_scrofa -6.5178 2.1717 -11.7869
## Cogon_Patch_Size-Odocoileus_virginianus 0.1441 1.4572 -2.7254
## Cogon_Patch_Size-Canis_latrans 1.8227 1.3372 -0.0727
## Cogon_Patch_Size-Sciurus_niger -0.7125 1.8578 -4.9292
## Cogon_Patch_Size-Procyon_lotor -0.0670 0.9042 -1.5164
## Cogon_Patch_Size-Dasypus_novemcinctus -0.0150 0.6966 -1.5178
## Cogon_Patch_Size-Lynx_rufus -0.2467 1.4578 -3.2123
## Cogon_Patch_Size-Didelphis_virginiana 1.9344 0.9850 0.2675
## Cogon_Patch_Size-Sylvilagus_floridanus -1.0878 1.5375 -4.9332
## Cogon_Patch_Size-Sciurus_carolinensis -1.0337 1.5599 -5.0419
## Cogon_Patch_Size-Vulpes_vulpes -0.3993 1.6632 -4.0203
## Cogon_Patch_Size-Sus_scrofa -0.2421 1.5257 -3.8244
## Veg_shannon_index-Odocoileus_virginianus 1.2381 1.1512 -1.1778
## Veg_shannon_index-Canis_latrans 1.8991 0.9144 0.3752
## Veg_shannon_index-Sciurus_niger 1.7255 1.5898 -0.8685
## Veg_shannon_index-Procyon_lotor 1.4186 0.7878 -0.1127
## Veg_shannon_index-Dasypus_novemcinctus 1.0334 0.7447 -0.4581
## Veg_shannon_index-Lynx_rufus 1.2707 1.4068 -1.6598
## Veg_shannon_index-Didelphis_virginiana 1.3742 0.8576 -0.2057
## Veg_shannon_index-Sylvilagus_floridanus 1.8442 0.9594 0.3242
## Veg_shannon_index-Sciurus_carolinensis 0.8745 0.9640 -1.3703
## Veg_shannon_index-Vulpes_vulpes 1.0756 1.1622 -1.3824
## Veg_shannon_index-Sus_scrofa 2.4880 1.3086 0.6509
## total_shrub_cover-Odocoileus_virginianus -0.0478 0.7673 -1.5640
## total_shrub_cover-Canis_latrans 0.0436 0.5359 -0.9655
## total_shrub_cover-Sciurus_niger -0.4486 0.8266 -2.2288
## total_shrub_cover-Procyon_lotor -0.7202 0.5986 -2.0512
## total_shrub_cover-Dasypus_novemcinctus 0.1127 0.4940 -0.8627
## total_shrub_cover-Lynx_rufus -0.6043 0.8378 -2.4463
## total_shrub_cover-Didelphis_virginiana -0.3404 0.6192 -1.7254
## total_shrub_cover-Sylvilagus_floridanus -0.0910 0.6548 -1.4633
## total_shrub_cover-Sciurus_carolinensis -0.0035 0.6222 -1.2920
## total_shrub_cover-Vulpes_vulpes -0.3609 0.7890 -2.1529
## total_shrub_cover-Sus_scrofa 0.0727 0.7420 -1.3845
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5803 1.2485 -1.9208
## Avg_Cogongrass_Cover-Canis_latrans 0.7379 1.1001 -1.2645
## Avg_Cogongrass_Cover-Sciurus_niger 0.3660 1.3689 -2.7661
## Avg_Cogongrass_Cover-Procyon_lotor 0.8965 1.1659 -1.0994
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1595 1.2198 -0.8562
## Avg_Cogongrass_Cover-Lynx_rufus 0.8258 1.2152 -1.2776
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.7422 1.1545 -1.3332
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.2572 1.2016 -2.2829
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.6331 1.1686 -1.5599
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.7183 1.2339 -1.5557
## Avg_Cogongrass_Cover-Sus_scrofa 0.3545 1.2289 -2.2395
## Tree_Density-Odocoileus_virginianus -0.9055 1.4231 -3.0514
## Tree_Density-Canis_latrans -2.6521 1.4212 -5.9128
## Tree_Density-Sciurus_niger -1.8674 1.8249 -5.4909
## Tree_Density-Procyon_lotor -1.7534 0.9430 -3.6435
## Tree_Density-Dasypus_novemcinctus -3.6810 2.0971 -9.7778
## Tree_Density-Lynx_rufus -0.7961 1.8516 -3.4626
## Tree_Density-Didelphis_virginiana -2.2977 1.1695 -5.2345
## Tree_Density-Sylvilagus_floridanus -2.4325 1.3593 -5.6709
## Tree_Density-Sciurus_carolinensis -2.7798 1.9295 -7.8186
## Tree_Density-Vulpes_vulpes -2.0878 1.9458 -6.2694
## Tree_Density-Sus_scrofa -2.3521 1.6085 -6.3928
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3272 1.3477 -1.4817
## Avg_Canopy_Cover-Canis_latrans 0.1992 0.7349 -1.3672
## Avg_Canopy_Cover-Sciurus_niger 2.3060 1.5245 -0.3181
## Avg_Canopy_Cover-Procyon_lotor 1.6668 0.7078 0.3765
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.9677 0.7070 0.7839
## Avg_Canopy_Cover-Lynx_rufus 1.5670 1.3095 -0.8557
## Avg_Canopy_Cover-Didelphis_virginiana 2.6938 1.0231 1.1635
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.3289 1.5221 1.0950
## Avg_Canopy_Cover-Sciurus_carolinensis 2.3112 0.9027 0.8897
## Avg_Canopy_Cover-Vulpes_vulpes 2.3204 1.2930 0.3791
## Avg_Canopy_Cover-Sus_scrofa 1.9637 0.8631 0.4651
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.8977 1.1195 0.1177
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.0544 0.8754 0.6773
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3722 1.1699 -1.1494
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.9285 0.8461 0.5569
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5056 0.7133 0.1965
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.1261 1.0241 0.5826
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2283 0.7041 -0.0949
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.4059 0.7869 -0.0584
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7364 0.7272 0.4678
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.9075 0.8804 0.4723
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.0461 0.9243 -1.1559
## avg_veg_height-Odocoileus_virginianus -0.2938 0.8271 -2.0026
## avg_veg_height-Canis_latrans -0.5190 0.6369 -1.8966
## avg_veg_height-Sciurus_niger -0.3745 0.8092 -2.1334
## avg_veg_height-Procyon_lotor 0.0110 0.6140 -1.1787
## avg_veg_height-Dasypus_novemcinctus 0.0213 0.6320 -1.2158
## avg_veg_height-Lynx_rufus -0.3811 0.8177 -2.0587
## avg_veg_height-Didelphis_virginiana -0.4153 0.6980 -1.9085
## avg_veg_height-Sylvilagus_floridanus -0.3589 0.6734 -1.7501
## avg_veg_height-Sciurus_carolinensis -0.0219 0.6902 -1.3707
## avg_veg_height-Vulpes_vulpes -0.4329 0.8097 -2.1569
## avg_veg_height-Sus_scrofa -0.3459 0.7522 -1.9271
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.0019 17.3938 1.3196 77
## (Intercept)-Canis_latrans -1.1361 1.0189 1.0057 451
## (Intercept)-Sciurus_niger 0.6498 7.5073 1.0125 121
## (Intercept)-Procyon_lotor -0.3617 1.7607 1.0089 503
## (Intercept)-Dasypus_novemcinctus -2.7529 -0.7409 1.0752 168
## (Intercept)-Lynx_rufus -0.2179 5.7570 1.0418 115
## (Intercept)-Didelphis_virginiana -4.2889 -2.0797 1.0404 405
## (Intercept)-Sylvilagus_floridanus -2.5286 0.1385 1.0487 396
## (Intercept)-Sciurus_carolinensis -4.9322 -2.5921 1.0915 172
## (Intercept)-Vulpes_vulpes -4.2338 2.9697 1.1513 64
## (Intercept)-Sus_scrofa -6.2565 -3.0123 1.0965 166
## Cogon_Patch_Size-Odocoileus_virginianus 0.1573 3.2874 1.0158 501
## Cogon_Patch_Size-Canis_latrans 1.5910 4.9716 1.0658 186
## Cogon_Patch_Size-Sciurus_niger -0.4897 2.7490 1.1629 156
## Cogon_Patch_Size-Procyon_lotor -0.0915 1.5662 1.0307 535
## Cogon_Patch_Size-Dasypus_novemcinctus 0.0325 1.2537 1.0315 204
## Cogon_Patch_Size-Lynx_rufus -0.2478 2.7937 1.1233 299
## Cogon_Patch_Size-Didelphis_virginiana 1.9021 4.0102 1.0997 280
## Cogon_Patch_Size-Sylvilagus_floridanus -0.7353 1.0075 1.0350 196
## Cogon_Patch_Size-Sciurus_carolinensis -0.7013 1.0455 1.0627 271
## Cogon_Patch_Size-Vulpes_vulpes -0.2665 2.8646 1.0354 252
## Cogon_Patch_Size-Sus_scrofa -0.0556 2.3376 1.0402 378
## Veg_shannon_index-Odocoileus_virginianus 1.3061 3.6288 1.0136 481
## Veg_shannon_index-Canis_latrans 1.8005 4.0677 1.0659 225
## Veg_shannon_index-Sciurus_niger 1.5925 5.3003 1.1200 222
## Veg_shannon_index-Procyon_lotor 1.3722 3.0871 1.0353 424
## Veg_shannon_index-Dasypus_novemcinctus 1.0459 2.4384 1.0080 503
## Veg_shannon_index-Lynx_rufus 1.2831 4.0822 1.0462 214
## Veg_shannon_index-Didelphis_virginiana 1.3463 2.9941 1.0444 551
## Veg_shannon_index-Sylvilagus_floridanus 1.7506 4.0245 1.0513 262
## Veg_shannon_index-Sciurus_carolinensis 0.9710 2.4698 1.0559 283
## Veg_shannon_index-Vulpes_vulpes 1.1985 2.9701 1.0235 433
## Veg_shannon_index-Sus_scrofa 2.2418 5.8551 1.1041 144
## total_shrub_cover-Odocoileus_virginianus -0.0653 1.6237 1.0145 700
## total_shrub_cover-Canis_latrans 0.0227 1.1591 1.0062 972
## total_shrub_cover-Sciurus_niger -0.3629 0.9862 1.0147 534
## total_shrub_cover-Procyon_lotor -0.6611 0.2922 1.0207 509
## total_shrub_cover-Dasypus_novemcinctus 0.1040 1.1120 1.0175 1026
## total_shrub_cover-Lynx_rufus -0.5049 0.6781 1.0454 335
## total_shrub_cover-Didelphis_virginiana -0.2762 0.7640 1.0064 687
## total_shrub_cover-Sylvilagus_floridanus -0.0828 1.2479 1.0180 634
## total_shrub_cover-Sciurus_carolinensis -0.0145 1.2844 1.0235 868
## total_shrub_cover-Vulpes_vulpes -0.3108 1.0103 1.0082 761
## total_shrub_cover-Sus_scrofa 0.0389 1.6624 1.0016 904
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5424 3.1155 1.0426 212
## Avg_Cogongrass_Cover-Canis_latrans 0.6613 3.0242 1.0360 164
## Avg_Cogongrass_Cover-Sciurus_niger 0.4134 2.8249 1.0320 185
## Avg_Cogongrass_Cover-Procyon_lotor 0.8014 3.5013 1.0480 191
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0495 3.9201 1.0802 212
## Avg_Cogongrass_Cover-Lynx_rufus 0.7306 3.5366 1.0425 190
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.6577 3.2364 1.0485 183
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.2556 2.4954 1.0507 144
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.5954 2.9326 1.0455 205
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.6025 3.2071 1.0597 182
## Avg_Cogongrass_Cover-Sus_scrofa 0.3308 2.7942 1.0199 153
## Tree_Density-Odocoileus_virginianus -1.1371 2.4570 1.0216 169
## Tree_Density-Canis_latrans -2.4592 -0.6502 1.1430 107
## Tree_Density-Sciurus_niger -1.9098 2.8201 1.0427 176
## Tree_Density-Procyon_lotor -1.7328 0.0227 1.0143 526
## Tree_Density-Dasypus_novemcinctus -3.1380 -1.2721 1.1694 67
## Tree_Density-Lynx_rufus -1.0931 3.7432 1.1120 114
## Tree_Density-Didelphis_virginiana -2.1548 -0.3509 1.0279 369
## Tree_Density-Sylvilagus_floridanus -2.2607 -0.2802 1.0750 244
## Tree_Density-Sciurus_carolinensis -2.3754 -0.6688 1.1979 84
## Tree_Density-Vulpes_vulpes -1.9404 1.2607 1.1525 144
## Tree_Density-Sus_scrofa -2.1648 0.2348 1.0753 245
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3979 4.0747 1.0088 400
## Avg_Canopy_Cover-Canis_latrans 0.2004 1.6334 1.0729 484
## Avg_Canopy_Cover-Sciurus_niger 2.0926 6.0553 1.0613 236
## Avg_Canopy_Cover-Procyon_lotor 1.6470 3.2260 1.0211 620
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.9005 3.4765 1.0536 233
## Avg_Canopy_Cover-Lynx_rufus 1.5439 4.3600 1.0471 282
## Avg_Canopy_Cover-Didelphis_virginiana 2.5428 5.1647 1.1433 246
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.0683 7.0184 1.1245 228
## Avg_Canopy_Cover-Sciurus_carolinensis 2.1734 4.5532 1.0419 319
## Avg_Canopy_Cover-Vulpes_vulpes 2.0873 5.3752 1.0227 336
## Avg_Canopy_Cover-Sus_scrofa 1.8834 3.9292 1.0218 601
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.7346 4.5268 1.0882 281
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.9261 4.1333 1.0955 226
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.4176 3.6825 1.0926 121
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.8351 3.9116 1.0278 286
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4521 3.0468 1.0312 345
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.9618 4.6545 1.0645 179
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2162 2.5998 1.0231 246
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3672 3.1395 1.0324 228
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6859 3.4365 1.0373 306
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.7955 3.9760 1.1197 181
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.1267 2.5735 1.0592 329
## avg_veg_height-Odocoileus_virginianus -0.2584 1.3433 1.0480 529
## avg_veg_height-Canis_latrans -0.4702 0.6075 1.0437 342
## avg_veg_height-Sciurus_niger -0.3345 1.1529 1.0320 375
## avg_veg_height-Procyon_lotor 0.0103 1.2399 1.0444 394
## avg_veg_height-Dasypus_novemcinctus 0.0302 1.2773 1.0642 412
## avg_veg_height-Lynx_rufus -0.3461 1.1248 1.1331 390
## avg_veg_height-Didelphis_virginiana -0.3970 0.8415 1.0635 433
## avg_veg_height-Sylvilagus_floridanus -0.3179 0.9190 1.0542 434
## avg_veg_height-Sciurus_carolinensis -0.0458 1.3725 1.0250 474
## avg_veg_height-Vulpes_vulpes -0.3703 1.0107 1.1331 387
## avg_veg_height-Sus_scrofa -0.3095 1.0630 1.0512 470
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5245 0.0800 0.3683 0.5248 0.6792
## (Intercept)-Canis_latrans -2.4264 0.1850 -2.7971 -2.4229 -2.0804
## (Intercept)-Sciurus_niger -4.5469 0.4773 -5.5254 -4.5389 -3.5607
## (Intercept)-Procyon_lotor -2.1659 0.1525 -2.4835 -2.1601 -1.8688
## (Intercept)-Dasypus_novemcinctus -1.4347 0.1550 -1.7664 -1.4283 -1.1289
## (Intercept)-Lynx_rufus -3.6046 0.3426 -4.3005 -3.5944 -2.9377
## (Intercept)-Didelphis_virginiana -2.1010 0.2780 -2.6654 -2.0918 -1.5786
## (Intercept)-Sylvilagus_floridanus -3.0796 0.2988 -3.7119 -3.0591 -2.5165
## (Intercept)-Sciurus_carolinensis -2.2518 0.2841 -2.8528 -2.2340 -1.7493
## (Intercept)-Vulpes_vulpes -3.9889 0.7175 -5.6968 -3.9555 -2.7273
## (Intercept)-Sus_scrofa -2.6616 0.4502 -3.6538 -2.6269 -1.8534
## week-Odocoileus_virginianus 1.2749 0.1220 1.0303 1.2739 1.5112
## week-Canis_latrans 0.5788 0.2739 0.0450 0.5666 1.1439
## week-Sciurus_niger -0.4077 0.5281 -1.5397 -0.3726 0.5451
## week-Procyon_lotor 0.2084 0.2123 -0.2173 0.2116 0.6205
## week-Dasypus_novemcinctus 0.1023 0.2240 -0.3207 0.0965 0.5455
## week-Lynx_rufus 0.3719 0.3495 -0.3015 0.3647 1.0605
## week-Didelphis_virginiana 0.0637 0.3859 -0.7238 0.0688 0.7897
## week-Sylvilagus_floridanus 0.0677 0.3354 -0.5994 0.0724 0.7007
## week-Sciurus_carolinensis 0.7863 0.3748 0.0718 0.7764 1.5797
## week-Vulpes_vulpes 0.2373 0.4983 -0.7944 0.2506 1.1744
## week-Sus_scrofa 0.6791 0.4402 -0.1327 0.6726 1.5924
## I(week^2)-Odocoileus_virginianus -0.5261 0.0505 -0.6251 -0.5259 -0.4262
## I(week^2)-Canis_latrans -0.2383 0.1095 -0.4580 -0.2358 -0.0306
## I(week^2)-Sciurus_niger -0.3043 0.2387 -0.7890 -0.2936 0.1368
## I(week^2)-Procyon_lotor -0.1330 0.0923 -0.3042 -0.1321 0.0487
## I(week^2)-Dasypus_novemcinctus -0.1802 0.1010 -0.3770 -0.1788 0.0173
## I(week^2)-Lynx_rufus -0.2425 0.1568 -0.5637 -0.2368 0.0505
## I(week^2)-Didelphis_virginiana -0.4119 0.2049 -0.8694 -0.3932 -0.0656
## I(week^2)-Sylvilagus_floridanus -0.1739 0.1598 -0.4952 -0.1716 0.1249
## I(week^2)-Sciurus_carolinensis -0.2769 0.1486 -0.5832 -0.2703 0.0099
## I(week^2)-Vulpes_vulpes -0.4063 0.2628 -0.9644 -0.3789 0.0278
## I(week^2)-Sus_scrofa -0.2386 0.1779 -0.6153 -0.2399 0.1083
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0013 1500
## (Intercept)-Canis_latrans 1.0164 1059
## (Intercept)-Sciurus_niger 1.0508 155
## (Intercept)-Procyon_lotor 1.0118 1198
## (Intercept)-Dasypus_novemcinctus 1.0222 1383
## (Intercept)-Lynx_rufus 1.0040 209
## (Intercept)-Didelphis_virginiana 1.0017 1159
## (Intercept)-Sylvilagus_floridanus 1.0182 610
## (Intercept)-Sciurus_carolinensis 1.0071 1048
## (Intercept)-Vulpes_vulpes 1.0211 139
## (Intercept)-Sus_scrofa 1.0104 863
## week-Odocoileus_virginianus 1.0004 1500
## week-Canis_latrans 1.0097 1100
## week-Sciurus_niger 1.0129 237
## week-Procyon_lotor 0.9999 1223
## week-Dasypus_novemcinctus 1.0064 1500
## week-Lynx_rufus 1.0225 657
## week-Didelphis_virginiana 1.0364 929
## week-Sylvilagus_floridanus 1.0060 1003
## week-Sciurus_carolinensis 1.0024 1102
## week-Vulpes_vulpes 1.0017 700
## week-Sus_scrofa 1.0080 1251
## I(week^2)-Odocoileus_virginianus 1.0020 1500
## I(week^2)-Canis_latrans 1.0021 1160
## I(week^2)-Sciurus_niger 1.0051 286
## I(week^2)-Procyon_lotor 1.0019 1193
## I(week^2)-Dasypus_novemcinctus 1.0018 1310
## I(week^2)-Lynx_rufus 1.0098 583
## I(week^2)-Didelphis_virginiana 1.0010 572
## I(week^2)-Sylvilagus_floridanus 1.0143 727
## I(week^2)-Sciurus_carolinensis 1.0077 1368
## I(week^2)-Vulpes_vulpes 1.0437 396
## I(week^2)-Sus_scrofa 1.0024 1380
#Includes quadratic week and full covariates of detection and only null for occupancy
ms_fullQ_null<- msPGOcc(
occ.formula = occ.null,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_null)
##
## Call:
## msPGOcc(occ.formula = occ.null, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7387
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1034 0.5338 -1.113 -0.1311 0.9698 1.0167 442
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.0026 2.1706 0.7842 2.3949 8.727 1.0261 743
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4150 0.4493 -3.2904 -2.4271 -1.4694 1.0004 1500
## shrub_cover 0.2145 0.2460 -0.2784 0.2037 0.7410 1.0136 840
## veg_height -0.0052 0.1521 -0.3195 -0.0029 0.3011 1.0023 1079
## week 0.3465 0.2501 -0.1688 0.3536 0.8061 1.0029 649
## I(week^2) -0.2877 0.1056 -0.5097 -0.2876 -0.0789 1.0015 636
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.3714 1.4653 0.8274 2.0334 6.2192 1.0112 579
## shrub_cover 0.4812 0.5766 0.0853 0.3642 1.5208 1.1141 607
## veg_height 0.1927 0.1300 0.0564 0.1590 0.5579 1.0153 1110
## week 0.4462 0.3952 0.1081 0.3406 1.3128 1.0231 544
## I(week^2) 0.0731 0.0642 0.0214 0.0589 0.1985 1.1078 732
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 3.3444 1.0706 1.7189 3.2127 5.9024
## (Intercept)-Canis_latrans 0.3999 0.4231 -0.3493 0.3911 1.3138
## (Intercept)-Sciurus_niger -0.4391 1.0790 -1.9579 -0.6299 2.5216
## (Intercept)-Procyon_lotor 0.7302 0.4111 -0.0226 0.7042 1.6098
## (Intercept)-Dasypus_novemcinctus -0.5746 0.3769 -1.3117 -0.5798 0.1694
## (Intercept)-Lynx_rufus 0.6316 0.9887 -0.7310 0.4495 3.3378
## (Intercept)-Didelphis_virginiana -1.2163 0.4660 -2.1518 -1.2129 -0.3026
## (Intercept)-Sylvilagus_floridanus -0.3162 0.5124 -1.2545 -0.3397 0.7405
## (Intercept)-Sciurus_carolinensis -1.2209 0.4937 -2.2172 -1.2243 -0.3120
## (Intercept)-Vulpes_vulpes -0.8252 1.2655 -2.7021 -1.0549 2.3385
## (Intercept)-Sus_scrofa -1.7034 0.6663 -3.0662 -1.6931 -0.4039
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0159 463
## (Intercept)-Canis_latrans 1.0099 1286
## (Intercept)-Sciurus_niger 1.0697 145
## (Intercept)-Procyon_lotor 1.0016 1500
## (Intercept)-Dasypus_novemcinctus 0.9999 1500
## (Intercept)-Lynx_rufus 1.0202 223
## (Intercept)-Didelphis_virginiana 1.0014 1333
## (Intercept)-Sylvilagus_floridanus 1.0116 702
## (Intercept)-Sciurus_carolinensis 1.0037 1257
## (Intercept)-Vulpes_vulpes 1.0260 119
## (Intercept)-Sus_scrofa 1.0008 820
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5375 0.0817 0.3828 0.5357 0.6994
## (Intercept)-Canis_latrans -2.5645 0.2048 -3.0054 -2.5570 -2.1813
## (Intercept)-Sciurus_niger -4.0612 0.7209 -5.5449 -4.0019 -2.7254
## (Intercept)-Procyon_lotor -2.1775 0.1600 -2.4983 -2.1743 -1.8742
## (Intercept)-Dasypus_novemcinctus -1.5710 0.1787 -1.9416 -1.5684 -1.2147
## (Intercept)-Lynx_rufus -3.6244 0.4034 -4.4428 -3.6239 -2.8265
## (Intercept)-Didelphis_virginiana -2.3125 0.2946 -2.9188 -2.3064 -1.7381
## (Intercept)-Sylvilagus_floridanus -3.0521 0.3111 -3.6900 -3.0375 -2.4690
## (Intercept)-Sciurus_carolinensis -2.4019 0.3270 -3.0576 -2.3880 -1.8104
## (Intercept)-Vulpes_vulpes -4.0881 0.8030 -5.6322 -4.0571 -2.6670
## (Intercept)-Sus_scrofa -3.1225 0.6221 -4.3440 -3.1338 -1.9349
## shrub_cover-Odocoileus_virginianus -0.0588 0.0697 -0.1964 -0.0596 0.0735
## shrub_cover-Canis_latrans -0.2833 0.2157 -0.7028 -0.2800 0.1348
## shrub_cover-Sciurus_niger -0.3457 0.4683 -1.3468 -0.3328 0.5179
## shrub_cover-Procyon_lotor 0.2558 0.1562 -0.0683 0.2553 0.5555
## shrub_cover-Dasypus_novemcinctus 0.7777 0.2840 0.2525 0.7763 1.3346
## shrub_cover-Lynx_rufus -0.3197 0.3472 -1.0241 -0.3122 0.3615
## shrub_cover-Didelphis_virginiana 0.8816 0.3529 0.2505 0.8665 1.6315
## shrub_cover-Sylvilagus_floridanus 0.2516 0.4023 -0.5198 0.2453 1.0841
## shrub_cover-Sciurus_carolinensis 0.7492 0.3953 -0.0084 0.7525 1.5311
## shrub_cover-Vulpes_vulpes -0.0889 0.5423 -1.2481 -0.0647 0.9524
## shrub_cover-Sus_scrofa 0.5047 0.7358 -0.9022 0.4915 2.0210
## veg_height-Odocoileus_virginianus -0.3304 0.0678 -0.4609 -0.3310 -0.1995
## veg_height-Canis_latrans -0.5843 0.1859 -0.9669 -0.5710 -0.2550
## veg_height-Sciurus_niger -0.0790 0.3931 -0.8206 -0.0816 0.7726
## veg_height-Procyon_lotor 0.3334 0.1226 0.1018 0.3310 0.5793
## veg_height-Dasypus_novemcinctus 0.2277 0.1294 -0.0269 0.2274 0.4733
## veg_height-Lynx_rufus 0.0383 0.2432 -0.4280 0.0483 0.4994
## veg_height-Didelphis_virginiana 0.4027 0.2327 -0.0314 0.3984 0.8603
## veg_height-Sylvilagus_floridanus 0.1089 0.2426 -0.3542 0.1075 0.5548
## veg_height-Sciurus_carolinensis 0.0517 0.2067 -0.3594 0.0503 0.4705
## veg_height-Vulpes_vulpes -0.1312 0.3061 -0.7441 -0.1208 0.4333
## veg_height-Sus_scrofa -0.1415 0.3280 -0.8473 -0.1283 0.4699
## week-Odocoileus_virginianus 1.3085 0.1249 1.0699 1.3067 1.5519
## week-Canis_latrans 0.5731 0.2610 0.0696 0.5739 1.0821
## week-Sciurus_niger -0.4282 0.5829 -1.7606 -0.3580 0.5311
## week-Procyon_lotor 0.2021 0.2190 -0.2372 0.2061 0.6141
## week-Dasypus_novemcinctus 0.1140 0.2305 -0.3300 0.1094 0.5738
## week-Lynx_rufus 0.3786 0.3474 -0.3256 0.3982 1.0648
## week-Didelphis_virginiana 0.0595 0.3842 -0.7389 0.0675 0.7722
## week-Sylvilagus_floridanus 0.0636 0.3419 -0.6309 0.0645 0.7190
## week-Sciurus_carolinensis 0.8162 0.3603 0.1250 0.8050 1.5511
## week-Vulpes_vulpes 0.1815 0.5432 -1.0176 0.2226 1.1862
## week-Sus_scrofa 0.6891 0.4399 -0.1263 0.6721 1.5596
## I(week^2)-Odocoileus_virginianus -0.5394 0.0520 -0.6471 -0.5376 -0.4407
## I(week^2)-Canis_latrans -0.2411 0.1090 -0.4630 -0.2409 -0.0347
## I(week^2)-Sciurus_niger -0.2876 0.2415 -0.8059 -0.2751 0.1544
## I(week^2)-Procyon_lotor -0.1345 0.0897 -0.3061 -0.1312 0.0341
## I(week^2)-Dasypus_novemcinctus -0.1854 0.1039 -0.3936 -0.1854 0.0215
## I(week^2)-Lynx_rufus -0.2437 0.1501 -0.5370 -0.2461 0.0497
## I(week^2)-Didelphis_virginiana -0.4183 0.2170 -0.8999 -0.4037 -0.0605
## I(week^2)-Sylvilagus_floridanus -0.1768 0.1629 -0.5107 -0.1693 0.1220
## I(week^2)-Sciurus_carolinensis -0.2936 0.1437 -0.5748 -0.2929 -0.0219
## I(week^2)-Vulpes_vulpes -0.4075 0.2513 -0.9614 -0.3872 0.0287
## I(week^2)-Sus_scrofa -0.2427 0.1804 -0.5953 -0.2419 0.1035
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0084 1500
## (Intercept)-Canis_latrans 1.0081 816
## (Intercept)-Sciurus_niger 1.0126 109
## (Intercept)-Procyon_lotor 1.0056 1005
## (Intercept)-Dasypus_novemcinctus 0.9997 1254
## (Intercept)-Lynx_rufus 1.0107 260
## (Intercept)-Didelphis_virginiana 1.0141 946
## (Intercept)-Sylvilagus_floridanus 1.0070 514
## (Intercept)-Sciurus_carolinensis 1.0007 821
## (Intercept)-Vulpes_vulpes 1.0384 156
## (Intercept)-Sus_scrofa 1.0010 461
## shrub_cover-Odocoileus_virginianus 1.0110 1500
## shrub_cover-Canis_latrans 1.0055 838
## shrub_cover-Sciurus_niger 1.0048 429
## shrub_cover-Procyon_lotor 1.0085 1204
## shrub_cover-Dasypus_novemcinctus 1.0051 747
## shrub_cover-Lynx_rufus 1.0102 375
## shrub_cover-Didelphis_virginiana 1.0074 722
## shrub_cover-Sylvilagus_floridanus 1.0252 542
## shrub_cover-Sciurus_carolinensis 1.0060 562
## shrub_cover-Vulpes_vulpes 1.0109 486
## shrub_cover-Sus_scrofa 1.0018 703
## veg_height-Odocoileus_virginianus 1.0056 1500
## veg_height-Canis_latrans 1.0263 725
## veg_height-Sciurus_niger 1.0008 551
## veg_height-Procyon_lotor 1.0020 1064
## veg_height-Dasypus_novemcinctus 1.0050 1362
## veg_height-Lynx_rufus 1.0075 638
## veg_height-Didelphis_virginiana 1.0043 1075
## veg_height-Sylvilagus_floridanus 1.0087 847
## veg_height-Sciurus_carolinensis 1.0037 1246
## veg_height-Vulpes_vulpes 1.0259 471
## veg_height-Sus_scrofa 1.0009 880
## week-Odocoileus_virginianus 1.0042 1500
## week-Canis_latrans 1.0539 1019
## week-Sciurus_niger 1.0282 173
## week-Procyon_lotor 1.0254 1219
## week-Dasypus_novemcinctus 1.0072 1282
## week-Lynx_rufus 1.0127 775
## week-Didelphis_virginiana 1.0023 870
## week-Sylvilagus_floridanus 1.0007 1017
## week-Sciurus_carolinensis 1.0011 1151
## week-Vulpes_vulpes 1.0256 414
## week-Sus_scrofa 1.0062 1041
## I(week^2)-Odocoileus_virginianus 1.0112 1500
## I(week^2)-Canis_latrans 1.0326 1151
## I(week^2)-Sciurus_niger 1.0148 304
## I(week^2)-Procyon_lotor 1.0070 1270
## I(week^2)-Dasypus_novemcinctus 1.0063 1346
## I(week^2)-Lynx_rufus 1.0116 717
## I(week^2)-Didelphis_virginiana 1.0181 502
## I(week^2)-Sylvilagus_floridanus 1.0190 706
## I(week^2)-Sciurus_carolinensis 1.0023 1440
## I(week^2)-Vulpes_vulpes 1.0037 391
## I(week^2)-Sus_scrofa 1.0074 1186
#Includes quadratic week and full covariates of detection and full for occupancy
