library(linearModel)

y<-c(30,40,60,70,100);y
## [1]  30  40  60  70 100
x=c(2,3,5,6,8);x
## [1] 2 3 5 6 8
z<-c(6,7,8,10,15);z
## [1]  6  7  8 10 15
#creating data frame
data.frame(x,y,z)
##   x   y  z
## 1 2  30  6
## 2 3  40  7
## 3 5  60  8
## 4 6  70 10
## 5 8 100 15
#correlation
cor(x,y)
## [1] 0.9941348
cor(x,z)
## [1] 0.9461426
cor(y,z)
## [1] 0.9733995
#regression
t=lm(y~x+z)

aov(t)
## Call:
##    aov(formula = t)
## 
## Terms:
##                         x         z Residuals
## Sum of Squares  2964.9123   30.8044    4.2834
## Deg. of Freedom         1         1         2
## 
## Residual standard error: 1.463448
## Estimated effects may be unbalanced
plot(t)

y<-c(30,40,60,70,100);y
## [1]  30  40  60  70 100
x=c(2,3,5,6,8);x
## [1] 2 3 5 6 8
z<-c(6,7,8,10,15);z
## [1]  6  7  8 10 15
#creating data frame
data.frame(x,y,z)
##   x   y  z
## 1 2  30  6
## 2 3  40  7
## 3 5  60  8
## 4 6  70 10
## 5 8 100 15
#correlation
cor(x,y)
## [1] 0.9941348
cor(x,z)
## [1] 0.9461426
cor(y,z)
## [1] 0.9733995
#regression
t=lm(y~x+z)

aov(t)
## Call:
##    aov(formula = t)
## 
## Terms:
##                         x         z Residuals
## Sum of Squares  2964.9123   30.8044    4.2834
## Deg. of Freedom         1         1         2
## 
## Residual standard error: 1.463448
## Estimated effects may be unbalanced
plot(t)