ms_fullQ_full<- msPGOcc(
occ.formula = occ.full,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_full)
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7932
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1401 1.0169 -2.1500 -0.1175 1.8298 1.0198 695
## Cogon_Patch_Size -0.5004 0.5889 -1.7994 -0.4876 0.5831 1.0088 567
## Veg_shannon_index 1.3569 0.5867 0.2253 1.3394 2.4766 1.0635 169
## total_shrub_cover -0.2195 0.4159 -1.0383 -0.2174 0.5640 1.0087 331
## Avg_Cogongrass_Cover 2.6552 0.7112 1.2278 2.6303 4.0704 1.0435 119
## Tree_Density -1.6754 0.6938 -3.0836 -1.6716 -0.3406 1.0236 317
## Avg_Canopy_Cover 1.8797 0.5885 0.7900 1.8554 3.0591 1.0201 402
## avg_veg_height -0.5910 0.4382 -1.4368 -0.5881 0.3245 1.0642 290
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 17.1773 14.8115 3.5452 12.9337 55.8386 1.0858 121
## Cogon_Patch_Size 2.3131 3.2762 0.0945 1.2851 10.3739 1.1260 216
## Veg_shannon_index 1.0163 1.6087 0.0500 0.4854 5.2952 1.0094 294
## total_shrub_cover 0.5974 0.7424 0.0445 0.3386 2.7166 1.0404 315
## Avg_Cogongrass_Cover 0.6763 1.1176 0.0436 0.3356 3.5541 1.1873 176
## Tree_Density 2.8485 3.7362 0.0838 1.5515 13.0599 1.0119 210
## Avg_Canopy_Cover 2.4502 3.5454 0.1532 1.3681 11.6280 1.1343 120
## avg_veg_height 0.4190 0.5956 0.0410 0.2353 2.0187 1.0281 446
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.5418 2.3632 0.0534 0.6734 8.8192 1.3288 44
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3999 0.4712 -3.2983 -2.4110 -1.4031 1.0031 1370
## shrub_cover 0.2620 0.2508 -0.2438 0.2623 0.7747 1.0018 695
## veg_height 0.0136 0.1566 -0.2947 0.0138 0.3204 1.0246 909
## week 0.3577 0.2407 -0.1541 0.3649 0.8085 1.0106 996
## I(week^2) -0.2846 0.1027 -0.4955 -0.2824 -0.0877 1.0244 744
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5752 1.5494 0.9115 2.1497 6.8099 1.0105 661
## shrub_cover 0.4607 0.3504 0.1046 0.3709 1.2963 1.0277 592
## veg_height 0.1932 0.1266 0.0528 0.1568 0.5435 1.0047 888
## week 0.4332 0.3070 0.1209 0.3451 1.3346 1.0090 519
## I(week^2) 0.0728 0.0527 0.0224 0.0593 0.1920 1.0024 1269
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 7.9438 3.1330 3.4339 7.3964
## (Intercept)-Canis_latrans 0.6401 1.0439 -1.3179 0.5833
## (Intercept)-Sciurus_niger 1.9500 2.9040 -2.1638 1.4907
## (Intercept)-Procyon_lotor 1.0487 1.0491 -1.1467 1.0113
## (Intercept)-Dasypus_novemcinctus -1.4377 1.0144 -3.7834 -1.3174
## (Intercept)-Lynx_rufus 2.1332 2.4407 -1.7787 1.8784
## (Intercept)-Didelphis_virginiana -2.7217 1.1338 -5.0237 -2.6853
## (Intercept)-Sylvilagus_floridanus -1.2708 1.2228 -3.9996 -1.1885
## (Intercept)-Sciurus_carolinensis -2.9962 1.2627 -5.8922 -2.8752
## (Intercept)-Vulpes_vulpes -2.3660 1.9920 -6.3757 -2.4030
## (Intercept)-Sus_scrofa -4.3962 1.8876 -9.0231 -4.2098
## Cogon_Patch_Size-Odocoileus_virginianus -0.3228 1.1873 -2.5548 -0.3733
## Cogon_Patch_Size-Canis_latrans 0.8826 1.1750 -0.6933 0.6573
## Cogon_Patch_Size-Sciurus_niger -0.9690 1.5367 -4.5653 -0.7946
## Cogon_Patch_Size-Procyon_lotor -0.5951 0.5940 -1.8182 -0.5706
## Cogon_Patch_Size-Dasypus_novemcinctus -0.3658 0.6244 -1.5713 -0.3768
## Cogon_Patch_Size-Lynx_rufus -0.6670 1.2499 -3.1633 -0.6907
## Cogon_Patch_Size-Didelphis_virginiana 0.9431 0.7984 -0.4439 0.8554
## Cogon_Patch_Size-Sylvilagus_floridanus -1.5210 1.4747 -5.0801 -1.2063
## Cogon_Patch_Size-Sciurus_carolinensis -1.3504 1.1691 -4.4871 -1.1478
## Cogon_Patch_Size-Vulpes_vulpes -1.1260 1.3918 -4.3757 -0.9358
## Cogon_Patch_Size-Sus_scrofa -0.9200 1.4043 -4.4721 -0.6627
## Veg_shannon_index-Odocoileus_virginianus 1.2499 1.1148 -1.2314 1.2818
## Veg_shannon_index-Canis_latrans 1.6268 0.8079 0.1850 1.5893
## Veg_shannon_index-Sciurus_niger 1.7814 1.2380 -0.2568 1.6669
## Veg_shannon_index-Procyon_lotor 1.4675 0.7448 0.1143 1.4226
## Veg_shannon_index-Dasypus_novemcinctus 1.0658 0.6992 -0.3792 1.0560
## Veg_shannon_index-Lynx_rufus 1.1830 0.9972 -1.0180 1.2097
## Veg_shannon_index-Didelphis_virginiana 1.3240 0.7968 -0.2310 1.3108
## Veg_shannon_index-Sylvilagus_floridanus 1.7968 0.8796 0.2652 1.7250
## Veg_shannon_index-Sciurus_carolinensis 0.8885 0.8982 -0.8822 0.9394
## Veg_shannon_index-Vulpes_vulpes 0.9031 0.9770 -1.2309 0.9686
## Veg_shannon_index-Sus_scrofa 2.1704 1.1460 0.4464 1.9950
## total_shrub_cover-Odocoileus_virginianus -0.0260 0.7468 -1.3702 -0.0639
## total_shrub_cover-Canis_latrans 0.2905 0.6325 -0.7320 0.1983
## total_shrub_cover-Sciurus_niger -0.3014 0.7927 -1.9327 -0.3022
## total_shrub_cover-Procyon_lotor -0.6934 0.5765 -1.9758 -0.6483
## total_shrub_cover-Dasypus_novemcinctus -0.0444 0.5384 -1.0824 -0.0495
## total_shrub_cover-Lynx_rufus -0.3170 0.8410 -2.0779 -0.3158
## total_shrub_cover-Didelphis_virginiana -0.4011 0.6586 -1.7919 -0.3528
## total_shrub_cover-Sylvilagus_floridanus -0.2637 0.6962 -1.7083 -0.2520
## total_shrub_cover-Sciurus_carolinensis -0.2170 0.6616 -1.6277 -0.1884
## total_shrub_cover-Vulpes_vulpes -0.4508 0.8389 -2.3823 -0.3523
## total_shrub_cover-Sus_scrofa -0.0345 0.7558 -1.4524 -0.0462
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.6074 1.0114 0.4193 2.6121
## Avg_Cogongrass_Cover-Canis_latrans 2.9099 0.9024 1.2762 2.8567
## Avg_Cogongrass_Cover-Sciurus_niger 2.3418 1.1783 -0.4526 2.4326
## Avg_Cogongrass_Cover-Procyon_lotor 2.8030 0.8893 1.1577 2.7852
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.0553 0.9160 1.4609 3.0136
## Avg_Cogongrass_Cover-Lynx_rufus 2.8087 0.8982 1.1033 2.7868
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.7614 0.8702 1.0885 2.7528
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.3371 0.9092 0.5031 2.3493
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.8646 0.8883 1.2030 2.7915
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.9398 0.9332 1.2316 2.8897
## Avg_Cogongrass_Cover-Sus_scrofa 2.4278 1.0316 0.1653 2.4608
## Tree_Density-Odocoileus_virginianus -0.6519 1.2273 -2.6312 -0.8003
## Tree_Density-Canis_latrans -2.3429 1.1796 -5.1333 -2.1300
## Tree_Density-Sciurus_niger -1.7080 1.4664 -4.6760 -1.7016
## Tree_Density-Procyon_lotor -1.2794 0.7221 -2.6779 -1.3094
## Tree_Density-Dasypus_novemcinctus -3.4119 1.7144 -7.7669 -3.0344
## Tree_Density-Lynx_rufus -0.3813 1.4018 -2.5932 -0.5916
## Tree_Density-Didelphis_virginiana -2.0607 1.1518 -4.7151 -1.9368
## Tree_Density-Sylvilagus_floridanus -2.3272 1.3486 -5.6309 -2.1334
## Tree_Density-Sciurus_carolinensis -2.3379 1.4127 -5.5401 -2.0946
## Tree_Density-Vulpes_vulpes -1.6986 1.5214 -5.0284 -1.6278
## Tree_Density-Sus_scrofa -2.1483 1.5440 -5.5537 -1.9402
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3031 1.3088 -1.6364 1.3709
## Avg_Canopy_Cover-Canis_latrans 0.2504 0.6639 -1.0058 0.2588
## Avg_Canopy_Cover-Sciurus_niger 2.2929 1.5424 -0.3790 2.1314
## Avg_Canopy_Cover-Procyon_lotor 1.7728 0.7337 0.4788 1.7162
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.1036 0.7061 0.8968 2.0405
## Avg_Canopy_Cover-Lynx_rufus 1.6696 1.5261 -1.2441 1.6361
## Avg_Canopy_Cover-Didelphis_virginiana 2.8089 1.1261 1.2763 2.5933
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.4645 1.6995 1.1696 3.1223
## Avg_Canopy_Cover-Sciurus_carolinensis 2.5361 1.0760 1.0039 2.3395
## Avg_Canopy_Cover-Vulpes_vulpes 2.1468 1.1147 0.2957 2.0024
## Avg_Canopy_Cover-Sus_scrofa 2.0796 0.8988 0.5715 1.9843
## avg_veg_height-Odocoileus_virginianus -0.6298 0.6978 -2.0808 -0.6228
## avg_veg_height-Canis_latrans -0.6796 0.5549 -1.7907 -0.6824
## avg_veg_height-Sciurus_niger -0.7527 0.8282 -2.6352 -0.6940
## avg_veg_height-Procyon_lotor -0.5439 0.5685 -1.6401 -0.5346
## avg_veg_height-Dasypus_novemcinctus -0.3721 0.5385 -1.3976 -0.3970
## avg_veg_height-Lynx_rufus -0.7335 0.7544 -2.3302 -0.6875
## avg_veg_height-Didelphis_virginiana -0.7413 0.6055 -2.0140 -0.7186
## avg_veg_height-Sylvilagus_floridanus -0.7275 0.6248 -2.0008 -0.7213
## avg_veg_height-Sciurus_carolinensis -0.2828 0.6091 -1.3852 -0.3121
## avg_veg_height-Vulpes_vulpes -0.5717 0.6709 -1.9124 -0.5815
## avg_veg_height-Sus_scrofa -0.6152 0.6352 -1.8984 -0.6159
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 15.8623 1.0472 128
## (Intercept)-Canis_latrans 2.9605 1.0493 376
## (Intercept)-Sciurus_niger 9.4887 1.3717 42
## (Intercept)-Procyon_lotor 3.1798 1.0274 267
## (Intercept)-Dasypus_novemcinctus 0.3406 1.0122 319
## (Intercept)-Lynx_rufus 7.5564 1.1384 89
## (Intercept)-Didelphis_virginiana -0.5589 1.0146 548
## (Intercept)-Sylvilagus_floridanus 0.9800 1.0075 381
## (Intercept)-Sciurus_carolinensis -0.8572 1.0352 154
## (Intercept)-Vulpes_vulpes 1.7120 1.0402 124
## (Intercept)-Sus_scrofa -1.2951 1.0161 161
## Cogon_Patch_Size-Odocoileus_virginianus 1.9649 1.0042 825
## Cogon_Patch_Size-Canis_latrans 3.6853 1.0272 335
## Cogon_Patch_Size-Sciurus_niger 1.7737 1.0579 308
## Cogon_Patch_Size-Procyon_lotor 0.5369 1.0204 457
## Cogon_Patch_Size-Dasypus_novemcinctus 0.8848 1.0055 844
## Cogon_Patch_Size-Lynx_rufus 1.8789 1.0194 358
## Cogon_Patch_Size-Didelphis_virginiana 2.7732 1.0333 445
## Cogon_Patch_Size-Sylvilagus_floridanus 0.4103 1.0515 281
## Cogon_Patch_Size-Sciurus_carolinensis 0.3075 1.0075 298
## Cogon_Patch_Size-Vulpes_vulpes 1.0558 1.0157 254
## Cogon_Patch_Size-Sus_scrofa 1.1107 1.0071 422
## Veg_shannon_index-Odocoileus_virginianus 3.4244 1.0259 300
## Veg_shannon_index-Canis_latrans 3.3636 1.0438 229
## Veg_shannon_index-Sciurus_niger 4.7357 1.1070 197
## Veg_shannon_index-Procyon_lotor 2.9846 1.0124 222
## Veg_shannon_index-Dasypus_novemcinctus 2.4110 1.0370 293
## Veg_shannon_index-Lynx_rufus 3.0601 1.0341 367
## Veg_shannon_index-Didelphis_virginiana 2.9168 1.0545 302
## Veg_shannon_index-Sylvilagus_floridanus 3.7067 1.0166 262
## Veg_shannon_index-Sciurus_carolinensis 2.5104 1.0280 240
## Veg_shannon_index-Vulpes_vulpes 2.7539 1.0314 267
## Veg_shannon_index-Sus_scrofa 4.9765 1.0210 208
## total_shrub_cover-Odocoileus_virginianus 1.6323 1.0079 730
## total_shrub_cover-Canis_latrans 1.7573 1.0292 437
## total_shrub_cover-Sciurus_niger 1.2678 1.0159 460
## total_shrub_cover-Procyon_lotor 0.2891 1.0091 607
## total_shrub_cover-Dasypus_novemcinctus 1.0686 1.0161 575
## total_shrub_cover-Lynx_rufus 1.4170 1.0403 293
## total_shrub_cover-Didelphis_virginiana 0.8010 1.0036 672
## total_shrub_cover-Sylvilagus_floridanus 1.0974 1.0295 481
## total_shrub_cover-Sciurus_carolinensis 1.0473 1.0015 553
## total_shrub_cover-Vulpes_vulpes 0.9237 1.0052 368
## total_shrub_cover-Sus_scrofa 1.5726 1.0132 524
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.5422 1.0394 225
## Avg_Cogongrass_Cover-Canis_latrans 4.7722 1.0633 274
## Avg_Cogongrass_Cover-Sciurus_niger 4.4219 1.0267 108
## Avg_Cogongrass_Cover-Procyon_lotor 4.5677 1.0727 162
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.1162 1.0490 239
## Avg_Cogongrass_Cover-Lynx_rufus 4.6764 1.0348 223
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.5069 1.0826 189
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 4.0003 1.0217 171
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.6467 1.0677 204
## Avg_Cogongrass_Cover-Vulpes_vulpes 4.9044 1.0496 198
## Avg_Cogongrass_Cover-Sus_scrofa 4.3063 1.0240 179
## Tree_Density-Odocoileus_virginianus 2.2924 1.0128 407
## Tree_Density-Canis_latrans -0.5188 1.0091 350
## Tree_Density-Sciurus_niger 1.3989 1.0809 305
## Tree_Density-Procyon_lotor 0.2000 1.0030 764
## Tree_Density-Dasypus_novemcinctus -1.1438 1.0001 206
## Tree_Density-Lynx_rufus 2.8243 1.0164 255
## Tree_Density-Didelphis_virginiana -0.0324 1.0173 540
## Tree_Density-Sylvilagus_floridanus -0.1236 0.9991 467
## Tree_Density-Sciurus_carolinensis -0.0452 1.0164 390
## Tree_Density-Vulpes_vulpes 1.1421 1.0129 335
## Tree_Density-Sus_scrofa 0.3444 1.0157 387
## Avg_Canopy_Cover-Odocoileus_virginianus 3.7897 1.0121 606
## Avg_Canopy_Cover-Canis_latrans 1.5549 1.0087 536
## Avg_Canopy_Cover-Sciurus_niger 5.7672 1.1203 191
## Avg_Canopy_Cover-Procyon_lotor 3.3637 1.0016 744
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.6198 1.0159 453
## Avg_Canopy_Cover-Lynx_rufus 4.9551 1.0268 114
## Avg_Canopy_Cover-Didelphis_virginiana 5.7070 1.1490 115
## Avg_Canopy_Cover-Sylvilagus_floridanus 7.9637 1.0385 234
## Avg_Canopy_Cover-Sciurus_carolinensis 5.2573 1.0131 232
## Avg_Canopy_Cover-Vulpes_vulpes 4.8323 1.0069 387
## Avg_Canopy_Cover-Sus_scrofa 4.1652 1.0091 379
## avg_veg_height-Odocoileus_virginianus 0.7745 1.0154 641
## avg_veg_height-Canis_latrans 0.3776 1.0704 312
## avg_veg_height-Sciurus_niger 0.7342 1.0509 292
## avg_veg_height-Procyon_lotor 0.5650 1.0274 452
## avg_veg_height-Dasypus_novemcinctus 0.7705 1.0189 514
## avg_veg_height-Lynx_rufus 0.6110 1.0116 350
## avg_veg_height-Didelphis_virginiana 0.4022 1.0287 493
## avg_veg_height-Sylvilagus_floridanus 0.4861 1.0411 451
## avg_veg_height-Sciurus_carolinensis 1.0617 1.0149 439
## avg_veg_height-Vulpes_vulpes 0.7157 1.0515 441
## avg_veg_height-Sus_scrofa 0.6706 1.0324 597
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5414 0.0790 0.3878 0.5403 0.6956
## (Intercept)-Canis_latrans -2.5449 0.2012 -2.9455 -2.5364 -2.1750
## (Intercept)-Sciurus_niger -4.6962 0.5643 -5.7879 -4.7074 -3.6222
## (Intercept)-Procyon_lotor -2.1913 0.1648 -2.5239 -2.1807 -1.8921
## (Intercept)-Dasypus_novemcinctus -1.5892 0.1744 -1.9386 -1.5855 -1.2469
## (Intercept)-Lynx_rufus -3.7615 0.3776 -4.4713 -3.7842 -2.9838
## (Intercept)-Didelphis_virginiana -2.2783 0.2908 -2.8868 -2.2565 -1.7396
## (Intercept)-Sylvilagus_floridanus -3.0483 0.2968 -3.6400 -3.0330 -2.5109
## (Intercept)-Sciurus_carolinensis -2.4335 0.3389 -3.1170 -2.4258 -1.8178
## (Intercept)-Vulpes_vulpes -3.9989 0.6838 -5.3760 -3.9643 -2.7665
## (Intercept)-Sus_scrofa -3.0157 0.6108 -4.2659 -2.9802 -1.9036
## shrub_cover-Odocoileus_virginianus -0.0581 0.0690 -0.1961 -0.0576 0.0797
## shrub_cover-Canis_latrans -0.3066 0.2258 -0.7342 -0.3043 0.1466
## shrub_cover-Sciurus_niger -0.3506 0.4436 -1.2927 -0.3213 0.4745
## shrub_cover-Procyon_lotor 0.2653 0.1611 -0.0659 0.2693 0.5665
## shrub_cover-Dasypus_novemcinctus 0.8385 0.2942 0.2596 0.8430 1.3865
## shrub_cover-Lynx_rufus -0.2402 0.3538 -0.9864 -0.2295 0.4683
## shrub_cover-Didelphis_virginiana 0.8849 0.3559 0.2251 0.8615 1.6774
## shrub_cover-Sylvilagus_floridanus 0.4342 0.3780 -0.2944 0.4311 1.2049
## shrub_cover-Sciurus_carolinensis 0.8272 0.3998 0.1067 0.8123 1.6526
## shrub_cover-Vulpes_vulpes 0.0748 0.5475 -1.1135 0.0861 1.1236
## shrub_cover-Sus_scrofa 0.4939 0.7334 -0.9222 0.4718 1.9817
## veg_height-Odocoileus_virginianus -0.3294 0.0687 -0.4605 -0.3305 -0.1929
## veg_height-Canis_latrans -0.5747 0.1850 -0.9410 -0.5660 -0.2320
## veg_height-Sciurus_niger -0.0420 0.3444 -0.7078 -0.0517 0.6629
## veg_height-Procyon_lotor 0.3464 0.1238 0.1040 0.3451 0.5832
## veg_height-Dasypus_novemcinctus 0.2411 0.1333 -0.0132 0.2395 0.5106
## veg_height-Lynx_rufus 0.1067 0.2433 -0.3850 0.1031 0.5835
## veg_height-Didelphis_virginiana 0.4099 0.2361 -0.0465 0.4135 0.8904
## veg_height-Sylvilagus_floridanus 0.1574 0.2379 -0.3113 0.1674 0.6124
## veg_height-Sciurus_carolinensis 0.0738 0.2068 -0.3142 0.0704 0.5025
## veg_height-Vulpes_vulpes -0.1675 0.3105 -0.8408 -0.1597 0.4125
## veg_height-Sus_scrofa -0.1152 0.3125 -0.7484 -0.1116 0.5092
## week-Odocoileus_virginianus 1.3100 0.1191 1.0820 1.3074 1.5428
## week-Canis_latrans 0.5960 0.2710 0.0836 0.5957 1.1404
## week-Sciurus_niger -0.3936 0.5273 -1.5643 -0.3447 0.5216
## week-Procyon_lotor 0.1992 0.2156 -0.2106 0.1956 0.6307
## week-Dasypus_novemcinctus 0.1085 0.2315 -0.3233 0.1083 0.5505
## week-Lynx_rufus 0.3841 0.3660 -0.2994 0.3808 1.1236
## week-Didelphis_virginiana 0.0618 0.3738 -0.6982 0.0701 0.7513
## week-Sylvilagus_floridanus 0.0422 0.3540 -0.6699 0.0603 0.6832
## week-Sciurus_carolinensis 0.8056 0.3728 0.1036 0.7985 1.5689
## week-Vulpes_vulpes 0.1903 0.4996 -0.8616 0.1959 1.1261
## week-Sus_scrofa 0.6788 0.4431 -0.1596 0.6765 1.5829
## I(week^2)-Odocoileus_virginianus -0.5397 0.0492 -0.6368 -0.5394 -0.4464
## I(week^2)-Canis_latrans -0.2472 0.1109 -0.4716 -0.2446 -0.0349
## I(week^2)-Sciurus_niger -0.2815 0.2336 -0.7798 -0.2682 0.1363
## I(week^2)-Procyon_lotor -0.1319 0.0929 -0.3157 -0.1298 0.0448
## I(week^2)-Dasypus_novemcinctus -0.1810 0.1019 -0.3880 -0.1821 0.0056
## I(week^2)-Lynx_rufus -0.2442 0.1572 -0.5528 -0.2413 0.0515
## I(week^2)-Didelphis_virginiana -0.4255 0.2029 -0.8797 -0.4076 -0.0715
## I(week^2)-Sylvilagus_floridanus -0.1814 0.1608 -0.5277 -0.1754 0.1174
## I(week^2)-Sciurus_carolinensis -0.2877 0.1459 -0.5763 -0.2860 -0.0129
## I(week^2)-Vulpes_vulpes -0.3881 0.2486 -0.9543 -0.3789 0.0249
## I(week^2)-Sus_scrofa -0.2288 0.1777 -0.5771 -0.2208 0.1277
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0029 1500
## (Intercept)-Canis_latrans 1.0056 759
## (Intercept)-Sciurus_niger 1.1403 154
## (Intercept)-Procyon_lotor 1.0068 788
## (Intercept)-Dasypus_novemcinctus 1.0151 1186
## (Intercept)-Lynx_rufus 1.1162 181
## (Intercept)-Didelphis_virginiana 1.0017 805
## (Intercept)-Sylvilagus_floridanus 1.0102 643
## (Intercept)-Sciurus_carolinensis 1.0039 724
## (Intercept)-Vulpes_vulpes 1.0840 197
## (Intercept)-Sus_scrofa 1.0305 499
## shrub_cover-Odocoileus_virginianus 1.0049 1500
## shrub_cover-Canis_latrans 1.0358 671
## shrub_cover-Sciurus_niger 1.0067 262
## shrub_cover-Procyon_lotor 0.9996 906
## shrub_cover-Dasypus_novemcinctus 1.0066 860
## shrub_cover-Lynx_rufus 1.0821 342
## shrub_cover-Didelphis_virginiana 1.0280 583
## shrub_cover-Sylvilagus_floridanus 1.0255 483
## shrub_cover-Sciurus_carolinensis 1.0129 621
## shrub_cover-Vulpes_vulpes 1.0008 599
## shrub_cover-Sus_scrofa 1.0262 540
## veg_height-Odocoileus_virginianus 1.0029 1500
## veg_height-Canis_latrans 1.0044 746
## veg_height-Sciurus_niger 1.0270 310
## veg_height-Procyon_lotor 1.0017 1104
## veg_height-Dasypus_novemcinctus 1.0026 1127
## veg_height-Lynx_rufus 1.0053 427
## veg_height-Didelphis_virginiana 1.0055 1173
## veg_height-Sylvilagus_floridanus 1.0146 819
## veg_height-Sciurus_carolinensis 1.0198 1028
## veg_height-Vulpes_vulpes 1.0097 636
## veg_height-Sus_scrofa 1.0293 1017
## week-Odocoileus_virginianus 1.0038 1500
## week-Canis_latrans 0.9995 1165
## week-Sciurus_niger 1.0155 275
## week-Procyon_lotor 1.0101 1081
## week-Dasypus_novemcinctus 1.0140 1309
## week-Lynx_rufus 1.0126 716
## week-Didelphis_virginiana 1.0031 1009
## week-Sylvilagus_floridanus 1.0098 838
## week-Sciurus_carolinensis 1.0051 1096
## week-Vulpes_vulpes 1.0007 730
## week-Sus_scrofa 1.0010 1018
## I(week^2)-Odocoileus_virginianus 1.0046 1500
## I(week^2)-Canis_latrans 1.0013 1100
## I(week^2)-Sciurus_niger 1.0227 367
## I(week^2)-Procyon_lotor 1.0126 1055
## I(week^2)-Dasypus_novemcinctus 1.0044 1185
## I(week^2)-Lynx_rufus 1.0429 503
## I(week^2)-Didelphis_virginiana 1.0003 494
## I(week^2)-Sylvilagus_floridanus 1.0025 661
## I(week^2)-Sciurus_carolinensis 1.0037 1283
## I(week^2)-Vulpes_vulpes 1.0219 364
## I(week^2)-Sus_scrofa 1.0126 1208
#Includes quadratic week and full covariates of detection and only cover for occupancy
ms_fullQ_cover<- msPGOcc(
occ.formula = occ.cover,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_cover)
##
## Call:
## msPGOcc(occ.formula = occ.cover, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7942
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 0.0358 0.6660 -1.2941 0.0584 1.3250 1.0483 325
## Avg_Cogongrass_Cover 0.0386 0.3497 -0.7010 0.0375 0.6962 1.0089 297
## total_shrub_cover -0.6574 0.4739 -1.6949 -0.6137 0.1330 1.1088 185
## avg_veg_height 0.1709 0.3459 -0.4834 0.1565 0.8941 1.0163 265
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.5953 3.5273 0.3311 2.6238 11.8507 1.0325 295
## Avg_Cogongrass_Cover 0.3764 0.5271 0.0393 0.2136 1.6224 1.0446 421
## total_shrub_cover 0.8919 1.0745 0.0570 0.5304 3.9212 1.0648 259
## avg_veg_height 0.2693 0.3390 0.0361 0.1674 1.1166 1.0171 508
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.6605 1.8116 0.1052 1.0793 5.7788 1.1482 117
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4783 0.4893 -3.4671 -2.4934 -1.4924 1.0052 1214
## shrub_cover 0.4541 0.2860 -0.1062 0.4495 1.0126 1.0597 252
## veg_height -0.0139 0.1658 -0.3403 -0.0163 0.3220 1.0156 813
## week 0.3472 0.2359 -0.1324 0.3529 0.7852 1.0054 974
## I(week^2) -0.2882 0.1062 -0.5098 -0.2849 -0.0960 1.0174 933
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4692 1.5776 0.8390 2.0650 6.3497 1.0059 735
## shrub_cover 0.6246 0.6004 0.1118 0.4729 2.0375 1.0728 259
## veg_height 0.2130 0.1543 0.0595 0.1691 0.6419 1.0366 793
## week 0.4360 0.3300 0.1104 0.3531 1.2955 1.0245 598
## I(week^2) 0.0736 0.0539 0.0220 0.0600 0.2102 1.0211 909
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.4928 1.6013 0.7225 3.3277
## (Intercept)-Canis_latrans 0.5940 0.7789 -0.8228 0.5470
## (Intercept)-Sciurus_niger -0.2827 1.3738 -2.6686 -0.4062
## (Intercept)-Procyon_lotor 0.7850 0.8017 -0.8061 0.7685
## (Intercept)-Dasypus_novemcinctus -0.4635 0.8101 -1.9859 -0.4944
## (Intercept)-Lynx_rufus 0.0978 1.0563 -1.8000 0.0219
## (Intercept)-Didelphis_virginiana -0.9614 0.8762 -2.6758 -0.9815
## (Intercept)-Sylvilagus_floridanus 0.2901 1.0102 -1.4276 0.2042
## (Intercept)-Sciurus_carolinensis -1.0825 0.9931 -3.0027 -1.0936
## (Intercept)-Vulpes_vulpes -0.4106 1.8393 -3.0095 -0.6054
## (Intercept)-Sus_scrofa -1.3477 1.1438 -3.5772 -1.3726
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.0210 0.5611 -1.0993 0.0342
## Avg_Cogongrass_Cover-Canis_latrans 0.3258 0.4984 -0.6299 0.3200
## Avg_Cogongrass_Cover-Sciurus_niger -0.2983 0.7218 -2.0145 -0.2074
## Avg_Cogongrass_Cover-Procyon_lotor -0.0562 0.4773 -1.0681 -0.0499
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.1662 0.4455 -0.6974 0.1684
## Avg_Cogongrass_Cover-Lynx_rufus 0.3352 0.5292 -0.6226 0.2896
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.1689 0.4857 -0.8157 0.1612
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.3333 0.5684 -1.6427 -0.2863
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.0975 0.4754 -0.9437 0.1154
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.1534 0.5750 -0.9532 0.1394
## Avg_Cogongrass_Cover-Sus_scrofa -0.1721 0.6260 -1.6190 -0.1187
## total_shrub_cover-Odocoileus_virginianus -0.3041 0.7310 -1.6874 -0.3261
## total_shrub_cover-Canis_latrans 0.2130 0.6623 -0.9127 0.1389
## total_shrub_cover-Sciurus_niger -0.7730 0.8323 -2.5934 -0.7323
## total_shrub_cover-Procyon_lotor -1.2019 0.6675 -2.7718 -1.0879
## total_shrub_cover-Dasypus_novemcinctus -0.3691 0.6629 -2.0844 -0.2752
## total_shrub_cover-Lynx_rufus -1.1453 0.8605 -3.1398 -1.0447
## total_shrub_cover-Didelphis_virginiana -0.6978 0.6633 -2.3904 -0.6041
## total_shrub_cover-Sylvilagus_floridanus -1.2163 0.9559 -3.4921 -1.0630
## total_shrub_cover-Sciurus_carolinensis -0.6461 0.6752 -2.1984 -0.5705
## total_shrub_cover-Vulpes_vulpes -0.8452 0.9569 -3.2050 -0.7266
## total_shrub_cover-Sus_scrofa -0.5255 0.9263 -2.5698 -0.4421
## avg_veg_height-Odocoileus_virginianus 0.1337 0.5319 -0.8723 0.1254
## avg_veg_height-Canis_latrans 0.1858 0.4682 -0.6960 0.1645
## avg_veg_height-Sciurus_niger -0.0186 0.6046 -1.2991 0.0069
## avg_veg_height-Procyon_lotor 0.1849 0.4608 -0.6537 0.1596
## avg_veg_height-Dasypus_novemcinctus 0.3601 0.4553 -0.3766 0.3308
## avg_veg_height-Lynx_rufus 0.1668 0.5533 -0.8497 0.1423
## avg_veg_height-Didelphis_virginiana 0.0810 0.4830 -0.9169 0.0670
## avg_veg_height-Sylvilagus_floridanus 0.0875 0.5165 -0.9202 0.0969
## avg_veg_height-Sciurus_carolinensis 0.4541 0.4923 -0.4074 0.4262
## avg_veg_height-Vulpes_vulpes 0.1455 0.5437 -0.9098 0.1596
## avg_veg_height-Sus_scrofa 0.2098 0.5259 -0.8088 0.2013
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.9402 1.0730 221
## (Intercept)-Canis_latrans 2.2874 1.0081 604
## (Intercept)-Sciurus_niger 2.6937 1.0301 144
## (Intercept)-Procyon_lotor 2.4398 1.0225 669
## (Intercept)-Dasypus_novemcinctus 1.2048 1.0148 340
## (Intercept)-Lynx_rufus 2.4040 1.0487 360
## (Intercept)-Didelphis_virginiana 0.7674 1.0021 212
## (Intercept)-Sylvilagus_floridanus 2.3866 1.0710 271
## (Intercept)-Sciurus_carolinensis 0.8823 1.0262 270
## (Intercept)-Vulpes_vulpes 3.9756 1.1526 73
## (Intercept)-Sus_scrofa 0.9284 1.0614 201
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.0873 1.0008 666
## Avg_Cogongrass_Cover-Canis_latrans 1.3841 1.0019 611
## Avg_Cogongrass_Cover-Sciurus_niger 0.8901 1.0063 373
## Avg_Cogongrass_Cover-Procyon_lotor 0.8581 1.0027 565
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.0815 1.0044 558
## Avg_Cogongrass_Cover-Lynx_rufus 1.4604 1.0005 587
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.1327 1.0156 570
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6560 1.0066 472
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0140 1.0031 464
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.3589 1.0097 660
## Avg_Cogongrass_Cover-Sus_scrofa 0.8958 1.0428 463
## total_shrub_cover-Odocoileus_virginianus 1.3301 1.0411 745
## total_shrub_cover-Canis_latrans 1.7549 1.0318 326
## total_shrub_cover-Sciurus_niger 0.8383 1.0612 396
## total_shrub_cover-Procyon_lotor -0.1503 1.0777 190
## total_shrub_cover-Dasypus_novemcinctus 0.6161 1.0314 181
## total_shrub_cover-Lynx_rufus 0.3133 1.0846 197
## total_shrub_cover-Didelphis_virginiana 0.3425 1.0347 229
## total_shrub_cover-Sylvilagus_floridanus 0.2684 1.0856 167
## total_shrub_cover-Sciurus_carolinensis 0.5038 1.0483 342
## total_shrub_cover-Vulpes_vulpes 0.7946 1.0536 192
## total_shrub_cover-Sus_scrofa 1.1806 1.1292 221
## avg_veg_height-Odocoileus_virginianus 1.2095 1.0056 634
## avg_veg_height-Canis_latrans 1.1855 1.0029 621
## avg_veg_height-Sciurus_niger 1.1079 1.0127 420
## avg_veg_height-Procyon_lotor 1.1540 0.9999 541
## avg_veg_height-Dasypus_novemcinctus 1.3213 1.0209 300
## avg_veg_height-Lynx_rufus 1.2897 1.0239 469
## avg_veg_height-Didelphis_virginiana 1.0512 1.0155 502
## avg_veg_height-Sylvilagus_floridanus 1.0705 1.0179 414
## avg_veg_height-Sciurus_carolinensis 1.4336 1.0014 389
## avg_veg_height-Vulpes_vulpes 1.1780 1.0202 567
## avg_veg_height-Sus_scrofa 1.3219 1.0157 469
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5338 0.0824 0.3743 0.5317 0.6901
## (Intercept)-Canis_latrans -2.5940 0.2115 -3.0444 -2.5818 -2.2082
## (Intercept)-Sciurus_niger -4.1109 0.7281 -5.5234 -4.1216 -2.7194
## (Intercept)-Procyon_lotor -2.1900 0.1576 -2.5037 -2.1851 -1.8831
## (Intercept)-Dasypus_novemcinctus -1.6363 0.1924 -2.0198 -1.6251 -1.2866
## (Intercept)-Lynx_rufus -3.4501 0.3775 -4.2224 -3.4517 -2.7624
## (Intercept)-Didelphis_virginiana -2.4559 0.3380 -3.1409 -2.4401 -1.8414
## (Intercept)-Sylvilagus_floridanus -3.2493 0.3307 -3.9267 -3.2359 -2.6263
## (Intercept)-Sciurus_carolinensis -2.5608 0.3809 -3.4369 -2.5282 -1.9022
## (Intercept)-Vulpes_vulpes -4.2116 0.7938 -5.8335 -4.1953 -2.7261
## (Intercept)-Sus_scrofa -3.4696 0.6772 -4.8193 -3.4788 -2.1191
## shrub_cover-Odocoileus_virginianus -0.0557 0.0677 -0.1905 -0.0547 0.0736
## shrub_cover-Canis_latrans -0.2673 0.2398 -0.7178 -0.2713 0.2191
## shrub_cover-Sciurus_niger -0.1338 0.5371 -1.2484 -0.1077 0.9040
## shrub_cover-Procyon_lotor 0.3168 0.1604 -0.0112 0.3168 0.6084
## shrub_cover-Dasypus_novemcinctus 0.9862 0.3513 0.3631 0.9606 1.6993
## shrub_cover-Lynx_rufus 0.0332 0.3750 -0.6900 0.0432 0.7289
## shrub_cover-Didelphis_virginiana 1.1420 0.4325 0.3213 1.1223 2.0639
## shrub_cover-Sylvilagus_floridanus 0.7070 0.4481 -0.2243 0.7326 1.5145
## shrub_cover-Sciurus_carolinensis 1.0569 0.4515 0.2193 1.0279 1.9781
## shrub_cover-Vulpes_vulpes 0.2199 0.5853 -0.9225 0.2310 1.3522
## shrub_cover-Sus_scrofa 1.0520 0.9075 -0.6403 0.9768 2.9497
## veg_height-Odocoileus_virginianus -0.3319 0.0672 -0.4652 -0.3331 -0.2038
## veg_height-Canis_latrans -0.6019 0.1851 -0.9730 -0.6036 -0.2581
## veg_height-Sciurus_niger -0.0229 0.4157 -0.7669 -0.0510 0.8863
## veg_height-Procyon_lotor 0.3349 0.1256 0.0906 0.3369 0.5722
## veg_height-Dasypus_novemcinctus 0.2367 0.1364 -0.0228 0.2365 0.5067
## veg_height-Lynx_rufus 0.0242 0.2377 -0.4388 0.0207 0.4942
## veg_height-Didelphis_virginiana 0.4076 0.2597 -0.0759 0.3996 0.9333
## veg_height-Sylvilagus_floridanus 0.0446 0.2492 -0.4205 0.0333 0.5648
## veg_height-Sciurus_carolinensis 0.0862 0.2265 -0.3398 0.0812 0.5336
## veg_height-Vulpes_vulpes -0.1709 0.3358 -0.8489 -0.1647 0.4585
## veg_height-Sus_scrofa -0.1920 0.3345 -0.8804 -0.1797 0.4455
## week-Odocoileus_virginianus 1.3054 0.1250 1.0745 1.3000 1.5620
## week-Canis_latrans 0.5940 0.2539 0.1067 0.5978 1.1052
## week-Sciurus_niger -0.4227 0.5521 -1.6736 -0.3712 0.4971
## week-Procyon_lotor 0.2066 0.2209 -0.1989 0.1936 0.6471
## week-Dasypus_novemcinctus 0.1051 0.2297 -0.3178 0.0915 0.5607
## week-Lynx_rufus 0.3934 0.3562 -0.2863 0.3781 1.1203
## week-Didelphis_virginiana 0.0854 0.3631 -0.6691 0.0874 0.7755
## week-Sylvilagus_floridanus 0.0701 0.3439 -0.6225 0.0870 0.7259
## week-Sciurus_carolinensis 0.8161 0.3688 0.1355 0.7998 1.5924
## week-Vulpes_vulpes 0.1819 0.5229 -0.9239 0.1998 1.1410
## week-Sus_scrofa 0.7143 0.4578 -0.1385 0.7003 1.6049
## I(week^2)-Odocoileus_virginianus -0.5380 0.0516 -0.6454 -0.5365 -0.4395
## I(week^2)-Canis_latrans -0.2443 0.1054 -0.4626 -0.2415 -0.0441
## I(week^2)-Sciurus_niger -0.3025 0.2380 -0.8051 -0.2851 0.1161
## I(week^2)-Procyon_lotor -0.1319 0.0934 -0.3146 -0.1303 0.0474
## I(week^2)-Dasypus_novemcinctus -0.1791 0.1040 -0.3908 -0.1790 0.0224
## I(week^2)-Lynx_rufus -0.2436 0.1541 -0.5479 -0.2408 0.0495
## I(week^2)-Didelphis_virginiana -0.4099 0.2124 -0.9123 -0.3921 -0.0524
## I(week^2)-Sylvilagus_floridanus -0.1736 0.1580 -0.4755 -0.1795 0.1370
## I(week^2)-Sciurus_carolinensis -0.2908 0.1424 -0.5720 -0.2903 -0.0153
## I(week^2)-Vulpes_vulpes -0.4159 0.2507 -0.9553 -0.4006 0.0384
## I(week^2)-Sus_scrofa -0.2541 0.1788 -0.6115 -0.2527 0.0868
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0109 1340
## (Intercept)-Canis_latrans 1.0050 614
## (Intercept)-Sciurus_niger 1.0323 139
## (Intercept)-Procyon_lotor 1.0001 1146
## (Intercept)-Dasypus_novemcinctus 1.0010 661
## (Intercept)-Lynx_rufus 1.0590 303
## (Intercept)-Didelphis_virginiana 1.0207 333
## (Intercept)-Sylvilagus_floridanus 1.0152 350
## (Intercept)-Sciurus_carolinensis 1.0623 357
## (Intercept)-Vulpes_vulpes 1.0676 115
## (Intercept)-Sus_scrofa 1.1737 148
## shrub_cover-Odocoileus_virginianus 1.0021 1281
## shrub_cover-Canis_latrans 1.0455 512
## shrub_cover-Sciurus_niger 1.0101 229
## shrub_cover-Procyon_lotor 1.0042 725
## shrub_cover-Dasypus_novemcinctus 1.0190 186
## shrub_cover-Lynx_rufus 1.0178 281
## shrub_cover-Didelphis_virginiana 1.0372 188
## shrub_cover-Sylvilagus_floridanus 1.0476 205
## shrub_cover-Sciurus_carolinensis 1.0301 326
## shrub_cover-Vulpes_vulpes 1.0118 298
## shrub_cover-Sus_scrofa 1.1487 143
## veg_height-Odocoileus_virginianus 1.0001 1500
## veg_height-Canis_latrans 1.0342 561
## veg_height-Sciurus_niger 1.0015 409
## veg_height-Procyon_lotor 1.0028 1244
## veg_height-Dasypus_novemcinctus 1.0069 1245
## veg_height-Lynx_rufus 1.0189 673
## veg_height-Didelphis_virginiana 1.0574 727
## veg_height-Sylvilagus_floridanus 1.0169 602
## veg_height-Sciurus_carolinensis 1.0381 838
## veg_height-Vulpes_vulpes 1.0209 525
## veg_height-Sus_scrofa 1.0369 691
## week-Odocoileus_virginianus 1.0017 1181
## week-Canis_latrans 1.0094 1061
## week-Sciurus_niger 1.0136 292
## week-Procyon_lotor 1.0094 1424
## week-Dasypus_novemcinctus 1.0017 1314
## week-Lynx_rufus 1.0523 787
## week-Didelphis_virginiana 1.0022 1010
## week-Sylvilagus_floridanus 1.0028 719
## week-Sciurus_carolinensis 1.0090 1079
## week-Vulpes_vulpes 1.0127 492
## week-Sus_scrofa 1.0337 947
## I(week^2)-Odocoileus_virginianus 1.0009 1127
## I(week^2)-Canis_latrans 1.0118 1409
## I(week^2)-Sciurus_niger 1.0652 387
## I(week^2)-Procyon_lotor 1.0038 1280
## I(week^2)-Dasypus_novemcinctus 1.0015 1306
## I(week^2)-Lynx_rufus 1.0328 662
## I(week^2)-Didelphis_virginiana 1.0253 497
## I(week^2)-Sylvilagus_floridanus 1.0079 615
## I(week^2)-Sciurus_carolinensis 1.0107 1112
## I(week^2)-Vulpes_vulpes 1.0253 402
## I(week^2)-Sus_scrofa 1.0130 994
#Includes quadratic week and full covariates of detection and only canopy for occupancy
ms_fullQ_canopy<- msPGOcc(
occ.formula = occ.canopy,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_canopy)
##
## Call:
## msPGOcc(occ.formula = occ.canopy, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7722
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0718 0.7673 -1.5209 -0.0882 1.6028 1.0306 367
## Tree_Density -0.7677 0.4124 -1.6735 -0.7224 -0.0526 1.0070 359
## Avg_Canopy_Cover 1.0968 0.3615 0.4594 1.0713 1.9062 1.0326 353
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 6.7561 5.6530 1.2937 4.9972 21.5528 1.0672 124
## Tree_Density 0.7385 1.2074 0.0476 0.3329 3.4555 1.1070 192
## Avg_Canopy_Cover 0.7997 0.9240 0.0690 0.5223 3.2125 1.0208 383
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.4674 0.5565 0.0402 0.2755 1.9444 1.1911 102
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4407 0.4684 -3.3309 -2.4541 -1.5185 1.0115 1500
## shrub_cover 0.2382 0.2403 -0.2237 0.2270 0.7386 0.9992 1045
## veg_height 0.0090 0.1570 -0.2939 0.0105 0.3180 1.0060 1110
## week 0.3714 0.2279 -0.0902 0.3815 0.7897 1.0219 863
## I(week^2) -0.2848 0.1009 -0.4878 -0.2850 -0.0862 1.0177 733
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4699 1.4676 0.9037 2.0807 6.2234 1.0287 701
## shrub_cover 0.5083 0.4160 0.0972 0.3977 1.6415 1.0492 464
## veg_height 0.2026 0.1307 0.0573 0.1664 0.5634 1.0011 920
## week 0.4213 0.3095 0.1073 0.3425 1.2315 1.0175 763
## I(week^2) 0.0721 0.0498 0.0208 0.0604 0.1844 1.0096 970
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 4.7776 1.9070 2.1047 4.4244 9.7020
## (Intercept)-Canis_latrans 0.4407 0.6458 -0.7822 0.4242 1.7580
## (Intercept)-Sciurus_niger 0.1453 1.7274 -2.2135 -0.1646 4.8568
## (Intercept)-Procyon_lotor 0.7823 0.6760 -0.4946 0.7598 2.1273
## (Intercept)-Dasypus_novemcinctus -0.9501 0.6435 -2.2738 -0.9271 0.2732
## (Intercept)-Lynx_rufus 1.6898 1.8859 -0.9598 1.2956 6.1930
## (Intercept)-Didelphis_virginiana -1.6991 0.7349 -3.2245 -1.6833 -0.2341
## (Intercept)-Sylvilagus_floridanus -0.6321 0.6948 -2.0373 -0.6305 0.7005
## (Intercept)-Sciurus_carolinensis -1.7682 0.7558 -3.3258 -1.7339 -0.3706
## (Intercept)-Vulpes_vulpes -1.2360 1.8284 -3.8487 -1.5573 3.8205
## (Intercept)-Sus_scrofa -2.5362 1.0111 -4.6048 -2.5236 -0.6586
## Tree_Density-Odocoileus_virginianus -0.4217 0.6643 -1.5422 -0.4980 1.1067
## Tree_Density-Canis_latrans -0.9207 0.5600 -2.2970 -0.8660 -0.0306
## Tree_Density-Sciurus_niger -0.8186 0.8167 -2.5930 -0.7436 0.6064
## Tree_Density-Procyon_lotor -0.4999 0.4231 -1.3323 -0.5018 0.3088
## Tree_Density-Dasypus_novemcinctus -1.3514 0.9178 -4.0564 -1.1332 -0.2068
## Tree_Density-Lynx_rufus -0.0877 0.8653 -1.4290 -0.2009 2.1056
## Tree_Density-Didelphis_virginiana -1.0032 0.7604 -2.9808 -0.8877 0.1072
## Tree_Density-Sylvilagus_floridanus -1.0214 0.7101 -2.6513 -0.9288 0.1024
## Tree_Density-Sciurus_carolinensis -0.8985 0.7196 -2.6544 -0.8114 0.2520
## Tree_Density-Vulpes_vulpes -0.7744 0.8941 -2.6972 -0.6968 0.7147
## Tree_Density-Sus_scrofa -0.9755 0.8624 -3.1731 -0.8389 0.3150
## Avg_Canopy_Cover-Odocoileus_virginianus 0.8117 0.7476 -0.7402 0.8134 2.3453
## Avg_Canopy_Cover-Canis_latrans 0.0183 0.5119 -1.0598 0.0243 0.9854
## Avg_Canopy_Cover-Sciurus_niger 1.1055 0.8915 -0.4440 1.0281 3.1985
## Avg_Canopy_Cover-Procyon_lotor 1.0902 0.4936 0.2141 1.0516 2.1744
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0851 0.4449 0.2764 1.0520 2.0340
## Avg_Canopy_Cover-Lynx_rufus 1.0500 0.8622 -0.5368 1.0212 2.9552
## Avg_Canopy_Cover-Didelphis_virginiana 1.4446 0.5746 0.4384 1.3899 2.7611
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.9097 0.8664 0.6870 1.7407 4.0913
## Avg_Canopy_Cover-Sciurus_carolinensis 1.3953 0.5940 0.4160 1.3320 2.7671
## Avg_Canopy_Cover-Vulpes_vulpes 1.1807 0.7080 -0.0621 1.1170 2.7803
## Avg_Canopy_Cover-Sus_scrofa 1.3359 0.5937 0.3426 1.2660 2.7004
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0451 112
## (Intercept)-Canis_latrans 1.0186 1036
## (Intercept)-Sciurus_niger 1.2604 104
## (Intercept)-Procyon_lotor 1.0246 635
## (Intercept)-Dasypus_novemcinctus 1.0051 838
## (Intercept)-Lynx_rufus 1.1753 97
## (Intercept)-Didelphis_virginiana 1.0345 847
## (Intercept)-Sylvilagus_floridanus 1.0071 925
## (Intercept)-Sciurus_carolinensis 1.0019 674
## (Intercept)-Vulpes_vulpes 1.2298 44
## (Intercept)-Sus_scrofa 1.0065 517
## Tree_Density-Odocoileus_virginianus 1.0117 530
## Tree_Density-Canis_latrans 1.0045 799
## Tree_Density-Sciurus_niger 1.0132 528
## Tree_Density-Procyon_lotor 1.0136 679
## Tree_Density-Dasypus_novemcinctus 1.0070 302
## Tree_Density-Lynx_rufus 1.0642 177
## Tree_Density-Didelphis_virginiana 1.0053 524
## Tree_Density-Sylvilagus_floridanus 1.0112 658
## Tree_Density-Sciurus_carolinensis 1.0098 568
## Tree_Density-Vulpes_vulpes 1.0185 287
## Tree_Density-Sus_scrofa 1.0065 381
## Avg_Canopy_Cover-Odocoileus_virginianus 1.0151 711
## Avg_Canopy_Cover-Canis_latrans 1.0077 675
## Avg_Canopy_Cover-Sciurus_niger 1.0617 383
## Avg_Canopy_Cover-Procyon_lotor 1.0122 944
## Avg_Canopy_Cover-Dasypus_novemcinctus 1.0000 1338
## Avg_Canopy_Cover-Lynx_rufus 1.0207 397
## Avg_Canopy_Cover-Didelphis_virginiana 1.0061 626
## Avg_Canopy_Cover-Sylvilagus_floridanus 1.0204 411
## Avg_Canopy_Cover-Sciurus_carolinensis 1.0086 577
## Avg_Canopy_Cover-Vulpes_vulpes 1.0205 442
## Avg_Canopy_Cover-Sus_scrofa 1.0041 779
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5375 0.0809 0.3815 0.5379 0.6838
## (Intercept)-Canis_latrans -2.5766 0.2053 -2.9974 -2.5738 -2.1927
## (Intercept)-Sciurus_niger -4.3326 0.6546 -5.5995 -4.3676 -3.0449
## (Intercept)-Procyon_lotor -2.1875 0.1635 -2.5122 -2.1811 -1.8849
## (Intercept)-Dasypus_novemcinctus -1.5834 0.1803 -1.9487 -1.5786 -1.2464
## (Intercept)-Lynx_rufus -3.7860 0.3782 -4.5143 -3.7948 -3.0171
## (Intercept)-Didelphis_virginiana -2.3484 0.3110 -3.0069 -2.3427 -1.7610
## (Intercept)-Sylvilagus_floridanus -3.0357 0.2925 -3.6357 -3.0250 -2.5067
## (Intercept)-Sciurus_carolinensis -2.4453 0.3451 -3.1491 -2.4325 -1.8284
## (Intercept)-Vulpes_vulpes -4.0361 0.7911 -5.6690 -3.9893 -2.6628
## (Intercept)-Sus_scrofa -3.0648 0.5849 -4.2331 -3.0524 -1.9251
## shrub_cover-Odocoileus_virginianus -0.0601 0.0679 -0.1895 -0.0621 0.0753
## shrub_cover-Canis_latrans -0.2847 0.2248 -0.7327 -0.2852 0.1902
## shrub_cover-Sciurus_niger -0.3441 0.4298 -1.2361 -0.3376 0.4819
## shrub_cover-Procyon_lotor 0.2559 0.1628 -0.0819 0.2692 0.5452
## shrub_cover-Dasypus_novemcinctus 0.8225 0.2944 0.2599 0.8190 1.4107
## shrub_cover-Lynx_rufus -0.3079 0.3012 -0.9148 -0.3001 0.2608
## shrub_cover-Didelphis_virginiana 0.9322 0.3575 0.2767 0.9136 1.6593
## shrub_cover-Sylvilagus_floridanus 0.4021 0.3767 -0.3150 0.3955 1.1834
## shrub_cover-Sciurus_carolinensis 0.8345 0.3992 0.1021 0.8132 1.6702
## shrub_cover-Vulpes_vulpes -0.0724 0.5602 -1.3329 -0.0359 0.9799
## shrub_cover-Sus_scrofa 0.5016 0.7247 -0.8315 0.5017 1.9327
## veg_height-Odocoileus_virginianus -0.3294 0.0684 -0.4628 -0.3294 -0.1920
## veg_height-Canis_latrans -0.5885 0.1842 -0.9711 -0.5827 -0.2508
## veg_height-Sciurus_niger -0.0548 0.3629 -0.7898 -0.0526 0.6612
## veg_height-Procyon_lotor 0.3415 0.1210 0.1006 0.3444 0.5733
## veg_height-Dasypus_novemcinctus 0.2371 0.1348 -0.0305 0.2323 0.5143
## veg_height-Lynx_rufus 0.0957 0.2385 -0.3714 0.0996 0.5434
## veg_height-Didelphis_virginiana 0.4553 0.2388 0.0145 0.4530 0.9419
## veg_height-Sylvilagus_floridanus 0.1311 0.2311 -0.3062 0.1391 0.5656
## veg_height-Sciurus_carolinensis 0.0979 0.2201 -0.3040 0.0884 0.5683
## veg_height-Vulpes_vulpes -0.1335 0.3127 -0.7779 -0.1116 0.4640
## veg_height-Sus_scrofa -0.1020 0.3232 -0.7693 -0.1040 0.5193
## week-Odocoileus_virginianus 1.3154 0.1233 1.0779 1.3183 1.5536
## week-Canis_latrans 0.5886 0.2620 0.0942 0.5841 1.1026
## week-Sciurus_niger -0.3790 0.5146 -1.4807 -0.3419 0.5307
## week-Procyon_lotor 0.2002 0.2235 -0.2375 0.2030 0.6175
## week-Dasypus_novemcinctus 0.1137 0.2213 -0.3263 0.1149 0.5368
## week-Lynx_rufus 0.3871 0.3350 -0.2713 0.3834 1.0351
## week-Didelphis_virginiana 0.0875 0.3682 -0.6469 0.0837 0.7895
## week-Sylvilagus_floridanus 0.0761 0.3587 -0.6163 0.0932 0.7522
## week-Sciurus_carolinensis 0.8224 0.3677 0.1063 0.8176 1.5400
## week-Vulpes_vulpes 0.2350 0.5315 -0.9067 0.2557 1.2300
## week-Sus_scrofa 0.6824 0.4571 -0.2021 0.6799 1.5905
## I(week^2)-Odocoileus_virginianus -0.5420 0.0503 -0.6374 -0.5413 -0.4455
## I(week^2)-Canis_latrans -0.2462 0.1086 -0.4590 -0.2481 -0.0324
## I(week^2)-Sciurus_niger -0.2728 0.2192 -0.7097 -0.2707 0.1373
## I(week^2)-Procyon_lotor -0.1288 0.0918 -0.3075 -0.1284 0.0547
## I(week^2)-Dasypus_novemcinctus -0.1843 0.1046 -0.3865 -0.1834 0.0171
## I(week^2)-Lynx_rufus -0.2421 0.1483 -0.5458 -0.2391 0.0360
## I(week^2)-Didelphis_virginiana -0.4131 0.2057 -0.8661 -0.3913 -0.0722
## I(week^2)-Sylvilagus_floridanus -0.1829 0.1592 -0.4975 -0.1825 0.1093
## I(week^2)-Sciurus_carolinensis -0.2872 0.1414 -0.5743 -0.2889 -0.0043
## I(week^2)-Vulpes_vulpes -0.3974 0.2583 -0.9898 -0.3759 0.0621
## I(week^2)-Sus_scrofa -0.2404 0.1812 -0.6056 -0.2412 0.0908
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0004 1623
## (Intercept)-Canis_latrans 1.0075 732
## (Intercept)-Sciurus_niger 1.0880 118
## (Intercept)-Procyon_lotor 1.0048 950
## (Intercept)-Dasypus_novemcinctus 1.0030 1046
## (Intercept)-Lynx_rufus 1.2130 144
## (Intercept)-Didelphis_virginiana 1.0114 695
## (Intercept)-Sylvilagus_floridanus 1.0073 642
## (Intercept)-Sciurus_carolinensis 1.0071 648
## (Intercept)-Vulpes_vulpes 1.1550 126
## (Intercept)-Sus_scrofa 1.0268 594
## shrub_cover-Odocoileus_virginianus 1.0047 1500
## shrub_cover-Canis_latrans 1.0023 668
## shrub_cover-Sciurus_niger 1.0034 370
## shrub_cover-Procyon_lotor 1.0084 1134
## shrub_cover-Dasypus_novemcinctus 1.0087 904
## shrub_cover-Lynx_rufus 1.1271 404
## shrub_cover-Didelphis_virginiana 1.0171 800
## shrub_cover-Sylvilagus_floridanus 1.0017 638
## shrub_cover-Sciurus_carolinensis 1.0179 661
## shrub_cover-Vulpes_vulpes 1.0120 586
## shrub_cover-Sus_scrofa 1.0100 879
## veg_height-Odocoileus_virginianus 1.0031 2270
## veg_height-Canis_latrans 1.0023 735
## veg_height-Sciurus_niger 1.0035 555
## veg_height-Procyon_lotor 1.0065 1283
## veg_height-Dasypus_novemcinctus 1.0065 1364
## veg_height-Lynx_rufus 1.0502 653
## veg_height-Didelphis_virginiana 1.0198 1044
## veg_height-Sylvilagus_floridanus 0.9999 944
## veg_height-Sciurus_carolinensis 1.0122 694
## veg_height-Vulpes_vulpes 1.0125 582
## veg_height-Sus_scrofa 1.0018 1154
## week-Odocoileus_virginianus 1.0021 1740
## week-Canis_latrans 1.0003 1119
## week-Sciurus_niger 1.0122 272
## week-Procyon_lotor 1.0323 1071
## week-Dasypus_novemcinctus 1.0090 1241
## week-Lynx_rufus 1.0015 668
## week-Didelphis_virginiana 1.0006 768
## week-Sylvilagus_floridanus 1.0215 917
## week-Sciurus_carolinensis 1.0067 1064
## week-Vulpes_vulpes 1.0280 546
## week-Sus_scrofa 1.0028 1098
## I(week^2)-Odocoileus_virginianus 1.0038 1701
## I(week^2)-Canis_latrans 1.0029 945
## I(week^2)-Sciurus_niger 1.0160 437
## I(week^2)-Procyon_lotor 1.0289 1173
## I(week^2)-Dasypus_novemcinctus 1.0014 1236
## I(week^2)-Lynx_rufus 1.0118 611
## I(week^2)-Didelphis_virginiana 1.0015 510
## I(week^2)-Sylvilagus_floridanus 1.0237 688
## I(week^2)-Sciurus_carolinensis 1.0089 1173
## I(week^2)-Vulpes_vulpes 1.0018 503
## I(week^2)-Sus_scrofa 1.0057 1140
#Includes quadratic week and full covariates of detection and only movement for occupancy
ms_fullQ_move<- msPGOcc(
occ.formula = occ.move,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_move)
##
## Call:
## msPGOcc(occ.formula = occ.move, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.782
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0599 0.6379 -1.2743 -0.0634 1.2410 1.0369 447
## Cogon_Patch_Size -0.2407 0.4016 -1.1131 -0.2262 0.5034 1.0470 514
## Avg_Cogongrass_Cover 0.2344 0.3068 -0.3588 0.2256 0.8488 1.0101 438
## total_shrub_cover -0.5746 0.3948 -1.4702 -0.5469 0.0960 1.0194 207
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.8926 3.7540 0.3997 2.8797 13.4681 1.0291 276
## Cogon_Patch_Size 0.8557 1.0674 0.0681 0.5178 3.6267 1.0872 377
## Avg_Cogongrass_Cover 0.3204 0.5029 0.0358 0.1916 1.3178 1.1252 239
## total_shrub_cover 0.5727 0.7588 0.0506 0.3273 2.6225 1.0371 326
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 1.4136 1.2321 0.0984 1.0832 4.53 1.0474 129
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4169 0.4765 -3.3502 -2.4216 -1.5034 1.0042 1236
## shrub_cover 0.4097 0.2629 -0.0784 0.3983 0.9460 1.0414 497
## veg_height -0.0078 0.1648 -0.3315 -0.0072 0.3143 1.0160 942
## week 0.3646 0.2426 -0.1482 0.3750 0.8246 1.0076 814
## I(week^2) -0.2918 0.1020 -0.5017 -0.2849 -0.1000 1.0079 773
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.4122 1.5463 0.8273 2.0201 6.3576 1.0234 854
## shrub_cover 0.5000 0.4206 0.0946 0.3923 1.5912 1.0144 424
## veg_height 0.1971 0.1389 0.0573 0.1598 0.5374 1.0116 892
## week 0.4423 0.3410 0.1159 0.3492 1.3046 1.0021 466
## I(week^2) 0.0720 0.0571 0.0230 0.0584 0.2200 1.0195 911
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.6848 1.8128 0.5111 3.5152
## (Intercept)-Canis_latrans 0.6125 0.8286 -0.8931 0.5721
## (Intercept)-Sciurus_niger -0.5496 1.2004 -2.5660 -0.6354
## (Intercept)-Procyon_lotor 0.7483 0.7709 -0.7641 0.7657
## (Intercept)-Dasypus_novemcinctus -0.5721 0.7009 -1.9770 -0.5810
## (Intercept)-Lynx_rufus -0.0693 0.9664 -1.9025 -0.1238
## (Intercept)-Didelphis_virginiana -1.1160 0.8000 -2.6188 -1.1273
## (Intercept)-Sylvilagus_floridanus -0.0582 0.9115 -1.7592 -0.0979
## (Intercept)-Sciurus_carolinensis -1.2317 0.8880 -2.9147 -1.2415
## (Intercept)-Vulpes_vulpes -0.7239 1.5261 -3.3551 -0.8757
## (Intercept)-Sus_scrofa -1.4850 1.1174 -3.7365 -1.4520
## Cogon_Patch_Size-Odocoileus_virginianus -0.1004 0.6960 -1.4254 -0.1209
## Cogon_Patch_Size-Canis_latrans 0.6294 0.7104 -0.3835 0.4995
## Cogon_Patch_Size-Sciurus_niger -0.6126 0.8777 -2.6869 -0.4824
## Cogon_Patch_Size-Procyon_lotor -0.2854 0.4685 -1.2676 -0.2602
## Cogon_Patch_Size-Dasypus_novemcinctus -0.1096 0.4475 -1.0208 -0.1122
## Cogon_Patch_Size-Lynx_rufus -0.2307 0.7085 -1.5896 -0.2367
## Cogon_Patch_Size-Didelphis_virginiana 0.5522 0.4936 -0.3154 0.5253
## Cogon_Patch_Size-Sylvilagus_floridanus -0.8777 0.8708 -3.0559 -0.7279
## Cogon_Patch_Size-Sciurus_carolinensis -0.7163 0.7771 -2.4831 -0.5941
## Cogon_Patch_Size-Vulpes_vulpes -0.5075 0.8675 -2.4892 -0.4380
## Cogon_Patch_Size-Sus_scrofa -0.4672 0.7872 -2.2342 -0.3843
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2270 0.5563 -0.9047 0.2255
## Avg_Cogongrass_Cover-Canis_latrans 0.3693 0.4323 -0.3884 0.3447
## Avg_Cogongrass_Cover-Sciurus_niger -0.0901 0.6239 -1.3395 -0.0489
## Avg_Cogongrass_Cover-Procyon_lotor 0.2016 0.4371 -0.6565 0.2050
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3763 0.3902 -0.3730 0.3679
## Avg_Cogongrass_Cover-Lynx_rufus 0.5024 0.4946 -0.4242 0.4778
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.2226 0.4323 -0.6041 0.2188
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0386 0.5350 -1.2616 -0.0322
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.4348 0.4266 -0.3212 0.4297
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.3422 0.5166 -0.6598 0.3314
## Avg_Cogongrass_Cover-Sus_scrofa 0.0239 0.5901 -1.3531 0.0654
## total_shrub_cover-Odocoileus_virginianus -0.3665 0.6009 -1.5749 -0.3730
## total_shrub_cover-Canis_latrans 0.0477 0.5895 -0.9733 -0.0057
## total_shrub_cover-Sciurus_niger -0.7354 0.6916 -2.3313 -0.6649
## total_shrub_cover-Procyon_lotor -1.0290 0.5704 -2.2676 -0.9742
## total_shrub_cover-Dasypus_novemcinctus -0.3085 0.4835 -1.3854 -0.2803
## total_shrub_cover-Lynx_rufus -0.9442 0.7385 -2.7552 -0.8406
## total_shrub_cover-Didelphis_virginiana -0.6256 0.5411 -1.8145 -0.5768
## total_shrub_cover-Sylvilagus_floridanus -0.8883 0.7374 -2.7033 -0.7895
## total_shrub_cover-Sciurus_carolinensis -0.5188 0.6341 -2.0141 -0.4626
## total_shrub_cover-Vulpes_vulpes -0.6521 0.7996 -2.5086 -0.5989
## total_shrub_cover-Sus_scrofa -0.3863 0.7222 -1.8702 -0.3706
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 8.2895 1.1239 196
## (Intercept)-Canis_latrans 2.3029 1.0091 546
## (Intercept)-Sciurus_niger 2.1189 1.0230 241
## (Intercept)-Procyon_lotor 2.2253 1.0088 637
## (Intercept)-Dasypus_novemcinctus 0.8035 1.0263 632
## (Intercept)-Lynx_rufus 2.0118 1.0478 388
## (Intercept)-Didelphis_virginiana 0.4839 1.0159 479
## (Intercept)-Sylvilagus_floridanus 1.7667 1.0177 349
## (Intercept)-Sciurus_carolinensis 0.5344 1.0044 315
## (Intercept)-Vulpes_vulpes 2.8833 1.1593 99
## (Intercept)-Sus_scrofa 0.6030 1.0502 292
## Cogon_Patch_Size-Odocoileus_virginianus 1.4802 1.0204 797
## Cogon_Patch_Size-Canis_latrans 2.3148 1.0345 604
## Cogon_Patch_Size-Sciurus_niger 0.7848 1.0493 473
## Cogon_Patch_Size-Procyon_lotor 0.6095 1.0002 976
## Cogon_Patch_Size-Dasypus_novemcinctus 0.7546 1.0157 912
## Cogon_Patch_Size-Lynx_rufus 1.1915 1.0383 647
## Cogon_Patch_Size-Didelphis_virginiana 1.6142 1.0107 488
## Cogon_Patch_Size-Sylvilagus_floridanus 0.3707 1.1162 348
## Cogon_Patch_Size-Sciurus_carolinensis 0.4132 1.0657 495
## Cogon_Patch_Size-Vulpes_vulpes 0.9765 1.0436 467
## Cogon_Patch_Size-Sus_scrofa 0.8612 1.0231 638
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.3657 1.0204 760
## Avg_Cogongrass_Cover-Canis_latrans 1.3509 1.0151 838
## Avg_Cogongrass_Cover-Sciurus_niger 1.0255 1.0370 212
## Avg_Cogongrass_Cover-Procyon_lotor 1.1036 1.0009 715
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.1508 1.0058 851
## Avg_Cogongrass_Cover-Lynx_rufus 1.6212 1.0080 821
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0857 1.0042 750
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.9582 1.0336 512
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.3287 1.0189 827
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.4259 1.0208 568
## Avg_Cogongrass_Cover-Sus_scrofa 1.0529 1.0074 593
## total_shrub_cover-Odocoileus_virginianus 0.8639 1.0017 535
## total_shrub_cover-Canis_latrans 1.3555 1.0033 542
## total_shrub_cover-Sciurus_niger 0.5396 1.0169 378
## total_shrub_cover-Procyon_lotor -0.1263 1.0160 314
## total_shrub_cover-Dasypus_novemcinctus 0.5291 1.0092 435
## total_shrub_cover-Lynx_rufus 0.2927 1.0124 271
## total_shrub_cover-Didelphis_virginiana 0.2777 1.0110 221
## total_shrub_cover-Sylvilagus_floridanus 0.3156 1.0316 197
## total_shrub_cover-Sciurus_carolinensis 0.5064 1.0284 248
## total_shrub_cover-Vulpes_vulpes 0.8468 1.0397 261
## total_shrub_cover-Sus_scrofa 1.0272 1.0192 264
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5386 0.0805 0.3889 0.5349 0.6938
## (Intercept)-Canis_latrans -2.5840 0.2172 -3.0109 -2.5846 -2.1537
## (Intercept)-Sciurus_niger -3.9769 0.7000 -5.2853 -3.9568 -2.6463
## (Intercept)-Procyon_lotor -2.1863 0.1567 -2.5002 -2.1883 -1.8891
## (Intercept)-Dasypus_novemcinctus -1.6084 0.1897 -1.9959 -1.6051 -1.2426
## (Intercept)-Lynx_rufus -3.3725 0.3720 -4.1479 -3.3481 -2.7092
## (Intercept)-Didelphis_virginiana -2.3512 0.3276 -3.0020 -2.3238 -1.7424
## (Intercept)-Sylvilagus_floridanus -3.1836 0.3165 -3.8095 -3.1749 -2.5693
## (Intercept)-Sciurus_carolinensis -2.5158 0.3809 -3.3685 -2.4990 -1.8444
## (Intercept)-Vulpes_vulpes -4.1821 0.7761 -5.6870 -4.1519 -2.7970
## (Intercept)-Sus_scrofa -3.4002 0.6577 -4.7563 -3.3854 -2.1715
## shrub_cover-Odocoileus_virginianus -0.0555 0.0665 -0.1820 -0.0562 0.0755
## shrub_cover-Canis_latrans -0.2549 0.2341 -0.6997 -0.2447 0.2054
## shrub_cover-Sciurus_niger -0.0855 0.4988 -1.1104 -0.0808 0.9317
## shrub_cover-Procyon_lotor 0.3174 0.1634 -0.0098 0.3207 0.6311
## shrub_cover-Dasypus_novemcinctus 0.9092 0.3311 0.2872 0.8962 1.6034
## shrub_cover-Lynx_rufus 0.0679 0.3673 -0.6851 0.0848 0.7372
## shrub_cover-Didelphis_virginiana 1.0047 0.3822 0.3415 0.9809 1.8190
## shrub_cover-Sylvilagus_floridanus 0.6333 0.4159 -0.1890 0.6290 1.4850
## shrub_cover-Sciurus_carolinensis 0.9598 0.4170 0.1837 0.9355 1.8074
## shrub_cover-Vulpes_vulpes 0.2053 0.5356 -0.8818 0.2170 1.3202
## shrub_cover-Sus_scrofa 0.8727 0.7633 -0.5975 0.8491 2.4931
## veg_height-Odocoileus_virginianus -0.3291 0.0664 -0.4632 -0.3272 -0.2055
## veg_height-Canis_latrans -0.5868 0.1873 -0.9758 -0.5735 -0.2387
## veg_height-Sciurus_niger -0.0178 0.3930 -0.8068 -0.0375 0.7913
## veg_height-Procyon_lotor 0.3405 0.1217 0.1089 0.3368 0.5767
## veg_height-Dasypus_novemcinctus 0.2366 0.1325 -0.0127 0.2293 0.5108
## veg_height-Lynx_rufus 0.0354 0.2358 -0.4405 0.0423 0.4797
## veg_height-Didelphis_virginiana 0.3832 0.2392 -0.0782 0.3796 0.8637
## veg_height-Sylvilagus_floridanus 0.0380 0.2363 -0.4131 0.0323 0.5119
## veg_height-Sciurus_carolinensis 0.0798 0.2281 -0.3374 0.0724 0.5488
## veg_height-Vulpes_vulpes -0.1495 0.3214 -0.8411 -0.1396 0.4377
## veg_height-Sus_scrofa -0.1636 0.3245 -0.8199 -0.1541 0.4522
## week-Odocoileus_virginianus 1.3139 0.1243 1.0790 1.3109 1.5657
## week-Canis_latrans 0.5911 0.2665 0.0687 0.5893 1.1311
## week-Sciurus_niger -0.3990 0.5764 -1.7433 -0.3289 0.5069
## week-Procyon_lotor 0.2041 0.2137 -0.2071 0.2012 0.6264
## week-Dasypus_novemcinctus 0.1159 0.2288 -0.3336 0.1164 0.5788
## week-Lynx_rufus 0.4106 0.3479 -0.3167 0.4188 1.0757
## week-Didelphis_virginiana 0.0706 0.3719 -0.6897 0.0843 0.7631
## week-Sylvilagus_floridanus 0.0691 0.3428 -0.5773 0.0865 0.7100
## week-Sciurus_carolinensis 0.8239 0.3598 0.1283 0.8141 1.5775
## week-Vulpes_vulpes 0.1999 0.4986 -0.8329 0.2170 1.1121
## week-Sus_scrofa 0.6995 0.4333 -0.1005 0.6965 1.5628
## I(week^2)-Odocoileus_virginianus -0.5416 0.0510 -0.6450 -0.5407 -0.4406
## I(week^2)-Canis_latrans -0.2469 0.1094 -0.4590 -0.2464 -0.0449
## I(week^2)-Sciurus_niger -0.3000 0.2336 -0.8028 -0.2948 0.1233
## I(week^2)-Procyon_lotor -0.1298 0.0906 -0.3069 -0.1288 0.0506
## I(week^2)-Dasypus_novemcinctus -0.1844 0.1028 -0.3854 -0.1838 0.0118
## I(week^2)-Lynx_rufus -0.2512 0.1536 -0.5652 -0.2479 0.0399
## I(week^2)-Didelphis_virginiana -0.4163 0.2130 -0.9255 -0.3984 -0.0537
## I(week^2)-Sylvilagus_floridanus -0.1925 0.1646 -0.5447 -0.1886 0.1125
## I(week^2)-Sciurus_carolinensis -0.2940 0.1410 -0.5788 -0.2913 -0.0184
## I(week^2)-Vulpes_vulpes -0.3965 0.2373 -0.8892 -0.3851 0.0498
## I(week^2)-Sus_scrofa -0.2474 0.1738 -0.6072 -0.2412 0.0882
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0007 1697
## (Intercept)-Canis_latrans 1.0077 620
## (Intercept)-Sciurus_niger 1.0203 182
## (Intercept)-Procyon_lotor 1.0231 1140
## (Intercept)-Dasypus_novemcinctus 1.0048 909
## (Intercept)-Lynx_rufus 1.0048 356
## (Intercept)-Didelphis_virginiana 1.0022 598
## (Intercept)-Sylvilagus_floridanus 1.0220 507
## (Intercept)-Sciurus_carolinensis 1.0210 246
## (Intercept)-Vulpes_vulpes 1.1577 114
## (Intercept)-Sus_scrofa 1.0328 176
## shrub_cover-Odocoileus_virginianus 0.9998 1500
## shrub_cover-Canis_latrans 1.0011 602
## shrub_cover-Sciurus_niger 1.0101 427
## shrub_cover-Procyon_lotor 1.0070 1113
## shrub_cover-Dasypus_novemcinctus 1.0063 424
## shrub_cover-Lynx_rufus 1.0037 402
## shrub_cover-Didelphis_virginiana 1.0089 383
## shrub_cover-Sylvilagus_floridanus 1.0325 251
## shrub_cover-Sciurus_carolinensis 1.0145 326
## shrub_cover-Vulpes_vulpes 1.0052 527
## shrub_cover-Sus_scrofa 1.0612 172
## veg_height-Odocoileus_virginianus 1.0015 1500
## veg_height-Canis_latrans 1.0120 595
## veg_height-Sciurus_niger 1.0083 497
## veg_height-Procyon_lotor 1.0024 1172
## veg_height-Dasypus_novemcinctus 0.9998 1840
## veg_height-Lynx_rufus 1.0247 707
## veg_height-Didelphis_virginiana 1.0015 926
## veg_height-Sylvilagus_floridanus 1.0131 596
## veg_height-Sciurus_carolinensis 1.0041 553
## veg_height-Vulpes_vulpes 1.0195 533
## veg_height-Sus_scrofa 1.0061 881
## week-Odocoileus_virginianus 1.0077 1500
## week-Canis_latrans 1.0022 1102
## week-Sciurus_niger 1.0052 222
## week-Procyon_lotor 1.0012 1306
## week-Dasypus_novemcinctus 1.0033 1347
## week-Lynx_rufus 1.0292 764
## week-Didelphis_virginiana 1.0038 778
## week-Sylvilagus_floridanus 1.0030 823
## week-Sciurus_carolinensis 0.9999 1052
## week-Vulpes_vulpes 1.0001 465
## week-Sus_scrofa 1.0023 1027
## I(week^2)-Odocoileus_virginianus 1.0087 1257
## I(week^2)-Canis_latrans 1.0096 1149
## I(week^2)-Sciurus_niger 1.0012 450
## I(week^2)-Procyon_lotor 1.0014 1262
## I(week^2)-Dasypus_novemcinctus 1.0024 1209
## I(week^2)-Lynx_rufus 1.0016 805
## I(week^2)-Didelphis_virginiana 1.0095 414
## I(week^2)-Sylvilagus_floridanus 1.0255 428
## I(week^2)-Sciurus_carolinensis 1.0005 1142
## I(week^2)-Vulpes_vulpes 1.0090 481
## I(week^2)-Sus_scrofa 1.0030 1218
#Includes quadratic week and full covariates of detection and only foraging for occupancy
ms_fullQ_forage<- msPGOcc(
occ.formula = occ.forage,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_forage)
##
## Call:
## msPGOcc(occ.formula = occ.forage, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7693
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1142 0.6300 -1.2552 -0.1578 1.2287 1.0199 474
## Veg_shannon_index 0.8598 0.3769 0.1225 0.8612 1.6194 1.0851 298
## Avg_Cogongrass_Cover 0.8085 0.3762 0.0823 0.7987 1.5485 1.0712 327
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 4.3506 3.7867 0.9469 3.3069 13.4755 1.1370 129
## Veg_shannon_index 0.3716 0.5235 0.0409 0.2277 1.4448 1.1027 666
## Avg_Cogongrass_Cover 0.3431 0.5792 0.0383 0.1822 1.6028 1.0605 386
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5397 0.6052 0.0439 0.3411 2.1818 1.0116 160
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4078 0.4627 -3.2926 -2.4142 -1.4276 1.0109 1338
## shrub_cover 0.2129 0.2458 -0.2606 0.2234 0.6909 1.0258 945
## veg_height -0.0184 0.1507 -0.3298 -0.0227 0.2809 1.0019 917
## week 0.3634 0.2393 -0.1437 0.3649 0.8218 1.0053 939
## I(week^2) -0.2842 0.1050 -0.4863 -0.2809 -0.0830 1.0160 588
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.3908 1.3756 0.8668 2.0277 5.9366 1.0275 1216
## shrub_cover 0.4849 0.4265 0.0996 0.3665 1.5525 1.0107 584
## veg_height 0.1902 0.1289 0.0558 0.1571 0.5344 1.0210 1143
## week 0.4335 0.3121 0.1049 0.3408 1.2825 1.0044 619
## I(week^2) 0.0747 0.0571 0.0220 0.0602 0.2160 1.0306 1056
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.9267 1.4521 1.6336 3.7504
## (Intercept)-Canis_latrans 0.3892 0.6291 -0.8477 0.4020
## (Intercept)-Sciurus_niger 0.0561 1.4125 -2.1467 -0.1034
## (Intercept)-Procyon_lotor 0.5807 0.6109 -0.6850 0.6071
## (Intercept)-Dasypus_novemcinctus -0.6478 0.5531 -1.7914 -0.6461
## (Intercept)-Lynx_rufus 0.5499 1.3785 -1.4328 0.3230
## (Intercept)-Didelphis_virginiana -1.3693 0.6313 -2.7074 -1.3469
## (Intercept)-Sylvilagus_floridanus -0.4114 0.7386 -1.7724 -0.4530
## (Intercept)-Sciurus_carolinensis -1.4274 0.6582 -2.8775 -1.3985
## (Intercept)-Vulpes_vulpes -0.8692 1.8036 -3.0512 -1.1360
## (Intercept)-Sus_scrofa -2.2257 0.9093 -4.1006 -2.1878
## Veg_shannon_index-Odocoileus_virginianus 0.7853 0.6259 -0.4485 0.7975
## Veg_shannon_index-Canis_latrans 0.9127 0.4916 -0.0288 0.9030
## Veg_shannon_index-Sciurus_niger 1.0672 0.7120 -0.2532 1.0327
## Veg_shannon_index-Procyon_lotor 0.8801 0.4835 -0.0346 0.8721
## Veg_shannon_index-Dasypus_novemcinctus 0.6922 0.4717 -0.2321 0.6931
## Veg_shannon_index-Lynx_rufus 0.5914 0.6476 -0.6944 0.6318
## Veg_shannon_index-Didelphis_virginiana 0.7164 0.4912 -0.2259 0.7378
## Veg_shannon_index-Sylvilagus_floridanus 1.1165 0.5493 0.1065 1.0668
## Veg_shannon_index-Sciurus_carolinensis 0.6165 0.5093 -0.4105 0.6307
## Veg_shannon_index-Vulpes_vulpes 0.7427 0.5747 -0.4321 0.7506
## Veg_shannon_index-Sus_scrofa 1.3984 0.6881 0.2793 1.3217
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.8570 0.6015 -0.2519 0.8360
## Avg_Cogongrass_Cover-Canis_latrans 1.0927 0.4951 0.2381 1.0807
## Avg_Cogongrass_Cover-Sciurus_niger 0.4711 0.7991 -1.3726 0.5480
## Avg_Cogongrass_Cover-Procyon_lotor 0.8844 0.4788 -0.0390 0.8766
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9423 0.4478 0.1025 0.9389
## Avg_Cogongrass_Cover-Lynx_rufus 0.9880 0.5432 0.0007 0.9617
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.9165 0.4780 -0.0349 0.9188
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.5159 0.5462 -0.6125 0.5490
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.9219 0.4819 -0.0170 0.9137
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.9270 0.5555 -0.0835 0.9068
## Avg_Cogongrass_Cover-Sus_scrofa 0.5957 0.6502 -0.8787 0.6523
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.4556 1.0333 323
## (Intercept)-Canis_latrans 1.6248 1.0027 964
## (Intercept)-Sciurus_niger 3.0120 1.0475 149
## (Intercept)-Procyon_lotor 1.7159 1.0015 871
## (Intercept)-Dasypus_novemcinctus 0.4340 1.0046 1353
## (Intercept)-Lynx_rufus 3.3317 1.0513 146
## (Intercept)-Didelphis_virginiana -0.1562 1.0388 827
## (Intercept)-Sylvilagus_floridanus 1.2314 1.0041 619
## (Intercept)-Sciurus_carolinensis -0.2870 1.0073 854
## (Intercept)-Vulpes_vulpes 2.4312 1.4401 67
## (Intercept)-Sus_scrofa -0.6054 1.0067 592
## Veg_shannon_index-Odocoileus_virginianus 2.0298 1.0314 555
## Veg_shannon_index-Canis_latrans 1.8998 1.0785 377
## Veg_shannon_index-Sciurus_niger 2.5945 1.0522 307
## Veg_shannon_index-Procyon_lotor 1.8771 1.0417 303
## Veg_shannon_index-Dasypus_novemcinctus 1.6267 1.0263 421
## Veg_shannon_index-Lynx_rufus 1.7840 1.0327 338
## Veg_shannon_index-Didelphis_virginiana 1.6535 1.0535 460
## Veg_shannon_index-Sylvilagus_floridanus 2.3309 1.0667 445
## Veg_shannon_index-Sciurus_carolinensis 1.5745 1.0322 481
## Veg_shannon_index-Vulpes_vulpes 1.8795 1.0340 475
## Veg_shannon_index-Sus_scrofa 3.0559 1.0422 422
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.0813 1.0110 652
## Avg_Cogongrass_Cover-Canis_latrans 2.1306 1.0221 420
## Avg_Cogongrass_Cover-Sciurus_niger 1.6989 1.0498 306
## Avg_Cogongrass_Cover-Procyon_lotor 1.8753 1.0460 550
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 1.8132 1.0332 354
## Avg_Cogongrass_Cover-Lynx_rufus 2.0937 1.0218 482
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.8437 1.0511 511
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 1.4969 1.0460 371
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.8586 1.0177 447
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.1191 1.0226 571
## Avg_Cogongrass_Cover-Sus_scrofa 1.6469 1.0435 440
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5368 0.0802 0.3792 0.5384 0.6920
## (Intercept)-Canis_latrans -2.5521 0.2099 -2.9950 -2.5456 -2.1495
## (Intercept)-Sciurus_niger -4.3388 0.6420 -5.6002 -4.3608 -3.0305
## (Intercept)-Procyon_lotor -2.1708 0.1692 -2.5083 -2.1665 -1.8476
## (Intercept)-Dasypus_novemcinctus -1.5750 0.1836 -1.9432 -1.5696 -1.2372
## (Intercept)-Lynx_rufus -3.6307 0.3962 -4.3717 -3.6344 -2.8545
## (Intercept)-Didelphis_virginiana -2.3248 0.3115 -2.9863 -2.3094 -1.7494
## (Intercept)-Sylvilagus_floridanus -3.0899 0.3342 -3.7936 -3.0787 -2.4916
## (Intercept)-Sciurus_carolinensis -2.4031 0.3176 -3.0432 -2.3816 -1.8481
## (Intercept)-Vulpes_vulpes -4.0820 0.7625 -5.5760 -4.0635 -2.7070
## (Intercept)-Sus_scrofa -3.0602 0.6085 -4.3210 -3.0284 -1.9284
## shrub_cover-Odocoileus_virginianus -0.0609 0.0697 -0.1913 -0.0639 0.0804
## shrub_cover-Canis_latrans -0.2603 0.2127 -0.6763 -0.2624 0.1524
## shrub_cover-Sciurus_niger -0.4076 0.4384 -1.3115 -0.3822 0.4442
## shrub_cover-Procyon_lotor 0.2460 0.1675 -0.1143 0.2500 0.5570
## shrub_cover-Dasypus_novemcinctus 0.7887 0.2939 0.2335 0.7760 1.3791
## shrub_cover-Lynx_rufus -0.2938 0.3704 -1.0632 -0.2714 0.4179
## shrub_cover-Didelphis_virginiana 0.9054 0.3717 0.2542 0.8797 1.7276
## shrub_cover-Sylvilagus_floridanus 0.2925 0.3844 -0.4275 0.2776 1.0581
## shrub_cover-Sciurus_carolinensis 0.7523 0.3870 -0.0051 0.7480 1.5019
## shrub_cover-Vulpes_vulpes -0.0825 0.5193 -1.1271 -0.0566 0.9231
## shrub_cover-Sus_scrofa 0.4452 0.7372 -1.0481 0.4291 2.0033
## veg_height-Odocoileus_virginianus -0.3327 0.0680 -0.4686 -0.3314 -0.2034
## veg_height-Canis_latrans -0.5865 0.1845 -0.9773 -0.5780 -0.2474
## veg_height-Sciurus_niger -0.0366 0.3643 -0.7150 -0.0493 0.7192
## veg_height-Procyon_lotor 0.3308 0.1220 0.0899 0.3292 0.5879
## veg_height-Dasypus_novemcinctus 0.2179 0.1343 -0.0512 0.2208 0.4826
## veg_height-Lynx_rufus 0.0059 0.2401 -0.4713 0.0088 0.4532
## veg_height-Didelphis_virginiana 0.3831 0.2395 -0.0582 0.3705 0.8905
## veg_height-Sylvilagus_floridanus 0.0919 0.2490 -0.3879 0.0894 0.5729
## veg_height-Sciurus_carolinensis 0.0437 0.2051 -0.3481 0.0420 0.4585
## veg_height-Vulpes_vulpes -0.1627 0.3079 -0.7840 -0.1405 0.4391
## veg_height-Sus_scrofa -0.1275 0.3327 -0.8042 -0.1143 0.4979
## week-Odocoileus_virginianus 1.3070 0.1242 1.0695 1.3037 1.5510
## week-Canis_latrans 0.5858 0.2560 0.1097 0.5736 1.1128
## week-Sciurus_niger -0.3899 0.5249 -1.4980 -0.3535 0.5598
## week-Procyon_lotor 0.2074 0.2116 -0.2048 0.2018 0.6247
## week-Dasypus_novemcinctus 0.1158 0.2327 -0.3408 0.1132 0.5571
## week-Lynx_rufus 0.3939 0.3620 -0.2831 0.3917 1.1188
## week-Didelphis_virginiana 0.0729 0.3681 -0.7118 0.0801 0.7307
## week-Sylvilagus_floridanus 0.0617 0.3466 -0.6332 0.0605 0.7193
## week-Sciurus_carolinensis 0.7935 0.3742 0.0971 0.7795 1.5769
## week-Vulpes_vulpes 0.2272 0.5268 -0.8379 0.2382 1.2629
## week-Sus_scrofa 0.6820 0.4652 -0.1793 0.6640 1.6731
## I(week^2)-Odocoileus_virginianus -0.5389 0.0504 -0.6345 -0.5385 -0.4441
## I(week^2)-Canis_latrans -0.2446 0.1053 -0.4665 -0.2409 -0.0309
## I(week^2)-Sciurus_niger -0.2649 0.2356 -0.7501 -0.2534 0.1535
## I(week^2)-Procyon_lotor -0.1348 0.0914 -0.3113 -0.1347 0.0378
## I(week^2)-Dasypus_novemcinctus -0.1815 0.1050 -0.3888 -0.1786 0.0218
## I(week^2)-Lynx_rufus -0.2417 0.1582 -0.5547 -0.2364 0.0691
## I(week^2)-Didelphis_virginiana -0.4191 0.2108 -0.8641 -0.4013 -0.0557
## I(week^2)-Sylvilagus_floridanus -0.1855 0.1510 -0.4808 -0.1868 0.0968
## I(week^2)-Sciurus_carolinensis -0.2805 0.1492 -0.5878 -0.2786 0.0033
## I(week^2)-Vulpes_vulpes -0.4126 0.2533 -0.9733 -0.3941 0.0439
## I(week^2)-Sus_scrofa -0.2450 0.1804 -0.6069 -0.2412 0.0985
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0084 1500
## (Intercept)-Canis_latrans 1.0019 815
## (Intercept)-Sciurus_niger 1.0233 172
## (Intercept)-Procyon_lotor 1.0009 988
## (Intercept)-Dasypus_novemcinctus 1.0049 1165
## (Intercept)-Lynx_rufus 1.0103 238
## (Intercept)-Didelphis_virginiana 1.0061 778
## (Intercept)-Sylvilagus_floridanus 1.0036 532
## (Intercept)-Sciurus_carolinensis 1.0045 927
## (Intercept)-Vulpes_vulpes 1.1078 123
## (Intercept)-Sus_scrofa 1.0082 555
## shrub_cover-Odocoileus_virginianus 1.0015 1642
## shrub_cover-Canis_latrans 1.0078 898
## shrub_cover-Sciurus_niger 1.0047 360
## shrub_cover-Procyon_lotor 1.0123 1021
## shrub_cover-Dasypus_novemcinctus 1.0194 1109
## shrub_cover-Lynx_rufus 1.0167 292
## shrub_cover-Didelphis_virginiana 1.0019 611
## shrub_cover-Sylvilagus_floridanus 1.0201 591
## shrub_cover-Sciurus_carolinensis 1.0065 676
## shrub_cover-Vulpes_vulpes 1.0095 636
## shrub_cover-Sus_scrofa 1.0274 747
## veg_height-Odocoileus_virginianus 0.9996 1500
## veg_height-Canis_latrans 1.0117 763
## veg_height-Sciurus_niger 1.0008 432
## veg_height-Procyon_lotor 1.0001 1190
## veg_height-Dasypus_novemcinctus 1.0036 1500
## veg_height-Lynx_rufus 1.0003 737
## veg_height-Didelphis_virginiana 1.0002 1147
## veg_height-Sylvilagus_floridanus 1.0277 644
## veg_height-Sciurus_carolinensis 1.0017 1034
## veg_height-Vulpes_vulpes 1.0121 574
## veg_height-Sus_scrofa 1.0034 1054
## week-Odocoileus_virginianus 1.0119 1329
## week-Canis_latrans 1.0051 1140
## week-Sciurus_niger 1.0044 308
## week-Procyon_lotor 1.0026 1508
## week-Dasypus_novemcinctus 1.0095 1286
## week-Lynx_rufus 1.0079 670
## week-Didelphis_virginiana 1.0049 891
## week-Sylvilagus_floridanus 1.0035 778
## week-Sciurus_carolinensis 0.9998 1151
## week-Vulpes_vulpes 1.0047 610
## week-Sus_scrofa 1.0144 1053
## I(week^2)-Odocoileus_virginianus 1.0091 1490
## I(week^2)-Canis_latrans 1.0156 1225
## I(week^2)-Sciurus_niger 1.0081 364
## I(week^2)-Procyon_lotor 1.0058 1318
## I(week^2)-Dasypus_novemcinctus 1.0025 1323
## I(week^2)-Lynx_rufus 1.0005 600
## I(week^2)-Didelphis_virginiana 1.0065 396
## I(week^2)-Sylvilagus_floridanus 1.0105 650
## I(week^2)-Sciurus_carolinensis 1.0082 1319
## I(week^2)-Vulpes_vulpes 1.0531 416
## I(week^2)-Sus_scrofa 1.0065 1243
#Includes quadratic week and full covariates of detection and only cogon for occupancy
ms_fullQ_cogon<- msPGOcc(
occ.formula = occ.cogon,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_cogon)
##
## Call:
## msPGOcc(occ.formula = occ.cogon, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7453
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.1416 0.5776 -1.2266 -0.1564 1.0539 1.0304 771
## Avg_Cogongrass_Cover 0.1955 0.2453 -0.2844 0.1875 0.6750 1.0193 692
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.2585 2.6682 0.6518 2.4954 10.7741 1.0028 422
## Avg_Cogongrass_Cover 0.2657 0.3164 0.0339 0.1641 1.0824 1.0217 551
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.6823 0.6436 0.063 0.494 2.5067 1.0326 154
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3990 0.4606 -3.2795 -2.4017 -1.4576 1.0065 1500
## shrub_cover 0.2232 0.2394 -0.2555 0.2253 0.7083 1.0017 898
## veg_height -0.0154 0.1571 -0.3326 -0.0145 0.2766 1.0018 903
## week 0.3706 0.2301 -0.1088 0.3837 0.8031 1.0141 1011
## I(week^2) -0.2856 0.1028 -0.4934 -0.2872 -0.0851 1.0007 783
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.3880 1.5563 0.8028 1.9793 6.6710 1.0184 383
## shrub_cover 0.4733 0.3953 0.0843 0.3569 1.5475 1.0146 612
## veg_height 0.1963 0.1437 0.0551 0.1590 0.5812 1.0134 1172
## week 0.4196 0.3318 0.1059 0.3320 1.2556 1.0498 595
## I(week^2) 0.0704 0.0480 0.0233 0.0582 0.1911 1.0217 1310
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 3.4176 1.3867 1.2336 3.2527
## (Intercept)-Canis_latrans 0.4179 0.6436 -0.7780 0.4032
## (Intercept)-Sciurus_niger -0.3805 1.1399 -2.4018 -0.5196
## (Intercept)-Procyon_lotor 0.5608 0.5997 -0.7313 0.5498
## (Intercept)-Dasypus_novemcinctus -0.6142 0.5619 -1.7676 -0.5895
## (Intercept)-Lynx_rufus 0.2577 1.0890 -1.3911 0.0770
## (Intercept)-Didelphis_virginiana -1.2221 0.6535 -2.5145 -1.2220
## (Intercept)-Sylvilagus_floridanus -0.3440 0.6451 -1.5781 -0.3485
## (Intercept)-Sciurus_carolinensis -1.2925 0.6512 -2.6265 -1.2806
## (Intercept)-Vulpes_vulpes -0.8584 1.3767 -2.9211 -1.0755
## (Intercept)-Sus_scrofa -1.6815 0.7887 -3.2583 -1.6599
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.1833 0.4879 -0.7471 0.1678
## Avg_Cogongrass_Cover-Canis_latrans 0.4203 0.3629 -0.2446 0.3892
## Avg_Cogongrass_Cover-Sciurus_niger -0.1192 0.5666 -1.3692 -0.0836
## Avg_Cogongrass_Cover-Procyon_lotor 0.2175 0.3332 -0.3979 0.2013
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3238 0.3176 -0.2747 0.3164
## Avg_Cogongrass_Cover-Lynx_rufus 0.4005 0.4228 -0.3716 0.3721
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.3047 0.3590 -0.3660 0.2844
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1596 0.4118 -1.0744 -0.1336
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3432 0.3470 -0.3429 0.3446
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.2740 0.4473 -0.5631 0.2555
## Avg_Cogongrass_Cover-Sus_scrofa -0.0635 0.4769 -1.1292 -0.0388
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.7351 1.0260 327
## (Intercept)-Canis_latrans 1.7684 1.0073 842
## (Intercept)-Sciurus_niger 2.1496 1.0149 176
## (Intercept)-Procyon_lotor 1.7481 1.0027 925
## (Intercept)-Dasypus_novemcinctus 0.4953 1.0089 1025
## (Intercept)-Lynx_rufus 2.9688 1.1546 240
## (Intercept)-Didelphis_virginiana 0.0240 1.0011 955
## (Intercept)-Sylvilagus_floridanus 0.9329 1.0202 890
## (Intercept)-Sciurus_carolinensis -0.0166 1.0240 908
## (Intercept)-Vulpes_vulpes 2.7581 1.0820 104
## (Intercept)-Sus_scrofa -0.1150 1.0268 732
## Avg_Cogongrass_Cover-Odocoileus_virginianus 1.2591 1.0131 1171
## Avg_Cogongrass_Cover-Canis_latrans 1.2048 1.0052 1220
## Avg_Cogongrass_Cover-Sciurus_niger 0.8580 1.0252 557
## Avg_Cogongrass_Cover-Procyon_lotor 0.9027 1.0009 1235
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.9437 1.0053 1328
## Avg_Cogongrass_Cover-Lynx_rufus 1.2781 1.0185 745
## Avg_Cogongrass_Cover-Didelphis_virginiana 1.0647 1.0033 1269
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 0.6113 1.0139 936
## Avg_Cogongrass_Cover-Sciurus_carolinensis 1.0352 1.0019 1285
## Avg_Cogongrass_Cover-Vulpes_vulpes 1.2560 1.0223 854
## Avg_Cogongrass_Cover-Sus_scrofa 0.7956 1.0149 847
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5326 0.0822 0.3775 0.5323 0.6977
## (Intercept)-Canis_latrans -2.5664 0.2075 -3.0023 -2.5576 -2.1701
## (Intercept)-Sciurus_niger -4.1380 0.6993 -5.4712 -4.1499 -2.8192
## (Intercept)-Procyon_lotor -2.1698 0.1648 -2.5131 -2.1699 -1.8630
## (Intercept)-Dasypus_novemcinctus -1.5724 0.1793 -1.9529 -1.5632 -1.2315
## (Intercept)-Lynx_rufus -3.5578 0.3834 -4.3347 -3.5449 -2.8779
## (Intercept)-Didelphis_virginiana -2.3015 0.3038 -2.9184 -2.2872 -1.7371
## (Intercept)-Sylvilagus_floridanus -3.0628 0.3113 -3.7262 -3.0472 -2.4866
## (Intercept)-Sciurus_carolinensis -2.3937 0.3322 -3.0782 -2.3749 -1.7921
## (Intercept)-Vulpes_vulpes -4.0951 0.8646 -5.8617 -4.0398 -2.5899
## (Intercept)-Sus_scrofa -3.1245 0.5948 -4.2920 -3.1091 -1.9187
## shrub_cover-Odocoileus_virginianus -0.0574 0.0683 -0.1909 -0.0581 0.0750
## shrub_cover-Canis_latrans -0.2512 0.2181 -0.6890 -0.2499 0.1873
## shrub_cover-Sciurus_niger -0.3662 0.4690 -1.3542 -0.3343 0.4882
## shrub_cover-Procyon_lotor 0.2518 0.1638 -0.0766 0.2595 0.5468
## shrub_cover-Dasypus_novemcinctus 0.8012 0.2921 0.2344 0.8018 1.3708
## shrub_cover-Lynx_rufus -0.2750 0.3415 -0.9348 -0.2760 0.3936
## shrub_cover-Didelphis_virginiana 0.8917 0.3682 0.2225 0.8656 1.6861
## shrub_cover-Sylvilagus_floridanus 0.2648 0.3890 -0.4642 0.2514 1.0503
## shrub_cover-Sciurus_carolinensis 0.7662 0.3947 0.0432 0.7546 1.5532
## shrub_cover-Vulpes_vulpes -0.0623 0.5264 -1.1678 -0.0411 0.9297
## shrub_cover-Sus_scrofa 0.5165 0.7121 -0.9499 0.5139 1.9657
## veg_height-Odocoileus_virginianus -0.3301 0.0686 -0.4655 -0.3280 -0.2066
## veg_height-Canis_latrans -0.5905 0.1833 -0.9442 -0.5833 -0.2364
## veg_height-Sciurus_niger -0.0719 0.4112 -0.8771 -0.0636 0.7835
## veg_height-Procyon_lotor 0.3273 0.1250 0.0793 0.3274 0.5709
## veg_height-Dasypus_novemcinctus 0.2247 0.1334 -0.0372 0.2223 0.4982
## veg_height-Lynx_rufus 0.0004 0.2381 -0.4701 0.0057 0.4560
## veg_height-Didelphis_virginiana 0.3938 0.2346 -0.0498 0.3841 0.8887
## veg_height-Sylvilagus_floridanus 0.1147 0.2376 -0.3370 0.1109 0.5887
## veg_height-Sciurus_carolinensis 0.0455 0.2035 -0.3467 0.0453 0.4523
## veg_height-Vulpes_vulpes -0.1450 0.3207 -0.8134 -0.1309 0.4437
## veg_height-Sus_scrofa -0.1325 0.3121 -0.7622 -0.1321 0.4744
## week-Odocoileus_virginianus 1.3015 0.1212 1.0567 1.3022 1.5453
## week-Canis_latrans 0.5937 0.2665 0.0773 0.5867 1.1151
## week-Sciurus_niger -0.3323 0.5247 -1.4519 -0.2902 0.5763
## week-Procyon_lotor 0.2076 0.2094 -0.2048 0.2094 0.6343
## week-Dasypus_novemcinctus 0.1073 0.2259 -0.3232 0.1039 0.5605
## week-Lynx_rufus 0.3990 0.3528 -0.2885 0.3950 1.1005
## week-Didelphis_virginiana 0.0660 0.3531 -0.6251 0.0752 0.7394
## week-Sylvilagus_floridanus 0.0668 0.3464 -0.6566 0.0739 0.7262
## week-Sciurus_carolinensis 0.8090 0.3651 0.1185 0.7983 1.5427
## week-Vulpes_vulpes 0.2266 0.5035 -0.7761 0.2323 1.1601
## week-Sus_scrofa 0.6669 0.4489 -0.2236 0.6688 1.5743
## I(week^2)-Odocoileus_virginianus -0.5368 0.0492 -0.6334 -0.5371 -0.4407
## I(week^2)-Canis_latrans -0.2447 0.1077 -0.4746 -0.2401 -0.0408
## I(week^2)-Sciurus_niger -0.2770 0.2193 -0.7699 -0.2647 0.1183
## I(week^2)-Procyon_lotor -0.1353 0.0918 -0.3134 -0.1327 0.0406
## I(week^2)-Dasypus_novemcinctus -0.1814 0.1042 -0.3847 -0.1809 0.0115
## I(week^2)-Lynx_rufus -0.2419 0.1540 -0.5648 -0.2379 0.0535
## I(week^2)-Didelphis_virginiana -0.4130 0.1987 -0.8700 -0.3967 -0.0700
## I(week^2)-Sylvilagus_floridanus -0.1731 0.1567 -0.4740 -0.1728 0.1361
## I(week^2)-Sciurus_carolinensis -0.2869 0.1420 -0.5651 -0.2845 -0.0096
## I(week^2)-Vulpes_vulpes -0.3895 0.2401 -0.8828 -0.3770 0.0441
## I(week^2)-Sus_scrofa -0.2432 0.1802 -0.6212 -0.2350 0.1001
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0224 1500
## (Intercept)-Canis_latrans 1.0127 602
## (Intercept)-Sciurus_niger 1.0057 148
## (Intercept)-Procyon_lotor 0.9995 1083
## (Intercept)-Dasypus_novemcinctus 1.0071 1384
## (Intercept)-Lynx_rufus 1.0760 304
## (Intercept)-Didelphis_virginiana 1.0024 800
## (Intercept)-Sylvilagus_floridanus 1.0105 636
## (Intercept)-Sciurus_carolinensis 1.0128 944
## (Intercept)-Vulpes_vulpes 1.0752 89
## (Intercept)-Sus_scrofa 1.0194 591
## shrub_cover-Odocoileus_virginianus 1.0036 1500
## shrub_cover-Canis_latrans 1.0058 814
## shrub_cover-Sciurus_niger 1.0188 275
## shrub_cover-Procyon_lotor 1.0124 1116
## shrub_cover-Dasypus_novemcinctus 1.0227 1066
## shrub_cover-Lynx_rufus 1.0297 342
## shrub_cover-Didelphis_virginiana 1.0052 684
## shrub_cover-Sylvilagus_floridanus 1.0199 483
## shrub_cover-Sciurus_carolinensis 1.0095 695
## shrub_cover-Vulpes_vulpes 1.0035 583
## shrub_cover-Sus_scrofa 1.0074 658
## veg_height-Odocoileus_virginianus 1.0011 1500
## veg_height-Canis_latrans 0.9999 604
## veg_height-Sciurus_niger 1.0020 427
## veg_height-Procyon_lotor 1.0032 1225
## veg_height-Dasypus_novemcinctus 1.0017 1195
## veg_height-Lynx_rufus 1.0009 743
## veg_height-Didelphis_virginiana 1.0065 896
## veg_height-Sylvilagus_floridanus 1.0260 654
## veg_height-Sciurus_carolinensis 1.0025 1039
## veg_height-Vulpes_vulpes 1.0032 615
## veg_height-Sus_scrofa 1.0009 1147
## week-Odocoileus_virginianus 1.0119 1366
## week-Canis_latrans 1.0139 1065
## week-Sciurus_niger 1.0374 337
## week-Procyon_lotor 1.0051 1145
## week-Dasypus_novemcinctus 1.0017 1258
## week-Lynx_rufus 1.0099 807
## week-Didelphis_virginiana 1.0084 935
## week-Sylvilagus_floridanus 1.0091 798
## week-Sciurus_carolinensis 1.0051 922
## week-Vulpes_vulpes 1.0068 551
## week-Sus_scrofa 1.0030 1671
## I(week^2)-Odocoileus_virginianus 1.0042 1500
## I(week^2)-Canis_latrans 1.0094 1130
## I(week^2)-Sciurus_niger 1.0071 488
## I(week^2)-Procyon_lotor 1.0112 1152
## I(week^2)-Dasypus_novemcinctus 1.0014 1213
## I(week^2)-Lynx_rufus 1.0026 741
## I(week^2)-Didelphis_virginiana 1.0149 611
## I(week^2)-Sylvilagus_floridanus 1.0045 746
## I(week^2)-Sciurus_carolinensis 1.0018 1176
## I(week^2)-Vulpes_vulpes 1.0125 574
## I(week^2)-Sus_scrofa 1.0090 1243
# Includes quadratic week and full covariates of detection and quadratic cogon for occupancy
ms_fullQ_cogonQ<- msPGOcc(
occ.formula = occ.cogon.quad,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_cogonQ)
##
## Call:
## msPGOcc(occ.formula = occ.cogon.quad, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7462
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.9082 0.6241 -2.0733 -0.9347 0.3586 1.0086 933
## Avg_Cogongrass_Cover -0.7780 0.3708 -1.4924 -0.7744 -0.0337 1.0037 484
## I(Avg_Cogongrass_Cover^2) 0.8764 0.3202 0.2869 0.8451 1.6271 1.0143 362
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 3.6026 2.7907 0.7513 2.7935 10.6148 1.0121 676
## Avg_Cogongrass_Cover 0.4367 0.5814 0.0478 0.2728 1.6194 1.1277 545
## I(Avg_Cogongrass_Cover^2) 0.4289 0.8272 0.0377 0.2069 2.2455 1.1129 422
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.5766 0.5893 0.0557 0.3741 2.3167 1.1451 150
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.3821 0.4498 -3.2628 -2.3941 -1.4316 1.0028 1500
## shrub_cover 0.2269 0.2474 -0.2818 0.2295 0.7400 1.0110 874
## veg_height 0.0067 0.1595 -0.2996 0.0052 0.3293 1.0013 830
## week 0.3580 0.2383 -0.1404 0.3729 0.8018 1.0141 869
## I(week^2) -0.2816 0.1025 -0.4887 -0.2783 -0.0814 1.0001 716
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2896 1.4096 0.7787 1.9456 5.6542 1.0146 954
## shrub_cover 0.4515 0.3853 0.0860 0.3413 1.3733 1.0068 514
## veg_height 0.1964 0.1383 0.0591 0.1595 0.5275 1.0196 850
## week 0.4257 0.3051 0.1081 0.3448 1.1726 1.0173 672
## I(week^2) 0.0717 0.0514 0.0210 0.0579 0.2061 1.0005 954
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 2.7943 1.4096 0.5484 2.6115
## (Intercept)-Canis_latrans -0.4753 0.6788 -1.8233 -0.4641
## (Intercept)-Sciurus_niger -0.7868 1.2025 -2.7097 -0.9347
## (Intercept)-Procyon_lotor -0.1645 0.6641 -1.5180 -0.1636
## (Intercept)-Dasypus_novemcinctus -1.3889 0.6426 -2.7296 -1.3672
## (Intercept)-Lynx_rufus -1.0378 0.8954 -2.7387 -1.0683
## (Intercept)-Didelphis_virginiana -1.9376 0.7247 -3.4686 -1.9266
## (Intercept)-Sylvilagus_floridanus -1.1243 0.7356 -2.5416 -1.1360
## (Intercept)-Sciurus_carolinensis -2.3801 0.7766 -3.9666 -2.3318
## (Intercept)-Vulpes_vulpes -2.2281 1.2531 -4.6580 -2.2757
## (Intercept)-Sus_scrofa -2.4565 0.8677 -4.3767 -2.4015
## Avg_Cogongrass_Cover-Odocoileus_virginianus -0.7796 0.6549 -2.1308 -0.7795
## Avg_Cogongrass_Cover-Canis_latrans -0.3712 0.5368 -1.3177 -0.3840
## Avg_Cogongrass_Cover-Sciurus_niger -1.0996 0.7709 -2.7302 -1.0395
## Avg_Cogongrass_Cover-Procyon_lotor -0.7193 0.5199 -1.7892 -0.7133
## Avg_Cogongrass_Cover-Dasypus_novemcinctus -0.5903 0.4888 -1.5573 -0.6026
## Avg_Cogongrass_Cover-Lynx_rufus -0.6951 0.5664 -1.7925 -0.7067
## Avg_Cogongrass_Cover-Didelphis_virginiana -0.5407 0.5533 -1.6370 -0.5677
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -1.2505 0.6454 -2.6775 -1.1831
## Avg_Cogongrass_Cover-Sciurus_carolinensis -0.8499 0.5451 -1.9887 -0.8350
## Avg_Cogongrass_Cover-Vulpes_vulpes -0.8264 0.6454 -2.1170 -0.8339
## Avg_Cogongrass_Cover-Sus_scrofa -1.0603 0.6524 -2.5430 -0.9865
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.1570 0.6964 0.1331 1.0612
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.2131 0.6951 0.2237 1.0852
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 0.4766 0.6943 -1.0882 0.4901
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.0563 0.5924 0.2572 0.9758
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 0.7793 0.3536 0.1070 0.7664
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.1988 0.5361 0.3733 1.1105
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 0.6416 0.4011 -0.1246 0.6299
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 0.8030 0.4829 -0.0117 0.7706
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.0317 0.4043 0.3492 0.9891
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 0.9945 0.4998 0.1970 0.9417
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 0.5089 0.6001 -0.9336 0.5709
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 6.2608 1.0064 470
## (Intercept)-Canis_latrans 0.8593 1.0100 930
## (Intercept)-Sciurus_niger 1.9677 1.0304 176
## (Intercept)-Procyon_lotor 1.1254 1.0106 962
## (Intercept)-Dasypus_novemcinctus -0.1329 1.0018 1026
## (Intercept)-Lynx_rufus 0.8252 1.0381 498
## (Intercept)-Didelphis_virginiana -0.6093 1.0153 1007
## (Intercept)-Sylvilagus_floridanus 0.3529 1.0043 769
## (Intercept)-Sciurus_carolinensis -0.9165 1.0009 694
## (Intercept)-Vulpes_vulpes 0.6874 1.1212 258
## (Intercept)-Sus_scrofa -0.8889 1.0091 701
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.5093 1.0063 832
## Avg_Cogongrass_Cover-Canis_latrans 0.7860 1.0027 688
## Avg_Cogongrass_Cover-Sciurus_niger 0.2473 1.0285 374
## Avg_Cogongrass_Cover-Procyon_lotor 0.3314 1.0006 927
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.3665 1.0012 939
## Avg_Cogongrass_Cover-Lynx_rufus 0.4544 1.0077 616
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.5608 1.0067 737
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.1615 1.0015 478
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.1439 1.0066 674
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.4380 1.0192 624
## Avg_Cogongrass_Cover-Sus_scrofa 0.0372 1.0100 622
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 2.9906 1.0284 492
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 2.9637 1.0270 371
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.7963 1.0411 271
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 2.3593 1.0231 388
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.5021 1.0026 1399
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.4920 1.0090 490
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.4180 1.0018 727
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.7763 1.0881 486
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.9099 1.0005 829
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 2.2289 1.0413 400
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.5743 1.0221 508
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5367 0.0833 0.3782 0.5364 0.7061
## (Intercept)-Canis_latrans -2.5584 0.2058 -2.9776 -2.5543 -2.1678
## (Intercept)-Sciurus_niger -4.1634 0.6940 -5.5922 -4.1580 -2.8293
## (Intercept)-Procyon_lotor -2.1949 0.1622 -2.5045 -2.1898 -1.8833
## (Intercept)-Dasypus_novemcinctus -1.5771 0.1762 -1.9338 -1.5738 -1.2537
## (Intercept)-Lynx_rufus -3.4266 0.3877 -4.1787 -3.4210 -2.6958
## (Intercept)-Didelphis_virginiana -2.3225 0.3193 -2.9683 -2.3143 -1.7327
## (Intercept)-Sylvilagus_floridanus -3.0745 0.3116 -3.7115 -3.0651 -2.4858
## (Intercept)-Sciurus_carolinensis -2.3907 0.3263 -3.0890 -2.3679 -1.8156
## (Intercept)-Vulpes_vulpes -3.8884 0.7229 -5.3105 -3.8622 -2.6312
## (Intercept)-Sus_scrofa -3.0995 0.5926 -4.2317 -3.1050 -1.9784
## shrub_cover-Odocoileus_virginianus -0.0586 0.0679 -0.1859 -0.0592 0.0752
## shrub_cover-Canis_latrans -0.2503 0.2195 -0.6880 -0.2505 0.1680
## shrub_cover-Sciurus_niger -0.3195 0.4611 -1.2899 -0.3013 0.5395
## shrub_cover-Procyon_lotor 0.2369 0.1674 -0.1040 0.2433 0.5542
## shrub_cover-Dasypus_novemcinctus 0.7893 0.2972 0.2454 0.7799 1.3876
## shrub_cover-Lynx_rufus -0.2086 0.3408 -0.8569 -0.2118 0.4782
## shrub_cover-Didelphis_virginiana 0.8951 0.3695 0.2682 0.8699 1.7137
## shrub_cover-Sylvilagus_floridanus 0.2383 0.3708 -0.4816 0.2259 0.9798
## shrub_cover-Sciurus_carolinensis 0.7386 0.3911 0.0534 0.7169 1.5950
## shrub_cover-Vulpes_vulpes -0.0382 0.5195 -1.1193 -0.0235 0.9417
## shrub_cover-Sus_scrofa 0.5328 0.7070 -0.8096 0.4780 2.0249
## veg_height-Odocoileus_virginianus -0.3291 0.0679 -0.4624 -0.3277 -0.1969
## veg_height-Canis_latrans -0.5794 0.1845 -0.9484 -0.5692 -0.2378
## veg_height-Sciurus_niger 0.0078 0.3942 -0.7415 -0.0123 0.8274
## veg_height-Procyon_lotor 0.3406 0.1251 0.0936 0.3438 0.5747
## veg_height-Dasypus_novemcinctus 0.2256 0.1321 -0.0272 0.2272 0.4817
## veg_height-Lynx_rufus 0.0828 0.2473 -0.4000 0.0881 0.5854
## veg_height-Didelphis_virginiana 0.3916 0.2445 -0.0830 0.3774 0.8961
## veg_height-Sylvilagus_floridanus 0.1531 0.2386 -0.3118 0.1445 0.6106
## veg_height-Sciurus_carolinensis 0.0557 0.2114 -0.3273 0.0476 0.4809
## veg_height-Vulpes_vulpes -0.1367 0.3172 -0.8063 -0.1159 0.4135
## veg_height-Sus_scrofa -0.1286 0.3206 -0.7593 -0.1040 0.4636
## week-Odocoileus_virginianus 1.3135 0.1245 1.0783 1.3091 1.5678
## week-Canis_latrans 0.5849 0.2648 0.0769 0.5841 1.0930
## week-Sciurus_niger -0.4140 0.5584 -1.5860 -0.3785 0.5538
## week-Procyon_lotor 0.1944 0.2201 -0.2209 0.1961 0.6484
## week-Dasypus_novemcinctus 0.1088 0.2284 -0.3573 0.1074 0.5389
## week-Lynx_rufus 0.3978 0.3660 -0.3333 0.3947 1.1241
## week-Didelphis_virginiana 0.0644 0.3637 -0.6623 0.0733 0.7539
## week-Sylvilagus_floridanus 0.0761 0.3481 -0.5855 0.0850 0.7486
## week-Sciurus_carolinensis 0.7988 0.3637 0.0827 0.7928 1.5478
## week-Vulpes_vulpes 0.2078 0.5058 -0.8324 0.2355 1.1740
## week-Sus_scrofa 0.6764 0.4336 -0.1851 0.6633 1.5433
## I(week^2)-Odocoileus_virginianus -0.5406 0.0515 -0.6436 -0.5402 -0.4427
## I(week^2)-Canis_latrans -0.2418 0.1084 -0.4585 -0.2395 -0.0308
## I(week^2)-Sciurus_niger -0.2849 0.2267 -0.7550 -0.2751 0.1551
## I(week^2)-Procyon_lotor -0.1279 0.0930 -0.3177 -0.1281 0.0515
## I(week^2)-Dasypus_novemcinctus -0.1834 0.1034 -0.3883 -0.1841 0.0109
## I(week^2)-Lynx_rufus -0.2442 0.1560 -0.5678 -0.2380 0.0590
## I(week^2)-Didelphis_virginiana -0.4084 0.2032 -0.8628 -0.3838 -0.0439
## I(week^2)-Sylvilagus_floridanus -0.1833 0.1564 -0.4962 -0.1811 0.1004
## I(week^2)-Sciurus_carolinensis -0.2804 0.1442 -0.5756 -0.2758 -0.0069
## I(week^2)-Vulpes_vulpes -0.3866 0.2441 -0.9198 -0.3657 0.0225
## I(week^2)-Sus_scrofa -0.2400 0.1709 -0.5867 -0.2384 0.0931
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0073 1500
## (Intercept)-Canis_latrans 1.0080 876
## (Intercept)-Sciurus_niger 1.0641 126
## (Intercept)-Procyon_lotor 0.9994 880
## (Intercept)-Dasypus_novemcinctus 1.0019 1500
## (Intercept)-Lynx_rufus 1.0069 297
## (Intercept)-Didelphis_virginiana 1.0042 837
## (Intercept)-Sylvilagus_floridanus 1.0231 635
## (Intercept)-Sciurus_carolinensis 1.0036 818
## (Intercept)-Vulpes_vulpes 1.1030 198
## (Intercept)-Sus_scrofa 1.0155 483
## shrub_cover-Odocoileus_virginianus 1.0115 1622
## shrub_cover-Canis_latrans 1.0029 825
## shrub_cover-Sciurus_niger 1.0007 349
## shrub_cover-Procyon_lotor 1.0107 922
## shrub_cover-Dasypus_novemcinctus 1.0001 1059
## shrub_cover-Lynx_rufus 1.0067 320
## shrub_cover-Didelphis_virginiana 1.0104 528
## shrub_cover-Sylvilagus_floridanus 1.0181 577
## shrub_cover-Sciurus_carolinensis 1.0013 620
## shrub_cover-Vulpes_vulpes 1.0128 557
## shrub_cover-Sus_scrofa 1.0074 501
## veg_height-Odocoileus_virginianus 1.0069 1500
## veg_height-Canis_latrans 1.0047 659
## veg_height-Sciurus_niger 1.0136 557
## veg_height-Procyon_lotor 1.0009 1078
## veg_height-Dasypus_novemcinctus 1.0019 1276
## veg_height-Lynx_rufus 0.9998 668
## veg_height-Didelphis_virginiana 1.0187 922
## veg_height-Sylvilagus_floridanus 1.0262 796
## veg_height-Sciurus_carolinensis 1.0059 1104
## veg_height-Vulpes_vulpes 1.0164 639
## veg_height-Sus_scrofa 1.0018 882
## week-Odocoileus_virginianus 1.0139 1500
## week-Canis_latrans 1.0002 1155
## week-Sciurus_niger 1.0129 263
## week-Procyon_lotor 1.0034 1486
## week-Dasypus_novemcinctus 1.0050 1500
## week-Lynx_rufus 1.0165 545
## week-Didelphis_virginiana 1.0086 807
## week-Sylvilagus_floridanus 1.0036 762
## week-Sciurus_carolinensis 1.0113 1028
## week-Vulpes_vulpes 1.0117 709
## week-Sus_scrofa 1.0086 1082
## I(week^2)-Odocoileus_virginianus 1.0108 1500
## I(week^2)-Canis_latrans 1.0122 1934
## I(week^2)-Sciurus_niger 1.0003 311
## I(week^2)-Procyon_lotor 1.0053 1241
## I(week^2)-Dasypus_novemcinctus 1.0117 1247
## I(week^2)-Lynx_rufus 1.0062 557
## I(week^2)-Didelphis_virginiana 1.0111 515
## I(week^2)-Sylvilagus_floridanus 1.0014 843
## I(week^2)-Sciurus_carolinensis 1.0051 1217
## I(week^2)-Vulpes_vulpes 1.0070 524
## I(week^2)-Sus_scrofa 1.0026 1250
# Includes quadratic week and full covariates of detection and all covariates and quadratic cogon for occupancy
ms_fullQ_fullQ<- msPGOcc(
occ.formula = occ.full.quad,
det.formula = det.full.quad,
data = data_list,
n.samples = 5000,
n.thin = 4,
n.burn = 3000,
n.chains = 3,
n.report = 500,
)
## ----------------------------------------
## Preparing to run the model
## ----------------------------------------
## Warning in (function (..., row.names = NULL, check.rows = FALSE, check.names =
## TRUE, : row names were found from a short variable and have been discarded
## No prior specified for beta.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for alpha.comm.normal.
## Setting prior mean to 0 and prior variance to 2.72
## No prior specified for tau.sq.beta.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for tau.sq.alpha.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## No prior specified for sigma.sq.psi.ig.
## Setting prior shape to 0.1 and prior scale to 0.1
## z is not specified in initial values.
## Setting initial values based on observed data
## beta.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## alpha.comm is not specified in initial values.
## Setting initial values to random values from the prior distribution
## tau.sq.beta is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## tau.sq.alpha is not specified in initial values.
## Setting to initial values to random values between 0.5 and 10
## beta is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## alpha is not specified in initial values.
## Setting initial values to random values from the community-level normal distribution
## sigma.sq.psi is not specified in initial values.
## Setting initial values to random values between 0.5 and 10
## ----------------------------------------
## Model description
## ----------------------------------------
## Multi-species Occupancy Model with Polya-Gamma latent
## variable fit with 32 sites and 11 species.
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## Source compiled with OpenMP support and model fit using 1 thread(s).
##
## ----------------------------------------
## Chain 1
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 2
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
## ----------------------------------------
## Chain 3
## ----------------------------------------
## Sampling ...
## Sampled: 500 of 5000, 10.00%
## -------------------------------------------------
## Sampled: 1000 of 5000, 20.00%
## -------------------------------------------------
## Sampled: 1500 of 5000, 30.00%
## -------------------------------------------------
## Sampled: 2000 of 5000, 40.00%
## -------------------------------------------------
## Sampled: 2500 of 5000, 50.00%
## -------------------------------------------------
## Sampled: 3000 of 5000, 60.00%
## -------------------------------------------------
## Sampled: 3500 of 5000, 70.00%
## -------------------------------------------------
## Sampled: 4000 of 5000, 80.00%
## -------------------------------------------------
## Sampled: 4500 of 5000, 90.00%
## -------------------------------------------------
## Sampled: 5000 of 5000, 100.00%
summary(ms_fullQ_fullQ)
##
## Call:
## msPGOcc(occ.formula = occ.full.quad, det.formula = det.full.quad,
## data = data_list, n.samples = 5000, n.report = 500, n.burn = 3000,
## n.thin = 4, n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.8117
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.8555 1.1225 -2.9736 -0.9314 1.4867 1.0420 520
## Cogon_Patch_Size 0.1717 0.6780 -1.2145 0.1873 1.4261 1.0303 336
## Veg_shannon_index 1.3508 0.6167 0.1403 1.3448 2.6338 1.0876 234
## total_shrub_cover -0.3926 0.4376 -1.2969 -0.3872 0.4800 1.0305 403
## Avg_Cogongrass_Cover 0.3612 1.0191 -1.5987 0.2922 2.4463 1.1574 89
## Tree_Density -1.9047 0.7326 -3.4231 -1.8816 -0.5059 1.0157 176
## Avg_Canopy_Cover 1.9378 0.7108 0.6078 1.9036 3.4266 1.0196 322
## I(Avg_Cogongrass_Cover^2) 1.6047 0.5475 0.5953 1.5794 2.7707 1.0263 171
## avg_veg_height -0.2369 0.5080 -1.2717 -0.2351 0.7280 1.1288 169
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 21.7674 18.7699 3.9150 16.2598 73.7324 1.1176 136
## Cogon_Patch_Size 2.5361 3.7755 0.1236 1.3052 12.6511 1.0371 241
## Veg_shannon_index 1.1802 1.8275 0.0501 0.5316 6.0501 1.0374 234
## total_shrub_cover 0.6309 0.9922 0.0474 0.3394 2.8840 1.1274 354
## Avg_Cogongrass_Cover 1.0352 2.0603 0.0503 0.4372 5.6974 1.0474 334
## Tree_Density 2.5454 4.0673 0.0646 1.0997 13.9557 1.0141 200
## Avg_Canopy_Cover 3.2498 4.1115 0.2742 2.0686 13.1737 1.0106 303
## I(Avg_Cogongrass_Cover^2) 0.8941 2.4126 0.0487 0.3701 4.7550 1.2497 515
## avg_veg_height 0.5859 0.9447 0.0431 0.2969 2.9703 1.0418 386
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9014 1.4788 0.0433 0.4041 4.8964 1.1509 112
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.4572 0.4896 -3.3578 -2.4683 -1.4152 1.0045 1353
## shrub_cover 0.2794 0.2611 -0.2261 0.2708 0.8249 1.0018 736
## veg_height 0.0252 0.1547 -0.2672 0.0192 0.3412 1.0022 651
## week 0.3533 0.2379 -0.1355 0.3649 0.7943 1.0112 737
## I(week^2) -0.2932 0.1055 -0.5128 -0.2912 -0.1019 1.0128 907
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.5975 1.5834 1.0214 2.1945 6.9594 1.0072 1320
## shrub_cover 0.5083 0.3850 0.1100 0.4023 1.5068 1.0062 520
## veg_height 0.1924 0.1319 0.0547 0.1595 0.5055 1.0015 896
## week 0.4375 0.3483 0.1031 0.3481 1.3813 1.0099 417
## I(week^2) 0.0762 0.0587 0.0235 0.0612 0.2213 1.0306 520
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5%
## (Intercept)-Odocoileus_virginianus 7.6240 3.6629 2.6937
## (Intercept)-Canis_latrans -0.9878 1.0460 -2.9898
## (Intercept)-Sciurus_niger 0.9422 2.3292 -2.6933
## (Intercept)-Procyon_lotor -0.1483 1.0550 -2.2655
## (Intercept)-Dasypus_novemcinctus -2.4397 1.0291 -4.6632
## (Intercept)-Lynx_rufus 1.3186 2.6996 -2.6770
## (Intercept)-Didelphis_virginiana -4.1204 1.4371 -7.2247
## (Intercept)-Sylvilagus_floridanus -2.3288 1.3388 -5.1405
## (Intercept)-Sciurus_carolinensis -4.5440 1.5421 -8.1721
## (Intercept)-Vulpes_vulpes -4.0456 2.3157 -8.2200
## (Intercept)-Sus_scrofa -5.7694 2.1584 -10.7111
## Cogon_Patch_Size-Odocoileus_virginianus 0.2524 1.3251 -2.3512
## Cogon_Patch_Size-Canis_latrans 1.6268 1.3968 -0.2601
## Cogon_Patch_Size-Sciurus_niger -0.3380 1.5403 -3.9339
## Cogon_Patch_Size-Procyon_lotor -0.0440 0.7158 -1.4238
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2567 0.7233 -1.1094
## Cogon_Patch_Size-Lynx_rufus 0.1443 1.3694 -2.4457
## Cogon_Patch_Size-Didelphis_virginiana 1.7100 0.9510 0.1218
## Cogon_Patch_Size-Sylvilagus_floridanus -0.7327 1.4008 -4.3734
## Cogon_Patch_Size-Sciurus_carolinensis -0.6740 1.4061 -4.1681
## Cogon_Patch_Size-Vulpes_vulpes -0.2098 1.4517 -3.6602
## Cogon_Patch_Size-Sus_scrofa -0.2155 1.4773 -4.0452
## Veg_shannon_index-Odocoileus_virginianus 1.2243 1.1128 -1.1092
## Veg_shannon_index-Canis_latrans 1.6050 0.8173 0.1500
## Veg_shannon_index-Sciurus_niger 1.6732 1.2887 -0.6371
## Veg_shannon_index-Procyon_lotor 1.4242 0.7612 0.0289
## Veg_shannon_index-Dasypus_novemcinctus 0.9564 0.7630 -0.6300
## Veg_shannon_index-Lynx_rufus 1.3081 1.1513 -1.1366
## Veg_shannon_index-Didelphis_virginiana 1.3089 0.8582 -0.4033
## Veg_shannon_index-Sylvilagus_floridanus 1.7785 0.9651 0.1308
## Veg_shannon_index-Sciurus_carolinensis 0.8832 0.9215 -1.1394
## Veg_shannon_index-Vulpes_vulpes 1.0213 1.0368 -1.4685
## Veg_shannon_index-Sus_scrofa 2.2310 1.2533 0.4967
## total_shrub_cover-Odocoileus_virginianus -0.2407 0.7512 -1.6584
## total_shrub_cover-Canis_latrans 0.0494 0.5931 -0.9562
## total_shrub_cover-Sciurus_niger -0.5509 0.8296 -2.4051
## total_shrub_cover-Procyon_lotor -0.9228 0.6296 -2.3867
## total_shrub_cover-Dasypus_novemcinctus -0.1869 0.5773 -1.2771
## total_shrub_cover-Lynx_rufus -0.5489 0.8331 -2.2252
## total_shrub_cover-Didelphis_virginiana -0.5798 0.6964 -2.1231
## total_shrub_cover-Sylvilagus_floridanus -0.4471 0.7722 -2.3010
## total_shrub_cover-Sciurus_carolinensis -0.3433 0.7088 -1.8040
## total_shrub_cover-Vulpes_vulpes -0.4957 0.8407 -2.3224
## total_shrub_cover-Sus_scrofa -0.2390 0.8184 -1.7972
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.3370 1.3722 -2.2994
## Avg_Cogongrass_Cover-Canis_latrans 0.5441 1.2011 -1.7359
## Avg_Cogongrass_Cover-Sciurus_niger -0.0578 1.6012 -3.5910
## Avg_Cogongrass_Cover-Procyon_lotor 0.5670 1.2067 -1.7028
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.8864 1.2511 -1.2834
## Avg_Cogongrass_Cover-Lynx_rufus 0.4049 1.2810 -2.1307
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4551 1.2416 -1.9715
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0731 1.2937 -2.6726
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.3015 1.2882 -2.3024
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.4870 1.2409 -1.8861
## Avg_Cogongrass_Cover-Sus_scrofa 0.1095 1.3944 -2.8300
## Tree_Density-Odocoileus_virginianus -0.9520 1.2853 -2.9067
## Tree_Density-Canis_latrans -2.4525 1.1443 -5.0371
## Tree_Density-Sciurus_niger -1.9417 1.5395 -5.5614
## Tree_Density-Procyon_lotor -1.7308 0.8783 -3.4684
## Tree_Density-Dasypus_novemcinctus -3.4106 1.7436 -7.9679
## Tree_Density-Lynx_rufus -0.9761 1.3882 -3.2624
## Tree_Density-Didelphis_virginiana -2.1888 1.1679 -5.0129
## Tree_Density-Sylvilagus_floridanus -2.2891 1.2454 -5.1659
## Tree_Density-Sciurus_carolinensis -2.4411 1.3356 -5.8245
## Tree_Density-Vulpes_vulpes -1.9126 1.4617 -4.9283
## Tree_Density-Sus_scrofa -2.2768 1.4996 -5.9010
## Avg_Canopy_Cover-Odocoileus_virginianus 1.2560 1.5378 -1.8163
## Avg_Canopy_Cover-Canis_latrans 0.0555 0.6497 -1.2368
## Avg_Canopy_Cover-Sciurus_niger 2.6342 1.9074 -0.6533
## Avg_Canopy_Cover-Procyon_lotor 1.6102 0.7835 0.2099
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0840 0.8112 0.7065
## Avg_Canopy_Cover-Lynx_rufus 2.1109 1.6968 -0.7061
## Avg_Canopy_Cover-Didelphis_virginiana 2.9568 1.1524 1.1641
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.8374 1.7194 1.2596
## Avg_Canopy_Cover-Sciurus_carolinensis 2.7360 1.3051 0.8670
## Avg_Canopy_Cover-Vulpes_vulpes 2.5094 1.4052 0.4377
## Avg_Canopy_Cover-Sus_scrofa 2.1091 1.1002 0.4664
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.8813 1.0617 0.2345
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.9311 0.8443 0.5362
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3170 1.0310 -0.7154
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.9372 0.9117 0.5537
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4745 0.6902 0.1661
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 2.1336 1.0655 0.5046
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2494 0.6799 -0.0845
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3962 0.7387 0.0335
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.7682 0.7651 0.4760
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.8623 0.8195 0.4493
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.2294 0.8906 -0.7203
## avg_veg_height-Odocoileus_virginianus -0.2350 0.8426 -2.0064
## avg_veg_height-Canis_latrans -0.3050 0.6135 -1.5617
## avg_veg_height-Sciurus_niger -0.3974 0.9496 -2.4942
## avg_veg_height-Procyon_lotor -0.0599 0.6474 -1.3325
## avg_veg_height-Dasypus_novemcinctus 0.1507 0.6312 -0.9569
## avg_veg_height-Lynx_rufus -0.4431 0.8938 -2.4936
## avg_veg_height-Didelphis_virginiana -0.4528 0.7360 -2.0571
## avg_veg_height-Sylvilagus_floridanus -0.3078 0.7314 -1.9948
## avg_veg_height-Sciurus_carolinensis 0.1227 0.7438 -1.2155
## avg_veg_height-Vulpes_vulpes -0.3671 0.8238 -2.1997
## avg_veg_height-Sus_scrofa -0.2756 0.7977 -1.9260
## 50% 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 7.0004 17.9028 1.1425 125
## (Intercept)-Canis_latrans -1.0240 1.2376 1.0127 508
## (Intercept)-Sciurus_niger 0.6216 6.2541 1.0758 134
## (Intercept)-Procyon_lotor -0.1579 2.0119 1.0249 498
## (Intercept)-Dasypus_novemcinctus -2.3797 -0.6201 1.0153 473
## (Intercept)-Lynx_rufus 0.8133 7.8716 1.2199 117
## (Intercept)-Didelphis_virginiana -4.0147 -1.6196 1.0138 212
## (Intercept)-Sylvilagus_floridanus -2.2244 0.1647 1.0374 431
## (Intercept)-Sciurus_carolinensis -4.3858 -1.8213 1.0467 167
## (Intercept)-Vulpes_vulpes -4.1876 1.0467 1.0489 133
## (Intercept)-Sus_scrofa -5.6600 -2.1469 1.0355 147
## Cogon_Patch_Size-Odocoileus_virginianus 0.2353 3.2510 1.0077 522
## Cogon_Patch_Size-Canis_latrans 1.3666 4.9593 1.1128 157
## Cogon_Patch_Size-Sciurus_niger -0.1676 2.3383 1.0287 263
## Cogon_Patch_Size-Procyon_lotor -0.0521 1.3032 1.0501 489
## Cogon_Patch_Size-Dasypus_novemcinctus 0.2538 1.7163 1.0426 588
## Cogon_Patch_Size-Lynx_rufus 0.1131 3.0425 1.0120 293
## Cogon_Patch_Size-Didelphis_virginiana 1.6354 3.7569 1.0771 229
## Cogon_Patch_Size-Sylvilagus_floridanus -0.4866 1.2416 1.0122 386
## Cogon_Patch_Size-Sciurus_carolinensis -0.3975 1.2376 1.0332 304
## Cogon_Patch_Size-Vulpes_vulpes -0.0916 2.2762 1.0827 346
## Cogon_Patch_Size-Sus_scrofa 0.0474 1.9892 1.0288 384
## Veg_shannon_index-Odocoileus_virginianus 1.2571 3.3757 1.0508 538
## Veg_shannon_index-Canis_latrans 1.5416 3.2981 1.0438 361
## Veg_shannon_index-Sciurus_niger 1.5821 4.6343 1.0167 329
## Veg_shannon_index-Procyon_lotor 1.4071 3.0317 1.0510 353
## Veg_shannon_index-Dasypus_novemcinctus 0.9868 2.4220 1.0475 502
## Veg_shannon_index-Lynx_rufus 1.3371 3.7150 1.0354 457
## Veg_shannon_index-Didelphis_virginiana 1.2822 3.0441 1.0134 450
## Veg_shannon_index-Sylvilagus_floridanus 1.6369 3.9514 1.0361 309
## Veg_shannon_index-Sciurus_carolinensis 0.9619 2.5002 1.0101 457
## Veg_shannon_index-Vulpes_vulpes 1.1201 2.7731 1.0352 456
## Veg_shannon_index-Sus_scrofa 1.9773 5.3447 1.0441 240
## total_shrub_cover-Odocoileus_virginianus -0.2470 1.2378 1.0351 684
## total_shrub_cover-Canis_latrans -0.0106 1.4058 1.0411 456
## total_shrub_cover-Sciurus_niger -0.4947 0.8784 1.0131 551
## total_shrub_cover-Procyon_lotor -0.8505 0.0581 1.0016 585
## total_shrub_cover-Dasypus_novemcinctus -0.1881 0.9384 1.0222 457
## total_shrub_cover-Lynx_rufus -0.5131 1.0068 1.0537 396
## total_shrub_cover-Didelphis_virginiana -0.5260 0.7012 1.0167 587
## total_shrub_cover-Sylvilagus_floridanus -0.3986 0.9623 1.0138 477
## total_shrub_cover-Sciurus_carolinensis -0.3299 1.0746 1.0195 423
## total_shrub_cover-Vulpes_vulpes -0.4713 0.9925 1.0142 409
## total_shrub_cover-Sus_scrofa -0.2602 1.3723 1.0222 439
## Avg_Cogongrass_Cover-Odocoileus_virginianus 0.2630 3.0148 1.0856 174
## Avg_Cogongrass_Cover-Canis_latrans 0.4752 3.0714 1.0743 145
## Avg_Cogongrass_Cover-Sciurus_niger 0.0645 2.6782 1.0941 123
## Avg_Cogongrass_Cover-Procyon_lotor 0.4953 3.0760 1.0718 158
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 0.7607 3.4787 1.0642 177
## Avg_Cogongrass_Cover-Lynx_rufus 0.3745 2.9033 1.0725 143
## Avg_Cogongrass_Cover-Didelphis_virginiana 0.4151 2.9103 1.0795 161
## Avg_Cogongrass_Cover-Sylvilagus_floridanus -0.0515 2.3724 1.1525 136
## Avg_Cogongrass_Cover-Sciurus_carolinensis 0.2869 2.8424 1.1058 155
## Avg_Cogongrass_Cover-Vulpes_vulpes 0.4160 2.9624 1.0985 183
## Avg_Cogongrass_Cover-Sus_scrofa 0.1084 2.8598 1.1251 153
## Tree_Density-Odocoileus_virginianus -1.1065 2.1152 1.0115 259
## Tree_Density-Canis_latrans -2.2850 -0.5902 1.0231 278
## Tree_Density-Sciurus_niger -1.8503 0.7808 1.0214 234
## Tree_Density-Procyon_lotor -1.7061 -0.1067 1.0038 456
## Tree_Density-Dasypus_novemcinctus -2.9978 -1.2076 1.0516 170
## Tree_Density-Lynx_rufus -1.1808 2.2989 1.0048 171
## Tree_Density-Didelphis_virginiana -2.0523 -0.2799 1.0080 316
## Tree_Density-Sylvilagus_floridanus -2.1650 -0.1161 1.0009 334
## Tree_Density-Sciurus_carolinensis -2.2716 -0.3053 1.0509 288
## Tree_Density-Vulpes_vulpes -1.9042 0.9191 1.0194 211
## Tree_Density-Sus_scrofa -2.0992 0.2454 1.0274 314
## Avg_Canopy_Cover-Odocoileus_virginianus 1.2291 4.4792 1.0286 489
## Avg_Canopy_Cover-Canis_latrans 0.0553 1.3499 1.0021 674
## Avg_Canopy_Cover-Sciurus_niger 2.3835 6.7868 1.0114 197
## Avg_Canopy_Cover-Procyon_lotor 1.6068 3.2135 1.0139 660
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0097 3.8520 1.0127 399
## Avg_Canopy_Cover-Lynx_rufus 1.9485 6.1864 1.1009 171
## Avg_Canopy_Cover-Didelphis_virginiana 2.8120 5.4835 1.0186 238
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.5342 7.8600 1.0101 238
## Avg_Canopy_Cover-Sciurus_carolinensis 2.4949 5.7198 1.0076 328
## Avg_Canopy_Cover-Vulpes_vulpes 2.2602 5.9183 1.0163 233
## Avg_Canopy_Cover-Sus_scrofa 1.9850 4.5457 1.0388 337
## I(Avg_Cogongrass_Cover^2)-Odocoileus_virginianus 1.7359 4.4580 1.0266 224
## I(Avg_Cogongrass_Cover^2)-Canis_latrans 1.8137 3.7726 1.0280 243
## I(Avg_Cogongrass_Cover^2)-Sciurus_niger 1.3310 3.2752 1.0111 153
## I(Avg_Cogongrass_Cover^2)-Procyon_lotor 1.8459 3.8507 1.0490 211
## I(Avg_Cogongrass_Cover^2)-Dasypus_novemcinctus 1.4260 2.8878 1.0206 272
## I(Avg_Cogongrass_Cover^2)-Lynx_rufus 1.9508 4.9744 1.0405 189
## I(Avg_Cogongrass_Cover^2)-Didelphis_virginiana 1.2295 2.6505 1.0106 294
## I(Avg_Cogongrass_Cover^2)-Sylvilagus_floridanus 1.3462 2.9414 1.0069 281
## I(Avg_Cogongrass_Cover^2)-Sciurus_carolinensis 1.6845 3.5063 1.0172 302
## I(Avg_Cogongrass_Cover^2)-Vulpes_vulpes 1.7651 3.7909 1.0109 284
## I(Avg_Cogongrass_Cover^2)-Sus_scrofa 1.2606 2.8624 1.0115 315
## avg_veg_height-Odocoileus_virginianus -0.2376 1.3743 1.0401 363
## avg_veg_height-Canis_latrans -0.2827 0.9369 1.0244 231
## avg_veg_height-Sciurus_niger -0.3262 1.2820 1.1401 267
## avg_veg_height-Procyon_lotor -0.0651 1.2008 1.0348 250
## avg_veg_height-Dasypus_novemcinctus 0.1219 1.5331 1.0247 302
## avg_veg_height-Lynx_rufus -0.3784 1.1382 1.0689 316
## avg_veg_height-Didelphis_virginiana -0.4223 0.8147 1.0579 311
## avg_veg_height-Sylvilagus_floridanus -0.2685 1.0970 1.1102 259
## avg_veg_height-Sciurus_carolinensis 0.0830 1.6890 1.0439 400
## avg_veg_height-Vulpes_vulpes -0.3113 1.1226 1.0282 300
## avg_veg_height-Sus_scrofa -0.2356 1.1473 1.1192 329
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.5412 0.0798 0.3890 0.5402 0.6983
## (Intercept)-Canis_latrans -2.5123 0.2001 -2.9341 -2.5029 -2.1443
## (Intercept)-Sciurus_niger -4.7207 0.5021 -5.7059 -4.7108 -3.7836
## (Intercept)-Procyon_lotor -2.2015 0.1679 -2.5457 -2.1950 -1.8989
## (Intercept)-Dasypus_novemcinctus -1.6009 0.1836 -1.9713 -1.6035 -1.2475
## (Intercept)-Lynx_rufus -3.8058 0.3616 -4.5385 -3.7996 -3.0901
## (Intercept)-Didelphis_virginiana -2.3219 0.3099 -2.9375 -2.3051 -1.7557
## (Intercept)-Sylvilagus_floridanus -3.0686 0.2828 -3.6510 -3.0540 -2.5395
## (Intercept)-Sciurus_carolinensis -2.4509 0.3575 -3.2028 -2.4432 -1.8180
## (Intercept)-Vulpes_vulpes -4.0609 0.6947 -5.5620 -4.0210 -2.7996
## (Intercept)-Sus_scrofa -3.0892 0.6094 -4.2651 -3.0925 -1.8838
## shrub_cover-Odocoileus_virginianus -0.0598 0.0702 -0.1949 -0.0610 0.0772
## shrub_cover-Canis_latrans -0.2682 0.2208 -0.6978 -0.2766 0.1610
## shrub_cover-Sciurus_niger -0.3585 0.4221 -1.2310 -0.3471 0.4341
## shrub_cover-Procyon_lotor 0.2558 0.1717 -0.0901 0.2574 0.5805
## shrub_cover-Dasypus_novemcinctus 0.8759 0.2896 0.3215 0.8687 1.4528
## shrub_cover-Lynx_rufus -0.2548 0.3175 -0.8965 -0.2610 0.4071
## shrub_cover-Didelphis_virginiana 0.9684 0.3649 0.2972 0.9468 1.7586
## shrub_cover-Sylvilagus_floridanus 0.4982 0.3769 -0.2328 0.4965 1.2377
## shrub_cover-Sciurus_carolinensis 0.8560 0.4018 0.1136 0.8411 1.7114
## shrub_cover-Vulpes_vulpes 0.0911 0.5306 -1.0400 0.1051 1.0732
## shrub_cover-Sus_scrofa 0.6309 0.7779 -0.8514 0.6002 2.2162
## veg_height-Odocoileus_virginianus -0.3291 0.0690 -0.4650 -0.3280 -0.1991
## veg_height-Canis_latrans -0.5396 0.1800 -0.9272 -0.5325 -0.2054
## veg_height-Sciurus_niger -0.0356 0.3496 -0.6839 -0.0365 0.6789
## veg_height-Procyon_lotor 0.3555 0.1235 0.1145 0.3554 0.5909
## veg_height-Dasypus_novemcinctus 0.2444 0.1346 -0.0184 0.2427 0.5175
## veg_height-Lynx_rufus 0.1385 0.2315 -0.3295 0.1404 0.5957
## veg_height-Didelphis_virginiana 0.4134 0.2440 -0.0170 0.3975 0.9430
## veg_height-Sylvilagus_floridanus 0.1442 0.2438 -0.3264 0.1469 0.6436
## veg_height-Sciurus_carolinensis 0.0909 0.2154 -0.3184 0.0859 0.5337
## veg_height-Vulpes_vulpes -0.1328 0.3081 -0.7787 -0.1255 0.4493
## veg_height-Sus_scrofa -0.1336 0.3202 -0.7797 -0.1272 0.4756
## week-Odocoileus_virginianus 1.3142 0.1258 1.0679 1.3151 1.5565
## week-Canis_latrans 0.5908 0.2685 0.0754 0.5827 1.1275
## week-Sciurus_niger -0.4220 0.5618 -1.6262 -0.3681 0.5166
## week-Procyon_lotor 0.2069 0.2055 -0.1980 0.2081 0.5889
## week-Dasypus_novemcinctus 0.1029 0.2268 -0.3537 0.1079 0.5372
## week-Lynx_rufus 0.3859 0.3522 -0.3022 0.3789 1.0762
## week-Didelphis_virginiana 0.0671 0.3802 -0.7215 0.0826 0.7777
## week-Sylvilagus_floridanus 0.0446 0.3638 -0.6570 0.0408 0.7450
## week-Sciurus_carolinensis 0.7968 0.3566 0.1216 0.7926 1.5156
## week-Vulpes_vulpes 0.1516 0.5454 -0.9922 0.1720 1.1427
## week-Sus_scrofa 0.6689 0.4379 -0.1581 0.6531 1.5706
## I(week^2)-Odocoileus_virginianus -0.5410 0.0514 -0.6399 -0.5415 -0.4426
## I(week^2)-Canis_latrans -0.2462 0.1109 -0.4650 -0.2450 -0.0377
## I(week^2)-Sciurus_niger -0.3163 0.2370 -0.8260 -0.3059 0.1084
## I(week^2)-Procyon_lotor -0.1386 0.0883 -0.3213 -0.1366 0.0369
## I(week^2)-Dasypus_novemcinctus -0.1825 0.1063 -0.3864 -0.1813 0.0269
## I(week^2)-Lynx_rufus -0.2442 0.1534 -0.5496 -0.2406 0.0553
## I(week^2)-Didelphis_virginiana -0.4198 0.2074 -0.8818 -0.4030 -0.0486
## I(week^2)-Sylvilagus_floridanus -0.1768 0.1642 -0.5119 -0.1754 0.1205
## I(week^2)-Sciurus_carolinensis -0.2845 0.1412 -0.5682 -0.2856 -0.0069
## I(week^2)-Vulpes_vulpes -0.4187 0.2697 -1.0280 -0.3931 0.0039
## I(week^2)-Sus_scrofa -0.2472 0.1781 -0.6004 -0.2456 0.0850
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0085 1500
## (Intercept)-Canis_latrans 1.0009 742
## (Intercept)-Sciurus_niger 1.0114 184
## (Intercept)-Procyon_lotor 1.0132 519
## (Intercept)-Dasypus_novemcinctus 1.0022 1196
## (Intercept)-Lynx_rufus 1.0286 169
## (Intercept)-Didelphis_virginiana 1.0371 540
## (Intercept)-Sylvilagus_floridanus 1.0010 813
## (Intercept)-Sciurus_carolinensis 1.0095 546
## (Intercept)-Vulpes_vulpes 1.0331 188
## (Intercept)-Sus_scrofa 1.0045 375
## shrub_cover-Odocoileus_virginianus 1.0086 1500
## shrub_cover-Canis_latrans 1.0184 623
## shrub_cover-Sciurus_niger 1.0347 324
## shrub_cover-Procyon_lotor 1.0005 1014
## shrub_cover-Dasypus_novemcinctus 1.0078 782
## shrub_cover-Lynx_rufus 1.0183 376
## shrub_cover-Didelphis_virginiana 1.0512 533
## shrub_cover-Sylvilagus_floridanus 1.0113 422
## shrub_cover-Sciurus_carolinensis 1.0133 429
## shrub_cover-Vulpes_vulpes 1.0100 546
## shrub_cover-Sus_scrofa 1.0041 398
## veg_height-Odocoileus_virginianus 0.9997 1500
## veg_height-Canis_latrans 1.0169 780
## veg_height-Sciurus_niger 1.0081 328
## veg_height-Procyon_lotor 1.0021 1162
## veg_height-Dasypus_novemcinctus 1.0054 1355
## veg_height-Lynx_rufus 1.0326 561
## veg_height-Didelphis_virginiana 1.0084 743
## veg_height-Sylvilagus_floridanus 1.0078 650
## veg_height-Sciurus_carolinensis 1.0009 854
## veg_height-Vulpes_vulpes 1.0017 462
## veg_height-Sus_scrofa 1.0103 672
## week-Odocoileus_virginianus 1.0004 1369
## week-Canis_latrans 1.0138 1019
## week-Sciurus_niger 1.0156 176
## week-Procyon_lotor 1.0034 1256
## week-Dasypus_novemcinctus 1.0004 1269
## week-Lynx_rufus 1.0041 653
## week-Didelphis_virginiana 1.0092 925
## week-Sylvilagus_floridanus 1.0007 862
## week-Sciurus_carolinensis 1.0020 1097
## week-Vulpes_vulpes 1.0354 397
## week-Sus_scrofa 1.0034 1225
## I(week^2)-Odocoileus_virginianus 1.0065 1293
## I(week^2)-Canis_latrans 1.0188 1145
## I(week^2)-Sciurus_niger 1.0094 268
## I(week^2)-Procyon_lotor 1.0158 1205
## I(week^2)-Dasypus_novemcinctus 1.0250 1229
## I(week^2)-Lynx_rufus 1.0024 590
## I(week^2)-Didelphis_virginiana 0.9992 538
## I(week^2)-Sylvilagus_floridanus 1.0033 793
## I(week^2)-Sciurus_carolinensis 1.0024 1152
## I(week^2)-Vulpes_vulpes 1.0363 264
## I(week^2)-Sus_scrofa 1.0124 1163
waicOcc(ms_full_full, by.sp = FALSE) # Best Model
## elpd pD WAIC
## -1768.9148 117.2779 3772.3854
waicOcc(ms_full_cover, by.sp = FALSE)
## elpd pD WAIC
## -1804.9573 122.1914 3854.2976
waicOcc(ms_full_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1798.8102 102.5844 3802.7892
waicOcc(ms_full_move, by.sp = FALSE)
## elpd pD WAIC
## -1804.4625 115.1886 3839.3023
waicOcc(ms_full_forage, by.sp = FALSE)
## elpd pD WAIC
## -1813.0797 106.1741 3838.5077
waicOcc(ms_full_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1817.1518 103.4047 3841.1131
waicOcc(ms_full_null, by.sp = FALSE)
## elpd pD WAIC
## -1829.15740 90.55191 3839.41862
waicOcc(ms_full_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1810.3364 106.8071 3834.2869
waicOcc(ms_full_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1760.9157 122.3308 3766.4929
waicOcc(ms_null_null, by.sp = FALSE)
## elpd pD WAIC
## -1888.61633 39.04414 3855.32095
waicOcc(ms_null_full, by.sp = FALSE)
## elpd pD WAIC
## -1827.9474 68.1112 3792.1172
waicOcc(ms_null_cover, by.sp = FALSE)
## elpd pD WAIC
## -1869.41716 63.08447 3865.00327
waicOcc(ms_null_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1858.93840 53.37964 3824.63607
waicOcc(ms_null_move, by.sp = FALSE)
## elpd pD WAIC
## -1864.07479 63.32644 3854.80246
waicOcc(ms_null_forage, by.sp = FALSE)
## elpd pD WAIC
## -1870.69409 55.00109 3851.39037
waicOcc(ms_null_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1875.3494 53.2212 3857.1413
waicOcc(ms_null_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1867.93812 55.83429 3847.54482
waicOcc(ms_null_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1820.19654 70.05595 3780.50498
waicOcc(ms_week_full, by.sp = FALSE)
## elpd pD WAIC
## -1817.58478 76.23926 3787.64808
waicOcc(ms_week_cover, by.sp = FALSE)
## elpd pD WAIC
## -1858.62203 70.95793 3859.15993
waicOcc(ms_week_null, by.sp = FALSE)
## elpd pD WAIC
## -1877.36490 48.64848 3852.02676
waicOcc(ms_week_forage, by.sp = FALSE)
## elpd pD WAIC
## -1859.8489 63.5508 3846.7994
waicOcc(ms_week_move, by.sp = FALSE)
## elpd pD WAIC
## -1853.14007 72.03926 3850.35866
waicOcc(ms_week_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1848.19391 62.46974 3821.32729
waicOcc(ms_week_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1864.45891 62.13984 3853.19751
waicOcc(ms_week_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1856.89977 63.28918 3840.37789
waicOcc(ms_week_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1808.84827 79.44033 3776.57720
waicOcc(ms_cover_full, by.sp = FALSE)
## elpd pD WAIC
## -1780.123 108.556 3777.358
waicOcc(ms_cover_cover, by.sp = FALSE)
## elpd pD WAIC
## -1817.4265 111.8222 3858.4974
waicOcc(ms_cover_null, by.sp = FALSE)
## elpd pD WAIC
## -1841.61564 81.18849 3845.60827
waicOcc(ms_cover_forage, by.sp = FALSE)
## elpd pD WAIC
## -1824.87952 95.72123 3841.20151
waicOcc(ms_cover_move, by.sp = FALSE)
## elpd pD WAIC
## -1814.5666 110.0718 3849.2769
waicOcc(ms_cover_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1809.50572 95.24432 3809.50007
waicOcc(ms_cover_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1828.04331 95.38442 3846.85545
waicOcc(ms_cover_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1821.64662 98.36929 3840.03183
waicOcc(ms_cover_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1772.8395 113.1061 3771.8912
waicOcc(ms_weekQ_full, by.sp = FALSE)
## elpd pD WAIC
## -1741.69118 90.57303 3664.52841
waicOcc(ms_weekQ_cover, by.sp = FALSE)
## elpd pD WAIC
## -1783.95057 85.73505 3739.37124
waicOcc(ms_weekQ_null, by.sp = FALSE)
## elpd pD WAIC
## -1803.48337 62.53278 3732.03230
waicOcc(ms_weekQ_forage, by.sp = FALSE)
## elpd pD WAIC
## -1785.13379 78.45762 3727.18283
waicOcc(ms_weekQ_move, by.sp = FALSE)
## elpd pD WAIC
## -1778.65112 85.28364 3727.86952
waicOcc(ms_weekQ_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1773.54828 77.12624 3701.34904
waicOcc(ms_weekQ_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1788.53227 77.64918 3732.36292
waicOcc(ms_weekQ_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1783.14178 77.69441 3721.67238
waicOcc(ms_weekQ_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1732.94735 95.65087 3657.19645
waicOcc(ms_fullQ_full, by.sp = FALSE)
## elpd pD WAIC
## -1690.8932 134.6721 3651.1308
waicOcc(ms_fullQ_cover, by.sp = FALSE)
## elpd pD WAIC
## -1727.9860 138.5951 3733.1622
waicOcc(ms_fullQ_null, by.sp = FALSE)
## elpd pD WAIC
## -1752.7721 105.7978 3717.1398
waicOcc(ms_fullQ_forage, by.sp = FALSE)
## elpd pD WAIC
## -1736.1716 121.9123 3716.1678
waicOcc(ms_fullQ_move, by.sp = FALSE)
## elpd pD WAIC
## -1727.1877 133.6979 3721.7712
waicOcc(ms_fullQ_canopy, by.sp = FALSE)
## elpd pD WAIC
## -1722.361 120.900 3686.521
waicOcc(ms_fullQ_cogon, by.sp = FALSE)
## elpd pD WAIC
## -1740.1355 118.6115 3717.4940
waicOcc(ms_fullQ_cogonQ, by.sp = FALSE)
## elpd pD WAIC
## -1733.0436 123.0234 3712.1341
waicOcc(ms_fullQ_fullQ, by.sp = FALSE)
## elpd pD WAIC
## -1686.4156 135.3808 3643.5928
ppc.ms_full_full <- ppcOcc(ms_full_full, fit.stat = "freeman-tukey", group = 1)
## Currently on species 1 out of 11
## Currently on species 2 out of 11
## Currently on species 3 out of 11
## Currently on species 4 out of 11
## Currently on species 5 out of 11
## Currently on species 6 out of 11
## Currently on species 7 out of 11
## Currently on species 8 out of 11
## Currently on species 9 out of 11
## Currently on species 10 out of 11
## Currently on species 11 out of 11
summary(ppc.ms_full_full)
##
## Call:
## ppcOcc(object = ms_full_full, fit.stat = "freeman-tukey", group = 1)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Bayesian p-value: 0.308
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Odocoileus_virginianus Bayesian p-value: 0
## Canis_latrans Bayesian p-value: 0.6033
## Sciurus_niger Bayesian p-value: 0.158
## Procyon_lotor Bayesian p-value: 0.07
## Dasypus_novemcinctus Bayesian p-value: 0
## Lynx_rufus Bayesian p-value: 0.2413
## Didelphis_virginiana Bayesian p-value: 0.4887
## Sylvilagus_floridanus Bayesian p-value: 0.468
## Sciurus_carolinensis Bayesian p-value: 0.43
## Vulpes_vulpes Bayesian p-value: 0.344
## Sus_scrofa Bayesian p-value: 0.5847
## Fit statistic: freeman-tukey
summary(ms_full_full) # Summary of parameter estimates
##
## Call:
## msPGOcc(occ.formula = occ.full, det.formula = det.full, data = data_list,
## n.samples = 5000, n.report = 500, n.burn = 3000, n.thin = 4,
## n.chains = 3)
##
## Samples per Chain: 5000
## Burn-in: 3000
## Thinning Rate: 4
## Number of Chains: 3
## Total Posterior Samples: 1500
## Run Time (min): 0.7773
##
## ----------------------------------------
## Community Level
## ----------------------------------------
## Occurrence Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -0.0780 0.9447 -1.9773 -0.0612 1.7443 1.0018 1032
## Cogon_Patch_Size -0.4419 0.6022 -1.7075 -0.4021 0.6773 1.0073 421
## Veg_shannon_index 1.2484 0.6141 0.0381 1.2403 2.4160 1.0409 213
## total_shrub_cover -0.2611 0.4335 -1.1668 -0.2484 0.5817 1.0073 273
## Avg_Cogongrass_Cover 2.5587 0.7325 1.1645 2.5138 4.0081 1.0314 134
## Tree_Density -1.7354 0.6585 -3.0807 -1.6949 -0.4687 1.0063 290
## Avg_Canopy_Cover 1.8756 0.5934 0.7445 1.8515 3.1092 1.0114 334
## avg_veg_height -0.5961 0.4307 -1.4943 -0.5657 0.2018 1.0456 212
##
## Occurrence Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 16.4176 14.8836 3.7525 12.4080 51.1290 1.0119 389
## Cogon_Patch_Size 2.2347 3.2922 0.1100 1.2681 10.2543 1.0415 315
## Veg_shannon_index 1.2883 2.0161 0.0555 0.5867 7.2970 1.0228 169
## total_shrub_cover 0.6380 0.8869 0.0487 0.3484 3.1601 1.0369 313
## Avg_Cogongrass_Cover 0.9542 2.1853 0.0424 0.3859 5.6569 1.3990 121
## Tree_Density 2.5872 4.3349 0.0729 1.1184 14.2194 1.0354 159
## Avg_Canopy_Cover 2.1167 2.6307 0.1389 1.3367 8.6494 1.0325 243
## avg_veg_height 0.3694 0.4668 0.0401 0.2169 1.6729 1.0460 442
##
## Occurrence Random Effect Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## Auth 0.9323 1.121 0.0579 0.5493 4.3032 1.1448 123
##
## Detection Means (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) -2.6233 0.4444 -3.4662 -2.6336 -1.7250 1.0079 1500
## shrub_cover 0.2663 0.2542 -0.2555 0.2635 0.8046 1.0052 711
## veg_height 0.0204 0.1585 -0.2970 0.0180 0.3249 1.0037 792
## week -0.0387 0.1192 -0.2873 -0.0369 0.1765 1.0021 792
##
## Detection Variances (logit scale):
## Mean SD 2.5% 50% 97.5% Rhat ESS
## (Intercept) 2.2748 1.5500 0.7860 1.9152 6.2937 1.0291 1353
## shrub_cover 0.4594 0.3389 0.0930 0.3766 1.2807 1.0215 780
## veg_height 0.1973 0.2019 0.0558 0.1536 0.5925 1.0618 1182
## week 0.0952 0.0724 0.0248 0.0734 0.2876 1.0174 684
##
## ----------------------------------------
## Species Level
## ----------------------------------------
## Occurrence (logit scale):
## Mean SD 2.5% 50%
## (Intercept)-Odocoileus_virginianus 7.8728 2.8870 3.7413 7.3923
## (Intercept)-Canis_latrans 0.6649 0.9454 -0.9817 0.5675
## (Intercept)-Sciurus_niger 1.1623 2.0275 -2.1949 0.9523
## (Intercept)-Procyon_lotor 1.0860 0.9300 -0.6423 1.0382
## (Intercept)-Dasypus_novemcinctus -1.3072 0.8668 -3.2255 -1.2557
## (Intercept)-Lynx_rufus 2.2988 2.2528 -1.1691 1.9287
## (Intercept)-Didelphis_virginiana -2.7852 1.0486 -5.0375 -2.7272
## (Intercept)-Sylvilagus_floridanus -1.1627 1.1330 -3.4654 -1.1454
## (Intercept)-Sciurus_carolinensis -2.8345 1.1614 -5.2976 -2.7350
## (Intercept)-Vulpes_vulpes -1.9591 1.9355 -5.0879 -2.1913
## (Intercept)-Sus_scrofa -4.3201 1.8097 -8.4244 -4.1689
## Cogon_Patch_Size-Odocoileus_virginianus -0.3954 1.1689 -2.6842 -0.4311
## Cogon_Patch_Size-Canis_latrans 0.8964 1.0978 -0.7064 0.7014
## Cogon_Patch_Size-Sciurus_niger -1.0394 1.5201 -4.5795 -0.8854
## Cogon_Patch_Size-Procyon_lotor -0.5629 0.5959 -1.8177 -0.5468
## Cogon_Patch_Size-Dasypus_novemcinctus -0.3284 0.6331 -1.5874 -0.3239
## Cogon_Patch_Size-Lynx_rufus -0.4911 1.2256 -2.7577 -0.5321
## Cogon_Patch_Size-Didelphis_virginiana 0.9325 0.8055 -0.4109 0.8496
## Cogon_Patch_Size-Sylvilagus_floridanus -1.3433 1.3367 -4.8130 -1.0901
## Cogon_Patch_Size-Sciurus_carolinensis -1.3426 1.2027 -4.3488 -1.1332
## Cogon_Patch_Size-Vulpes_vulpes -0.8973 1.4749 -3.8947 -0.8780
## Cogon_Patch_Size-Sus_scrofa -0.7723 1.3239 -3.7963 -0.5943
## Veg_shannon_index-Odocoileus_virginianus 1.0391 1.1245 -1.4556 1.0937
## Veg_shannon_index-Canis_latrans 1.5703 0.8317 0.0315 1.5245
## Veg_shannon_index-Sciurus_niger 1.8483 1.4839 -0.3051 1.6250
## Veg_shannon_index-Procyon_lotor 1.3768 0.7375 -0.0381 1.3575
## Veg_shannon_index-Dasypus_novemcinctus 0.9930 0.7024 -0.4621 1.0256
## Veg_shannon_index-Lynx_rufus 0.9074 1.1944 -1.9152 1.0197
## Veg_shannon_index-Didelphis_virginiana 1.2322 0.7824 -0.3296 1.2186
## Veg_shannon_index-Sylvilagus_floridanus 1.7237 0.9020 0.1380 1.6259
## Veg_shannon_index-Sciurus_carolinensis 0.7072 0.8741 -1.2041 0.7858
## Veg_shannon_index-Vulpes_vulpes 0.7488 0.9634 -1.4202 0.8423
## Veg_shannon_index-Sus_scrofa 2.2880 1.2518 0.4762 2.0631
## total_shrub_cover-Odocoileus_virginianus -0.0224 0.7786 -1.4435 -0.0669
## total_shrub_cover-Canis_latrans 0.2497 0.6233 -0.8262 0.1739
## total_shrub_cover-Sciurus_niger -0.3906 0.8699 -2.2466 -0.3113
## total_shrub_cover-Procyon_lotor -0.6981 0.5697 -1.9356 -0.6297
## total_shrub_cover-Dasypus_novemcinctus -0.0881 0.5429 -1.2125 -0.0635
## total_shrub_cover-Lynx_rufus -0.4399 0.9792 -2.7671 -0.3807
## total_shrub_cover-Didelphis_virginiana -0.4229 0.6522 -1.8480 -0.3779
## total_shrub_cover-Sylvilagus_floridanus -0.2928 0.7111 -1.8305 -0.2578
## total_shrub_cover-Sciurus_carolinensis -0.2795 0.6925 -1.7397 -0.2643
## total_shrub_cover-Vulpes_vulpes -0.4621 0.8367 -2.3903 -0.4067
## total_shrub_cover-Sus_scrofa -0.0760 0.7595 -1.5834 -0.1152
## Avg_Cogongrass_Cover-Odocoileus_virginianus 2.5334 1.1245 0.5137 2.5085
## Avg_Cogongrass_Cover-Canis_latrans 2.8476 0.9442 1.1787 2.7964
## Avg_Cogongrass_Cover-Sciurus_niger 2.1051 1.2811 -0.8371 2.2561
## Avg_Cogongrass_Cover-Procyon_lotor 2.7254 0.9322 1.0422 2.6811
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 3.0120 0.9500 1.3938 2.9284
## Avg_Cogongrass_Cover-Lynx_rufus 2.7811 1.0110 0.9611 2.7122
## Avg_Cogongrass_Cover-Didelphis_virginiana 2.6973 0.9239 0.9429 2.6466
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 2.1567 0.9786 0.1465 2.1787
## Avg_Cogongrass_Cover-Sciurus_carolinensis 2.7977 0.9311 1.1506 2.7461
## Avg_Cogongrass_Cover-Vulpes_vulpes 2.9347 1.1286 1.0509 2.8813
## Avg_Cogongrass_Cover-Sus_scrofa 2.3259 1.1736 -0.0434 2.3988
## Tree_Density-Odocoileus_virginianus -0.7644 1.3165 -2.7530 -0.9363
## Tree_Density-Canis_latrans -2.3904 1.1888 -5.1518 -2.2192
## Tree_Density-Sciurus_niger -1.8441 1.4279 -4.7109 -1.7621
## Tree_Density-Procyon_lotor -1.3276 0.7381 -2.7156 -1.3516
## Tree_Density-Dasypus_novemcinctus -3.1851 1.5972 -7.2107 -2.8389
## Tree_Density-Lynx_rufus -0.6365 1.5128 -2.7247 -0.8868
## Tree_Density-Didelphis_virginiana -2.0768 1.0514 -4.5628 -1.9479
## Tree_Density-Sylvilagus_floridanus -2.2530 1.3093 -5.3606 -2.0531
## Tree_Density-Sciurus_carolinensis -2.3456 1.4534 -5.8231 -2.1003
## Tree_Density-Vulpes_vulpes -1.8240 1.4234 -4.7543 -1.7679
## Tree_Density-Sus_scrofa -2.0288 1.3659 -5.3763 -1.8759
## Avg_Canopy_Cover-Odocoileus_virginianus 1.3239 1.2158 -1.1386 1.3772
## Avg_Canopy_Cover-Canis_latrans 0.2617 0.6497 -1.0341 0.2653
## Avg_Canopy_Cover-Sciurus_niger 2.2322 1.3953 -0.5209 2.1410
## Avg_Canopy_Cover-Procyon_lotor 1.7176 0.7378 0.3861 1.7082
## Avg_Canopy_Cover-Dasypus_novemcinctus 2.0634 0.7059 0.8255 1.9978
## Avg_Canopy_Cover-Lynx_rufus 1.6335 1.3608 -1.2054 1.5924
## Avg_Canopy_Cover-Didelphis_virginiana 2.7173 0.9640 1.1601 2.6138
## Avg_Canopy_Cover-Sylvilagus_floridanus 3.2679 1.4158 1.1944 3.0234
## Avg_Canopy_Cover-Sciurus_carolinensis 2.5581 1.0618 1.0605 2.3704
## Avg_Canopy_Cover-Vulpes_vulpes 2.1743 1.1778 0.3478 2.0167
## Avg_Canopy_Cover-Sus_scrofa 2.0173 0.8804 0.5228 1.9438
## avg_veg_height-Odocoileus_virginianus -0.6544 0.6980 -2.1681 -0.6072
## avg_veg_height-Canis_latrans -0.6734 0.5429 -1.7709 -0.6654
## avg_veg_height-Sciurus_niger -0.7533 0.7678 -2.4880 -0.7044
## avg_veg_height-Procyon_lotor -0.5571 0.5422 -1.6780 -0.5359
## avg_veg_height-Dasypus_novemcinctus -0.3911 0.5182 -1.4027 -0.4040
## avg_veg_height-Lynx_rufus -0.7333 0.7302 -2.3448 -0.6998
## avg_veg_height-Didelphis_virginiana -0.7419 0.6279 -2.0787 -0.7177
## avg_veg_height-Sylvilagus_floridanus -0.7025 0.6153 -1.9520 -0.7000
## avg_veg_height-Sciurus_carolinensis -0.2847 0.6028 -1.4546 -0.3118
## avg_veg_height-Vulpes_vulpes -0.6021 0.6458 -2.0028 -0.5779
## avg_veg_height-Sus_scrofa -0.6295 0.6462 -1.9563 -0.6258
## 97.5% Rhat ESS
## (Intercept)-Odocoileus_virginianus 15.3333 1.0236 182
## (Intercept)-Canis_latrans 2.7177 0.9999 481
## (Intercept)-Sciurus_niger 6.0350 1.0375 120
## (Intercept)-Procyon_lotor 2.9971 1.0123 461
## (Intercept)-Dasypus_novemcinctus 0.2886 1.0057 548
## (Intercept)-Lynx_rufus 7.7647 1.0493 105
## (Intercept)-Didelphis_virginiana -0.9382 1.0311 696
## (Intercept)-Sylvilagus_floridanus 1.0503 1.0145 426
## (Intercept)-Sciurus_carolinensis -0.8454 1.0363 204
## (Intercept)-Vulpes_vulpes 2.8811 1.0233 151
## (Intercept)-Sus_scrofa -1.2414 1.0128 160
## Cogon_Patch_Size-Odocoileus_virginianus 2.1365 1.0141 701
## Cogon_Patch_Size-Canis_latrans 3.6288 1.0191 633
## Cogon_Patch_Size-Sciurus_niger 1.6520 1.0626 267
## Cogon_Patch_Size-Procyon_lotor 0.5478 1.0097 641
## Cogon_Patch_Size-Dasypus_novemcinctus 0.9789 1.0059 831
## Cogon_Patch_Size-Lynx_rufus 1.9787 1.0047 315
## Cogon_Patch_Size-Didelphis_virginiana 2.7281 1.0450 539
## Cogon_Patch_Size-Sylvilagus_floridanus 0.6709 1.0161 266
## Cogon_Patch_Size-Sciurus_carolinensis 0.3617 1.0771 304
## Cogon_Patch_Size-Vulpes_vulpes 2.0188 1.0169 264
## Cogon_Patch_Size-Sus_scrofa 1.3397 1.0127 400
## Veg_shannon_index-Odocoileus_virginianus 3.1752 1.0359 533
## Veg_shannon_index-Canis_latrans 3.3284 1.0005 279
## Veg_shannon_index-Sciurus_niger 5.9390 1.0077 152
## Veg_shannon_index-Procyon_lotor 2.8858 1.0396 241
## Veg_shannon_index-Dasypus_novemcinctus 2.3051 1.0191 411
## Veg_shannon_index-Lynx_rufus 2.9890 1.0740 280
## Veg_shannon_index-Didelphis_virginiana 2.8492 1.0068 505
## Veg_shannon_index-Sylvilagus_floridanus 3.7212 1.0077 261
## Veg_shannon_index-Sciurus_carolinensis 2.3096 1.0626 397
## Veg_shannon_index-Vulpes_vulpes 2.4788 1.0541 364
## Veg_shannon_index-Sus_scrofa 5.2548 1.0076 226
## total_shrub_cover-Odocoileus_virginianus 1.7224 1.0057 526
## total_shrub_cover-Canis_latrans 1.7559 1.0177 443
## total_shrub_cover-Sciurus_niger 1.1902 1.0083 338
## total_shrub_cover-Procyon_lotor 0.2933 1.0074 533
## total_shrub_cover-Dasypus_novemcinctus 0.9555 1.0099 512
## total_shrub_cover-Lynx_rufus 1.3977 1.0164 253
## total_shrub_cover-Didelphis_virginiana 0.8172 1.0194 486
## total_shrub_cover-Sylvilagus_floridanus 1.0803 1.0087 353
## total_shrub_cover-Sciurus_carolinensis 1.0462 1.0039 478
## total_shrub_cover-Vulpes_vulpes 1.0182 1.0022 397
## total_shrub_cover-Sus_scrofa 1.5061 1.0119 462
## Avg_Cogongrass_Cover-Odocoileus_virginianus 4.6929 1.0160 274
## Avg_Cogongrass_Cover-Canis_latrans 4.8016 1.0254 186
## Avg_Cogongrass_Cover-Sciurus_niger 4.1523 1.0363 188
## Avg_Cogongrass_Cover-Procyon_lotor 4.6406 1.0226 197
## Avg_Cogongrass_Cover-Dasypus_novemcinctus 5.0870 1.0166 154
## Avg_Cogongrass_Cover-Lynx_rufus 4.9434 1.0262 220
## Avg_Cogongrass_Cover-Didelphis_virginiana 4.5444 1.0242 186
## Avg_Cogongrass_Cover-Sylvilagus_floridanus 4.0074 1.0359 182
## Avg_Cogongrass_Cover-Sciurus_carolinensis 4.8669 1.0356 164
## Avg_Cogongrass_Cover-Vulpes_vulpes 5.2267 1.0523 158
## Avg_Cogongrass_Cover-Sus_scrofa 4.2720 1.0208 236
## Tree_Density-Odocoileus_virginianus 2.5146 1.0301 195
## Tree_Density-Canis_latrans -0.6077 1.0017 203
## Tree_Density-Sciurus_niger 1.3519 1.0452 259
## Tree_Density-Procyon_lotor 0.1662 1.0096 612
## Tree_Density-Dasypus_novemcinctus -1.1773 1.0127 189
## Tree_Density-Lynx_rufus 3.5904 1.0996 168
## Tree_Density-Didelphis_virginiana -0.2882 1.0111 501
## Tree_Density-Sylvilagus_floridanus -0.1941 1.0015 358
## Tree_Density-Sciurus_carolinensis -0.0919 1.0034 162
## Tree_Density-Vulpes_vulpes 1.0185 1.0355 240
## Tree_Density-Sus_scrofa 0.4432 1.0126 520
## Avg_Canopy_Cover-Odocoileus_virginianus 3.7399 1.0042 554
## Avg_Canopy_Cover-Canis_latrans 1.5153 1.0117 597
## Avg_Canopy_Cover-Sciurus_niger 5.3627 1.0195 253
## Avg_Canopy_Cover-Procyon_lotor 3.3090 1.0065 713
## Avg_Canopy_Cover-Dasypus_novemcinctus 3.7330 1.0088 384
## Avg_Canopy_Cover-Lynx_rufus 4.5387 1.0066 268
## Avg_Canopy_Cover-Didelphis_virginiana 5.0351 1.0244 376
## Avg_Canopy_Cover-Sylvilagus_floridanus 6.6266 1.0215 294
## Avg_Canopy_Cover-Sciurus_carolinensis 5.3524 1.0306 209
## Avg_Canopy_Cover-Vulpes_vulpes 5.1149 1.0181 253
## Avg_Canopy_Cover-Sus_scrofa 4.1071 1.0005 608
## avg_veg_height-Odocoileus_virginianus 0.5757 1.0442 450
## avg_veg_height-Canis_latrans 0.3805 1.0292 544
## avg_veg_height-Sciurus_niger 0.5583 1.0326 428
## avg_veg_height-Procyon_lotor 0.4731 1.0261 447
## avg_veg_height-Dasypus_novemcinctus 0.7002 1.0160 304
## avg_veg_height-Lynx_rufus 0.5477 1.0310 332
## avg_veg_height-Didelphis_virginiana 0.4308 1.0479 360
## avg_veg_height-Sylvilagus_floridanus 0.4397 1.0045 383
## avg_veg_height-Sciurus_carolinensis 1.0040 1.0165 380
## avg_veg_height-Vulpes_vulpes 0.6223 1.0185 391
## avg_veg_height-Sus_scrofa 0.6338 1.0201 452
##
## Detection (logit scale):
## Mean SD 2.5% 50% 97.5%
## (Intercept)-Odocoileus_virginianus 0.0074 0.0590 -0.1079 0.0053 0.1278
## (Intercept)-Canis_latrans -2.7443 0.1810 -3.1042 -2.7434 -2.3893
## (Intercept)-Sciurus_niger -4.6896 0.4633 -5.5946 -4.6854 -3.7537
## (Intercept)-Procyon_lotor -2.3100 0.1452 -2.6141 -2.3050 -2.0390
## (Intercept)-Dasypus_novemcinctus -1.7443 0.1544 -2.0444 -1.7381 -1.4601
## (Intercept)-Lynx_rufus -3.9446 0.3537 -4.6075 -3.9583 -3.1641
## (Intercept)-Didelphis_virginiana -2.5165 0.2755 -3.0458 -2.5036 -1.9981
## (Intercept)-Sylvilagus_floridanus -3.1524 0.2636 -3.6765 -3.1430 -2.6242
## (Intercept)-Sciurus_carolinensis -2.6454 0.3251 -3.3066 -2.6315 -2.0515
## (Intercept)-Vulpes_vulpes -4.2308 0.6995 -5.6985 -4.2015 -2.9590
## (Intercept)-Sus_scrofa -3.1691 0.5894 -4.4161 -3.1520 -2.0838
## shrub_cover-Odocoileus_virginianus -0.0547 0.0632 -0.1793 -0.0555 0.0724
## shrub_cover-Canis_latrans -0.2919 0.2149 -0.7212 -0.2863 0.1121
## shrub_cover-Sciurus_niger -0.3121 0.4585 -1.3362 -0.3014 0.5736
## shrub_cover-Procyon_lotor 0.2649 0.1634 -0.0747 0.2651 0.5810
## shrub_cover-Dasypus_novemcinctus 0.8549 0.2949 0.2953 0.8526 1.4162
## shrub_cover-Lynx_rufus -0.2248 0.3413 -0.9160 -0.2300 0.4567
## shrub_cover-Didelphis_virginiana 0.8639 0.3457 0.2223 0.8495 1.5680
## shrub_cover-Sylvilagus_floridanus 0.4296 0.3818 -0.3597 0.4149 1.1720
## shrub_cover-Sciurus_carolinensis 0.8221 0.4056 0.0546 0.8065 1.6558
## shrub_cover-Vulpes_vulpes 0.0683 0.5335 -1.0301 0.0822 1.0509
## shrub_cover-Sus_scrofa 0.5042 0.6957 -0.8307 0.4878 1.9203
## veg_height-Odocoileus_virginianus -0.2953 0.0620 -0.4197 -0.2932 -0.1764
## veg_height-Canis_latrans -0.5635 0.1821 -0.9235 -0.5628 -0.2095
## veg_height-Sciurus_niger 0.0112 0.3584 -0.7086 -0.0019 0.7514
## veg_height-Procyon_lotor 0.3443 0.1215 0.1123 0.3450 0.5761
## veg_height-Dasypus_novemcinctus 0.2402 0.1282 -0.0124 0.2388 0.4936
## veg_height-Lynx_rufus 0.0930 0.2380 -0.3978 0.0968 0.5324
## veg_height-Didelphis_virginiana 0.4118 0.2438 -0.0310 0.4014 0.9214
## veg_height-Sylvilagus_floridanus 0.1536 0.2272 -0.2860 0.1519 0.6111
## veg_height-Sciurus_carolinensis 0.0806 0.2129 -0.3021 0.0758 0.5216
## veg_height-Vulpes_vulpes -0.1704 0.3255 -0.8816 -0.1528 0.4275
## veg_height-Sus_scrofa -0.1162 0.3275 -0.7687 -0.1156 0.5032
## week-Odocoileus_virginianus 0.2116 0.0611 0.0891 0.2104 0.3302
## week-Canis_latrans 0.0791 0.1289 -0.1882 0.0798 0.3292
## week-Sciurus_niger -0.2801 0.2861 -0.9385 -0.2507 0.2035
## week-Procyon_lotor -0.0453 0.1199 -0.3002 -0.0383 0.1809
## week-Dasypus_novemcinctus -0.1585 0.1354 -0.4338 -0.1554 0.0931
## week-Lynx_rufus -0.0393 0.1864 -0.4404 -0.0267 0.2850
## week-Didelphis_virginiana -0.1906 0.2158 -0.6452 -0.1740 0.1830
## week-Sylvilagus_floridanus -0.1352 0.1945 -0.5309 -0.1264 0.2085
## week-Sciurus_carolinensis 0.1398 0.1781 -0.2266 0.1404 0.4841
## week-Vulpes_vulpes -0.1011 0.2673 -0.6917 -0.0814 0.3819
## week-Sus_scrofa 0.1033 0.2276 -0.3365 0.1010 0.5712
## Rhat ESS
## (Intercept)-Odocoileus_virginianus 1.0013 1500
## (Intercept)-Canis_latrans 1.0213 641
## (Intercept)-Sciurus_niger 1.0060 222
## (Intercept)-Procyon_lotor 1.0053 951
## (Intercept)-Dasypus_novemcinctus 1.0072 1072
## (Intercept)-Lynx_rufus 1.0184 166
## (Intercept)-Didelphis_virginiana 1.0239 814
## (Intercept)-Sylvilagus_floridanus 1.0013 547
## (Intercept)-Sciurus_carolinensis 1.0113 531
## (Intercept)-Vulpes_vulpes 1.0256 97
## (Intercept)-Sus_scrofa 1.0080 444
## shrub_cover-Odocoileus_virginianus 1.0047 1130
## shrub_cover-Canis_latrans 1.0045 673
## shrub_cover-Sciurus_niger 1.0019 308
## shrub_cover-Procyon_lotor 0.9996 1182
## shrub_cover-Dasypus_novemcinctus 1.0040 843
## shrub_cover-Lynx_rufus 1.0209 247
## shrub_cover-Didelphis_virginiana 1.0189 723
## shrub_cover-Sylvilagus_floridanus 1.0045 446
## shrub_cover-Sciurus_carolinensis 1.0041 560
## shrub_cover-Vulpes_vulpes 1.0113 624
## shrub_cover-Sus_scrofa 1.0006 561
## veg_height-Odocoileus_virginianus 1.0053 1500
## veg_height-Canis_latrans 1.0100 656
## veg_height-Sciurus_niger 1.0230 370
## veg_height-Procyon_lotor 1.0067 1219
## veg_height-Dasypus_novemcinctus 0.9999 1500
## veg_height-Lynx_rufus 1.0365 558
## veg_height-Didelphis_virginiana 1.0080 1027
## veg_height-Sylvilagus_floridanus 1.0016 882
## veg_height-Sciurus_carolinensis 1.0267 780
## veg_height-Vulpes_vulpes 1.0109 553
## veg_height-Sus_scrofa 1.0001 741
## week-Odocoileus_virginianus 1.0064 1500
## week-Canis_latrans 1.0118 1124
## week-Sciurus_niger 1.0015 478
## week-Procyon_lotor 1.0074 1153
## week-Dasypus_novemcinctus 1.0044 1270
## week-Lynx_rufus 1.0198 571
## week-Didelphis_virginiana 1.0008 1011
## week-Sylvilagus_floridanus 1.0022 1039
## week-Sciurus_carolinensis 1.0002 1384
## week-Vulpes_vulpes 1.0037 839
## week-Sus_scrofa 1.0033 1269
names(ms_full_full)
## [1] "rhat" "beta.comm.samples" "alpha.comm.samples"
## [4] "tau.sq.beta.samples" "tau.sq.alpha.samples" "beta.samples"
## [7] "alpha.samples" "z.samples" "psi.samples"
## [10] "like.samples" "sigma.sq.psi.samples" "beta.star.samples"
## [13] "re.level.names" "ESS" "X"
## [16] "X.p" "X.p.re" "X.re"
## [19] "y" "call" "n.samples"
## [22] "x.names" "sp.names" "x.p.names"
## [25] "n.post" "n.thin" "n.burn"
## [28] "n.chains" "pRE" "psiRE"
## [31] "run.time"
str(ms_full_full$beta.samples)
## 'mcmc' num [1:1500, 1:88] 17.5 17.35 11 5.52 3 ...
## - attr(*, "mcpar")= num [1:3] 1 1500 1
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:88] "(Intercept)-Odocoileus_virginianus" "(Intercept)-Canis_latrans" "(Intercept)-Sciurus_niger" "(Intercept)-Procyon_lotor" ...
mean(ms_full_full$beta.samples[, 5] > 0) # effect of ? on occupancy
## [1] 0.05133333
MCMCplot(ms_full_full$beta.samples, ref_ovl = TRUE, ci = c(50, 95)) # Occupancy
MCMCplot(ms_full_full$alpha.samples, ref_ovl = TRUE, ci = c(50, 95)) # Detection
# Create a set of values across the range of observed cogongrass values
cogon.pred.vals <- seq(min(data_list$occ.covs$Avg_Cogongrass_Cover),
max(data_list$occ.covs$Avg_Cogongrass_Cover),
length.out = 100)
# Scale predicted values by mean and standard deviation used to fit the model
cogon.pred.vals.scale <- (cogon.pred.vals - mean(data_list$occ.covs$Avg_Cogongrass_Cover)) /
sd(data_list$occ.covs$Avg_Cogongrass_Cover)
# Predict occupancy across cogongrass cover values at mean values of all other variables
pred.df <- as.matrix(data.frame(intercept = 1, Avg_Cogongrass_Cover = cogon.pred.vals.scale,
Cogon_Patch_Size = 0, Veg_shannon_index = 0,
total_shrub_cover = 0, Tree_Density = 0,
Avg_Canopy_Cover = 0, avg_veg_height = 0, Auth = 0))
out.pred <- predict(ms_full_full, pred.df)
str(out.pred)
## List of 3
## $ psi.0.samples: num [1:1500, 1:11, 1:100] 1 1 1 0.985 0.958 ...
## $ z.0.samples : int [1:1500, 1:11, 1:100] 1 1 1 1 1 1 1 1 1 1 ...
## $ call : language predict.msPGOcc(object = ms_full_full, X.0 = pred.df)
## - attr(*, "class")= chr "predict.msPGOcc"
str(out.pred$psi.0.samples)
## num [1:1500, 1:11, 1:100] 1 1 1 0.985 0.958 ...
psi.0.quants <- apply(out.pred$psi.0.samples, c(3), function(x) quantile(x, prob = c(0.025, 0.5, 0.975)))
str(psi.0.quants)
## num [1:3, 1:100] 0.00331 0.42387 0.99994 0.00359 0.4242 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:3] "2.5%" "50%" "97.5%"
## ..$ : NULL
psi.plot.dat <- data.frame(
psi.med = psi.0.quants[2, ],
psi.low = psi.0.quants[1, ],
psi.high = psi.0.quants[3, ],
Avg_Cogongrass_Cover = cogon.pred.vals
)
str(psi.plot.dat)
## 'data.frame': 100 obs. of 4 variables:
## $ psi.med : num 0.424 0.424 0.419 0.409 0.416 ...
## $ psi.low : num 0.00331 0.00359 0.00337 0.00327 0.00327 ...
## $ psi.high : num 1 1 1 1 1 ...
## $ Avg_Cogongrass_Cover: num -0.708 -0.675 -0.641 -0.608 -0.575 ...
ggplot(psi.plot.dat, aes(x = Avg_Cogongrass_Cover, y = psi.med)) +
geom_ribbon(aes(ymin = psi.low, ymax = psi.high), fill = "grey70") +
geom_line() +
theme_bw() +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Average Cogongrass Cover", y = "Occupancy Probability")
CameraData <- CameraData%>%
dplyr::select(-Status)
O2_data <- CameraData %>%
left_join(CameraLoc_O2, by = "Plot")
# Creating proportions of observations for each behavior type
behavior_proportions <- O2_data %>%
group_by(Plot, Name, Behavior, Status, Camera.Type, BehLoc) %>%
summarise(ObservationCount = n()) %>%
ungroup() %>%
group_by(Plot, Name, Status, Camera.Type, BehLoc) %>%
mutate(Proportion = ObservationCount / sum(ObservationCount)) %>%
ungroup()
## `summarise()` has grouped output by 'Plot', 'Name', 'Behavior', 'Status',
## 'Camera.Type'. You can override using the `.groups` argument.
#formula <- bf(Proportion ~ Status * Behavior + Status * Name + (1 | Plot),
# family = Beta(link = "logit"))
# Adjust Proportion for Beta distribution
#n <- nrow(behavior_proportions)
#behavior_proportions$Proportion <- (behavior_proportions$Proportion * (n - 1) + 0.5) / n
# Fit the model
#brms_model <- brm(formula = formula,
# data = behavior_proportions,
# iter = 4000, warmup = 1000, chains = 4, cores = 4,
# control = list(adapt_delta = 0.95))
# Diagnostic Plots
#plot(brms_model)
# Summary Statistics
#summary(brms_model)
Behavior Model- Switched to local search and dasypus novemcinctus being the reference variables
# Ensure Behavior is an unordered factor
if(!is.factor(behavior_proportions$Behavior) || is.ordered(behavior_proportions$Behavior)) {
behavior_proportions$Behavior <- factor(behavior_proportions$Behavior, ordered = FALSE)
}
# Make Local_Search the reference category
behavior_proportions$Behavior <- relevel(behavior_proportions$Behavior, ref = "Local_Search")
# Ensure Name is an unordered factor
if(!is.factor(behavior_proportions$Name) || is.ordered(behavior_proportions$Name)) {
behavior_proportions$Name <- factor(behavior_proportions$Name, ordered = FALSE)
}
# Make Dasypus_novemcinctus the reference category
behavior_proportions$Name <- relevel(behavior_proportions$Name, ref = "Dasypus_novemcinctus")
# Ensure Status is an unordered factor
if(!is.factor(behavior_proportions$Status) || is.ordered(behavior_proportions$Status)) {
behavior_proportions$Status <- factor(behavior_proportions$Status, ordered = FALSE)
}
# Make "Non_Invaded" the reference category
behavior_proportions$Status <- relevel(behavior_proportions$Status, ref = "Non_Invaded")
# Adjust Proportion for Beta distribution
n <- nrow(behavior_proportions)
behavior_proportions$Proportion <- (behavior_proportions$Proportion * (n - 1) + 0.5) / n
# Fit the Bayesian GLMM with new reference levels
brms_model_releveled <- brm(
formula = bf(Proportion ~ Status * Behavior + Status * Name + (1 | Plot),
family = Beta(link = "logit")),
data = behavior_proportions,
iter = 4000, warmup = 1000, chains = 4, cores = 4,
control = list(adapt_delta = 0.95)
)
## Compiling Stan program...
## Start sampling
plot(brms_model_releveled)
# Summary
summary(brms_model_releveled)
## Family: beta
## Links: mu = logit; phi = identity
## Formula: Proportion ~ Status * Behavior + Status * Name + (1 | Plot)
## Data: behavior_proportions (Number of observations: 327)
## Draws: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup draws = 12000
##
## Multilevel Hyperparameters:
## ~Plot (Number of levels: 32)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.24 0.11 0.03 0.47 1.00 2988 2979
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI
## Intercept -0.02 0.43 -0.86 0.85
## StatusInvaded 0.08 0.53 -0.95 1.13
## BehaviorForaging 0.58 0.30 -0.00 1.17
## BehaviorTransit 1.36 0.27 0.84 1.88
## NameCanis_latrans 0.18 0.47 -0.76 1.11
## NameDidelphis_virginiana 0.69 0.70 -0.61 2.12
## NameLynx_rufus 1.16 0.63 -0.02 2.43
## NameOdocoileus_virginianus -1.05 0.40 -1.84 -0.26
## NameProcyon_lotor 0.38 0.46 -0.52 1.28
## NameSciurus_carolinensis -0.13 0.65 -1.36 1.16
## NameSciurus_niger 1.54 0.77 0.11 3.16
## NameSus_scrofa 0.11 0.62 -1.08 1.35
## NameSylvilagus_floridanus 1.16 0.53 0.13 2.22
## NameVulpes_vulpes 1.32 0.93 -0.32 3.33
## StatusInvaded:BehaviorForaging -0.63 0.38 -1.38 0.11
## StatusInvaded:BehaviorTransit -0.04 0.33 -0.68 0.59
## StatusInvaded:NameCanis_latrans 1.05 0.63 -0.18 2.28
## StatusInvaded:NameDidelphis_virginiana 0.05 0.82 -1.61 1.64
## StatusInvaded:NameLynx_rufus 0.10 0.79 -1.49 1.63
## StatusInvaded:NameOdocoileus_virginianus 0.36 0.48 -0.59 1.31
## StatusInvaded:NameProcyon_lotor 0.04 0.56 -1.06 1.13
## StatusInvaded:NameSciurus_carolinensis 0.09 0.77 -1.44 1.57
## StatusInvaded:NameSciurus_niger -1.05 1.01 -3.08 0.90
## StatusInvaded:NameSus_scrofa 1.75 1.48 -0.81 5.10
## StatusInvaded:NameSylvilagus_floridanus -0.33 0.67 -1.62 0.97
## StatusInvaded:NameVulpes_vulpes 0.32 1.66 -2.64 3.92
## Rhat Bulk_ESS Tail_ESS
## Intercept 1.00 2313 4413
## StatusInvaded 1.00 2266 4654
## BehaviorForaging 1.00 6561 8245
## BehaviorTransit 1.00 6315 7963
## NameCanis_latrans 1.00 2839 5598
## NameDidelphis_virginiana 1.00 4317 6644
## NameLynx_rufus 1.00 4141 6623
## NameOdocoileus_virginianus 1.00 2419 4446
## NameProcyon_lotor 1.00 2700 5061
## NameSciurus_carolinensis 1.00 4496 7333
## NameSciurus_niger 1.00 4894 7473
## NameSus_scrofa 1.00 4396 7461
## NameSylvilagus_floridanus 1.00 3466 6224
## NameVulpes_vulpes 1.00 6439 7381
## StatusInvaded:BehaviorForaging 1.00 6593 8253
## StatusInvaded:BehaviorTransit 1.00 6340 8595
## StatusInvaded:NameCanis_latrans 1.00 3368 5790
## StatusInvaded:NameDidelphis_virginiana 1.00 4342 6962
## StatusInvaded:NameLynx_rufus 1.00 4273 6094
## StatusInvaded:NameOdocoileus_virginianus 1.00 2320 4337
## StatusInvaded:NameProcyon_lotor 1.00 2765 4765
## StatusInvaded:NameSciurus_carolinensis 1.00 4501 6566
## StatusInvaded:NameSciurus_niger 1.00 5656 7872
## StatusInvaded:NameSus_scrofa 1.00 8634 7304
## StatusInvaded:NameSylvilagus_floridanus 1.00 3727 7104
## StatusInvaded:NameVulpes_vulpes 1.00 7799 7690
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi 2.00 0.16 1.69 2.33 1.00 9654 8086
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Conditional Effects for interactions
ce_behavior <- conditional_effects(brms_model_releveled, effects = "Status:Behavior")
plot(ce_behavior)
ce_name <- conditional_effects(brms_model_releveled, effects = "Status:Name")
plot(ce_name)
# Filter data for invaded status
invaded_data <- behavior_proportions %>%
filter(Status == "Invaded")
# Adjust Proportion for Beta distribution
n <- nrow(invaded_data)
invaded_data$Proportion <- (invaded_data$Proportion * (n - 1) + 0.5) / n
Loc_model <- brm(
Proportion ~ BehLoc * Behavior + BehLoc * Name + (1 | Plot) + (1 | Camera.Type),
data = invaded_data,
family = Beta(link = "logit"),
iter = 4000,
warmup = 2000,
chains = 4,
cores = 4,
control = list(adapt_delta = 0.99, max_treedepth = 15)
)
## Compiling Stan program...
## Start sampling
## Warning: There were 8000 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 15. See
## https://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
## Warning: Examine the pairs() plot to diagnose sampling problems
## Warning: The largest R-hat is 3.06, indicating chains have not mixed.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#r-hat
## Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#bulk-ess
## Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
## Running the chains for more iterations may help. See
## https://mc-stan.org/misc/warnings.html#tail-ess
# Summarize model
summary(Loc_model)
## Warning: Parts of the model have not converged (some Rhats are > 1.05). Be
## careful when analysing the results! We recommend running more iterations and/or
## setting stronger priors.
## Family: beta
## Links: mu = logit; phi = identity
## Formula: Proportion ~ BehLoc * Behavior + BehLoc * Name + (1 | Plot) + (1 | Camera.Type)
## Data: invaded_data (Number of observations: 197)
## Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
## total post-warmup draws = 8000
##
## Multilevel Hyperparameters:
## ~Camera.Type (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.72 0.35 0.15 1.52 1.50 7 12
##
## ~Plot (Number of levels: 17)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.49 0.21 0.19 0.93 1.66 6 19
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI
## Intercept 0.24 0.33 -0.34
## BehLocPatch -0.45 0.43 -1.26
## BehaviorForaging 0.19 0.24 -0.44
## BehaviorTransit 0.69 0.20 0.29
## NameCanis_latrans 1.36 0.45 0.54
## NameDidelphis_virginiana 0.66 0.29 0.08
## NameLynx_rufus 1.88 0.47 0.93
## NameOdocoileus_virginianus -0.91 0.26 -1.48
## NameProcyon_lotor 0.32 0.24 -0.25
## NameSciurus_carolinensis 0.01 0.33 -0.58
## NameSciurus_niger 0.03 0.55 -0.96
## NameSus_scrofa -80555.26 88295.16 -206047.01
## NameSylvilagus_floridanus 0.99 0.37 0.26
## NameVulpes_vulpes 2.59 1.18 0.42
## BehLocPatch:BehaviorForaging -0.31 0.40 -1.25
## BehLocPatch:BehaviorTransit 1.79 0.27 1.33
## BehLocPatch:NameCanis_latrans -0.84 0.86 -2.59
## BehLocPatch:NameDidelphis_virginiana -0.17 0.59 -1.36
## BehLocPatch:NameLynx_rufus -0.98 1.06 -2.94
## BehLocPatch:NameOdocoileus_virginianus 0.03 0.52 -0.67
## BehLocPatch:NameProcyon_lotor -0.15 0.67 -1.00
## BehLocPatch:NameSciurus_carolinensis 1.19 0.99 -0.59
## BehLocPatch:NameSciurus_niger 1.36 1.56 -0.80
## BehLocPatch:NameSus_scrofa 80556.89 88295.29 -112798.56
## BehLocPatch:NameSylvilagus_floridanus -1.22 0.83 -2.54
## BehLocPatch:NameVulpes_vulpes -3801242.66 10462543.96 -33077548.10
## u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.85 1.66 6 22
## BehLocPatch 0.35 1.93 6 21
## BehaviorForaging 0.66 1.67 7 12
## BehaviorTransit 1.06 1.46 8 45
## NameCanis_latrans 2.27 1.71 6 13
## NameDidelphis_virginiana 1.24 1.32 11 39
## NameLynx_rufus 2.75 1.53 7 22
## NameOdocoileus_virginianus -0.54 1.48 8 20
## NameProcyon_lotor 0.72 1.38 10 32
## NameSciurus_carolinensis 0.65 1.14 23 58
## NameSciurus_niger 1.08 1.74 6 20
## NameSus_scrofa 112798.85 2.36 5 17
## NameSylvilagus_floridanus 1.79 1.52 7 18
## NameVulpes_vulpes 4.98 1.39 9 35
## BehLocPatch:BehaviorForaging 0.36 1.44 8 12
## BehLocPatch:BehaviorTransit 2.46 1.31 10 25
## BehLocPatch:NameCanis_latrans 0.95 1.96 6 25
## BehLocPatch:NameDidelphis_virginiana 0.99 1.37 9 39
## BehLocPatch:NameLynx_rufus 1.16 1.36 9 34
## BehLocPatch:NameOdocoileus_virginianus 1.11 1.87 6 17
## BehLocPatch:NameProcyon_lotor 1.27 1.63 7 23
## BehLocPatch:NameSciurus_carolinensis 3.11 1.37 10 23
## BehLocPatch:NameSciurus_niger 4.44 1.86 6 27
## BehLocPatch:NameSus_scrofa 206048.59 2.36 5 17
## BehLocPatch:NameSylvilagus_floridanus 0.37 1.48 8 43
## BehLocPatch:NameVulpes_vulpes 6422678.83 3.06 7 12
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## phi 2.91 0.33 2.44 3.58 1.42 8 29
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Diagnostics and posterior checks
plot(Loc_model)
pp_check(Loc_model, type = 'dens_overlay')
## Using 10 posterior draws for ppc type 'dens_overlay' by default.
pp_check(Loc_model, type = 'hist')
## Using 10 posterior draws for ppc type 'hist' by default.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
pp_check(Loc_model, type = 'boxplot')
## Using 10 posterior draws for ppc type 'boxplot' by default.
pp_check(Loc_model, type = 'intervals')
## Using all posterior draws for ppc type 'intervals' by default.
pp_check(Loc_model, type = 'scatter_avg')
## Using all posterior draws for ppc type 'scatter_avg' by default.
# Compute marginal effects
marginal_effects_data <- conditional_effects(Loc_model)
# Plot marginal effects
plot(marginal_effects_data)
# Obtain predictions
predicted_values <- posterior_epred(Loc_model, newdata = invaded_data)
# Plot predicted vs. observed
plot(invaded_data$Proportion, colMeans(predicted_values))
abline(a = 0, b = 1, col = "red")
# Example interaction plot for BehLoc and Behavior
interaction_plot_data <- conditional_effects(Loc_model, effects = "BehLoc:Behavior")
# Convert to data frame for ggplot
df <- as.data.frame(interaction_plot_data$`BehLoc:Behavior`)
ggplot(df, aes(x = BehLoc, y = estimate__, color = Behavior, group = Behavior)) +
geom_line() +
geom_ribbon(aes(ymin = lower__, ymax = upper__), alpha = 0.2) +
theme_minimal() +
labs(title = "Interaction Plot of BehLoc and Behavior",
y = "Proportion",
x = "BehLoc")
CameraLoc <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraLoc.xlsx",
sheet = "CameraLocations")
CameraData <- read_excel("C:/Users/alanivory34428/OneDrive - University of Florida/Desktop/School/PHD/01_Projects/04_Wildlife/02_Data/CameraData.xlsx")
avg_cogongrass_cover <- species_matrix %>%
group_by(Plot) %>%
summarize(Avg_Cogongrass_Cover = sum(Imperata_cylindrica, na.rm = TRUE) / n(), .groups = "drop")
CameraLoc <- CameraLoc %>%
left_join(avg_cogongrass_cover, by = "Plot")
# Observation per species, per site
site_species_counts <- CameraData %>%
group_by(Plot, Name) %>%
summarize(count = n(), .groups = "drop")
# Shannon Diversity per site
shannon_diversity_wildlife <- site_species_counts %>%
group_by(Plot) %>%
mutate(proportion = count / sum(count)) %>%
summarize(Wild_shannon_index = -sum(proportion * log(proportion), na.rm = TRUE))
# View results
print(shannon_diversity_wildlife)
## # A tibble: 32 × 2
## Plot Wild_shannon_index
## <chr> <dbl>
## 1 BI201 0.305
## 2 BN211 0.303
## 3 EI100 0.292
## 4 EI102 0.412
## 5 EI104 0.310
## 6 EI106 0.446
## 7 EN101 0.117
## 8 EN103 0.194
## 9 EN107 0.861
## 10 JI07 0.764
## # ℹ 22 more rows
# Merge wildlife and vegetation diversity indices with invasion data
diversity_data <- shannon_diversity_wildlife %>%
left_join(Veg_shannon_diversity, by = "Plot") %>%
left_join(CameraLoc, by = "Plot")
# View merged data
print(diversity_data)
## # A tibble: 32 × 14
## Plot Wild_shannon_index Veg_shannon_index Lat Long Status
## <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 BI201 0.305 2.20 30.8 -86.9 Invaded
## 2 BN211 0.303 2.43 30.8 -86.9 Non_Invaded
## 3 EI100 0.292 2.54 31.0 -87.1 Invaded
## 4 EI102 0.412 1.49 31.0 -87.1 Invaded
## 5 EI104 0.310 2.42 31.0 -87.1 Invaded
## 6 EI106 0.446 1.73 31.0 -87.1 Invaded
## 7 EN101 0.117 2.07 31.0 -87.1 Non_Invaded
## 8 EN103 0.194 2.43 31.0 -87.1 Non_Invaded
## 9 EN107 0.861 2.69 31.0 -87.1 Non_Invaded
## 10 JI07 0.764 1.69 30.8 -87.1 Invaded
## # ℹ 22 more rows
## # ℹ 8 more variables: Start_Date <dttm>, Camera <chr>, Cogon_Patch_Size <dbl>,
## # VegetationDiversity <dbl>, PostTreatmentDensities <dbl>, Authority <chr>,
## # Auth <dbl>, Avg_Cogongrass_Cover <dbl>
summary(diversity_data)
## Plot Wild_shannon_index Veg_shannon_index Lat
## Length:32 Min. :0.04539 Min. :1.188 Min. :28.68
## Class :character 1st Qu.:0.29022 1st Qu.:2.024 1st Qu.:30.76
## Mode :character Median :0.44221 Median :2.369 Median :30.77
## Mean :0.56021 Mean :2.264 Mean :30.45
## 3rd Qu.:0.75653 3rd Qu.:2.522 3rd Qu.:30.90
## Max. :1.72721 Max. :3.160 Max. :31.01
## Long Status Start_Date
## Min. :-87.15 Length:32 Min. :2024-05-09 00:00:00
## 1st Qu.:-87.14 Class :character 1st Qu.:2024-06-03 18:00:00
## Median :-87.09 Mode :character Median :2024-06-06 12:00:00
## Mean :-86.21 Mean :2024-06-26 04:30:00
## 3rd Qu.:-86.89 3rd Qu.:2024-06-27 00:00:00
## Max. :-82.41 Max. :2024-11-04 00:00:00
## Camera Cogon_Patch_Size VegetationDiversity
## Length:32 Min. : 0.00 Min. :11.00
## Class :character 1st Qu.: 0.00 1st Qu.:18.00
## Mode :character Median : 30.07 Median :20.50
## Mean : 458.39 Mean :21.88
## 3rd Qu.: 233.84 3rd Qu.:25.00
## Max. :4168.92 Max. :42.00
## PostTreatmentDensities Authority Auth Avg_Cogongrass_Cover
## Min. :0.0000 Length:32 Min. :1.000 Min. : 0.000
## 1st Qu.:0.0000 Class :character 1st Qu.:2.000 1st Qu.: 0.000
## Median :0.0000 Mode :character Median :3.000 Median : 2.143
## Mean :0.8978 Mean :2.844 Mean :13.683
## 3rd Qu.:1.4650 3rd Qu.:3.000 3rd Qu.:20.089
## Max. :3.7100 Max. :4.000 Max. :63.571
diversity_data <- diversity_data %>%
mutate(Status = as.factor(Status))
# Standardizing the continuous variables
diversity_data <- diversity_data %>%
mutate(
Avg_Cogongrass_Cover = scale(Avg_Cogongrass_Cover),
Veg_shannon_index = scale(Veg_shannon_index),
Cogon_Patch_Size = scale(Cogon_Patch_Size)
)
glmm_model <- lmer(
Wild_shannon_index ~ Avg_Cogongrass_Cover * Veg_shannon_index + Cogon_Patch_Size +
(1 | Authority) + (1 | Camera),
data = diversity_data
)
## boundary (singular) fit: see help('isSingular')
# Summarize the model
summary(glmm_model)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Wild_shannon_index ~ Avg_Cogongrass_Cover * Veg_shannon_index +
## Cogon_Patch_Size + (1 | Authority) + (1 | Camera)
## Data: diversity_data
##
## REML criterion at convergence: 38.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7385 -0.6306 -0.1460 0.4177 2.7655
##
## Random effects:
## Groups Name Variance Std.Dev.
## Authority (Intercept) 0.0000 0.0000
## Camera (Intercept) 0.0260 0.1613
## Residual 0.1279 0.3577
## Number of obs: 32, groups: Authority, 4; Camera, 4
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 0.450256 0.121460 4.613881 3.707
## Avg_Cogongrass_Cover -0.166255 0.155059 26.891653 -1.072
## Veg_shannon_index 0.010820 0.108964 25.628316 0.099
## Cogon_Patch_Size -0.005934 0.078788 26.390634 -0.075
## Avg_Cogongrass_Cover:Veg_shannon_index -0.222671 0.080042 26.921473 -2.782
## Pr(>|t|)
## (Intercept) 0.01606 *
## Avg_Cogongrass_Cover 0.29316
## Veg_shannon_index 0.92168
## Cogon_Patch_Size 0.94053
## Avg_Cogongrass_Cover:Veg_shannon_index 0.00975 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Av_C_C Vg_sh_ Cg_P_S
## Avg_Cgngr_C 0.269
## Vg_shnnn_nd -0.021 0.611
## Cgn_Ptch_Sz -0.148 -0.477 -0.058
## Avg_C_C:V__ 0.434 0.685 0.074 -0.403
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
# Extract the fixed effects
fixed_effects <- fixef(glmm_model)
# Extract the random effects
random_effects <- ranef(glmm_model)
# Plot the fixed effects
plot_model(glmm_model, type = "pred", terms = c("Avg_Cogongrass_Cover", "Veg_shannon_index"))
# Plot the random effects
plot_model(glmm_model, type = "re")
## [[1]]
##
## [[2]]
bayesian_model <- brm(
Wild_shannon_index ~ scale(Avg_Cogongrass_Cover) * scale(Veg_shannon_index) + scale(Cogon_Patch_Size) +
(1 | Authority) + (1 | Camera),
data = diversity_data,
family = gaussian(),
chains = 4,
iter = 4000,
warmup = 2000,
cores = parallel::detectCores(),
control = list(adapt_delta = 0.99, max_treedepth = 15), # Further tuned parameters
prior = c(
prior(normal(0, 1), class = "b"), # Regularizing prior for coefficients
prior(cauchy(0, 1), class = "Intercept"), # Weakly informative cauchy prior for intercept
prior(cauchy(0, 1), class = "sd") # For random effect standard deviations
)
)
## Compiling Stan program...
## Start sampling
summary(bayesian_model)
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: Wild_shannon_index ~ scale(Avg_Cogongrass_Cover) * scale(Veg_shannon_index) + scale(Cogon_Patch_Size) + (1 | Authority) + (1 | Camera)
## Data: diversity_data (Number of observations: 32)
## Draws: 4 chains, each with iter = 4000; warmup = 2000; thin = 1;
## total post-warmup draws = 8000
##
## Multilevel Hyperparameters:
## ~Authority (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.19 0.20 0.01 0.70 1.00 3288 3581
##
## ~Camera (Number of levels: 4)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.26 0.23 0.01 0.85 1.00 2323 2857
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI
## Intercept 0.41 0.23 -0.09
## scaleAvg_Cogongrass_Cover -0.13 0.18 -0.46
## scaleVeg_shannon_index 0.02 0.13 -0.22
## scaleCogon_Patch_Size -0.03 0.09 -0.21
## scaleAvg_Cogongrass_Cover:scaleVeg_shannon_index -0.20 0.09 -0.38
## u-95% CI Rhat Bulk_ESS
## Intercept 0.83 1.00 3847
## scaleAvg_Cogongrass_Cover 0.23 1.00 3653
## scaleVeg_shannon_index 0.27 1.00 5746
## scaleCogon_Patch_Size 0.15 1.00 4898
## scaleAvg_Cogongrass_Cover:scaleVeg_shannon_index -0.01 1.00 4398
## Tail_ESS
## Intercept 3061
## scaleAvg_Cogongrass_Cover 4344
## scaleVeg_shannon_index 5148
## scaleCogon_Patch_Size 5132
## scaleAvg_Cogongrass_Cover:scaleVeg_shannon_index 4934
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.38 0.06 0.29 0.52 1.00 5356 4650
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(bayesian_model)
# Plot the fixed effects
plot(bayesian_model, "Avg_Cogongrass_Cover")
## Warning: Argument 'pars' is deprecated. Please use 'variable' instead.
# Plot the random effects
plot(bayesian_model, "Camera")
## Warning: Argument 'pars' is deprecated. Please use 'variable' instead.
plot(bayesian_model, "Authority")
## Warning: Argument 'pars' is deprecated. Please use 'variable' instead.
# Get unique levels of Authority and Camera from original data
authority_levels <- levels(as.factor(diversity_data$Authority))
camera_levels <- levels(as.factor(diversity_data$Camera))
# Create a new data frame for predictions
new_data <- expand.grid(
Avg_Cogongrass_Cover = seq(min(diversity_data$Avg_Cogongrass_Cover), max(diversity_data$Avg_Cogongrass_Cover), length.out = 100),
Veg_shannon_index = quantile(diversity_data$Veg_shannon_index, probs = c(0.25, 0.5, 0.75)),
Cogon_Patch_Size = mean(diversity_data$Cogon_Patch_Size), # Use mean value for this predictor
Authority = authority_levels[1], # Assign a representative level for Authority
Camera = camera_levels[1] # Assign a representative level for Camera
)
# Repeat new_data to match for each combination of Camera levels
new_data <- as.data.frame(new_data)
new_data <- new_data[rep(seq_len(nrow(new_data)), each = length(authority_levels) * length(camera_levels)), ]
new_data$Authority <- rep(authority_levels, each = 100 * length(camera_levels))
new_data$Camera <- rep(camera_levels, times = 100 * length(authority_levels))
# Generate predictions including random effects
predictions <- fitted(bayesian_model, newdata = new_data, re_formula = NULL)
new_data$Wild_shannon_index <- rowMeans(predictions)
ggplot(new_data, aes(x = Avg_Cogongrass_Cover, y = Wild_shannon_index, color = factor(Veg_shannon_index))) +
geom_line() +
labs(x = "Average Cogongrass Cover", y = "Wild Shannon Index", color = "Vegetation Shannon Index") +
theme_minimal() +
ggtitle("Effect of Cogongrass Cover and Veg. Shannon Index on Wild Shannon Index")