Consider the following vectors representing the number of field goals made and attempted by a basketball player in five games:Field Goals Made: c(18, 7, 6, 9, 10,13) Field Goals Attempted: c(36, 23, 12, 18, 24,22)Calculate the field goal percentage for each game and select the correct average field goal percentage for the five games.

# Field Goals Made
field_goals_made <- c(18, 7, 6, 9, 10, 13)
# Field Goals Attempted
field_goals_attempted <- c(36, 23, 12, 18, 24, 22)
# Calculate Field Goal Percentage
field_goal_percentage <- field_goals_made / field_goals_attempted * 100
# Calculate Average Field Goal Percentage
average_field_goal_percentage <- mean(field_goal_percentage)
# Print the average field goal percentage
average_field_goal_percentage
[1] 46.86539

The average field goal percentage for the five games is 47%

Consider the following vectors representing the number of three-pointers made and attempted by a basketball player in five games:

Three-Pointers Made: c(3, 5,0, 6, 3, 7) Three-Pointers Attempted: c(9, 10, 8,12, 11, 12)

Calculate the three-point shooting percentage for each game and select the correct average three-point shooting percentage for the five games.

# Three-Pointers Made
three_pointers_made <- c(3, 5, 0, 6, 3, 7)
# Three-Pointers Attempted
three_pointers_attempted <- c(9, 10, 8, 12, 11, 12)
# Calculate Three-Point Shooting Percentage
three_point_percentage <- three_pointers_made / three_pointers_attempted * 100
# Calculate Average Three-Point Shooting Percentage
average_three_point_percentage <- mean(three_point_percentage)
# Print the average three-point shooting percentage
average_three_point_percentage
[1] 36.4899

ANS:

The average three-point shooting percentage for the five games is 36.4%

Consider the following dataset representing the performance of baseball players in a season. It includes the following variables: PlayerID, Hits, At-Bats, Home Runs (HR), Walks (BB), and Strikeouts (SO).

PlayerID Hits At-Bats HR BB SO

1             112       400           25          50     60

2             124       450           22          60     65

3             121       380           8            19     67

4             106       500           20         150     92

5             140       402           11          55     70

Compute the on-base percentage (OBP) for each player and select the player with the highest OBP.

  1. Player 1 b) Player 2 c) Player 3 d) Player 4 e) Player 5

To calculate OBP, you can use the following formula:

OBP = (Hits + Walks) / (At-Bats + Walks)

# Create a data frame with the player data
player_data <- data.frame(
  PlayerID = 1:5,
  Hits = c(112, 124, 121, 106, 140),
  At_Bats = c(400, 450, 380, 500, 402),
  HR = c(25, 22, 8, 20, 11),
  BB = c(50, 60, 19, 150, 55),
  SO = c(60, 65, 67, 92, 70)
)
# Calculate OBP for each player
player_data$OBP <- (player_data$Hits + player_data$BB) / (player_data$At_Bats + player_data$BB)
# Find the player with the highest OBP
highest_obp_player <- player_data[which.max(player_data$OBP), ]
# Print the player with the highest OBP
highest_obp_player
NA

ANS:

The player with the highest OBP is Player 5 with an OBP of 0.43

Consider a multiple linear regression model in R: model <- lm(Goals ~ Assists + Shots + Penalties, data = dataset). Given the output we obtained, which predictor variables are statistically significant at the 0.05 significance level? Select all that apply.

Coefficients: Estimate Std. Error t-value Pr(>|t|) (Intercept) 10.2 2.1 4.85 <0.001 Assists 0.6 0.2 3.20 0.004 Shots 0.3 0.1 2.10 0.045 Penalties 0.2 0.3 0.70 0.500

Residual standard error: 2.5 on 80 degrees of freedom Multiple R-squared: 0.75, Adjusted R-squared: 0.73

# Create a data frame with the regression output
regression_output <- data.frame(
  Predictor = c("(Intercept)", "Assists", "Shots", "Penalties"),
  Estimate = c(10.2, 0.6, 0.3, 0.2),
  Std_Error = c(2.1, 0.2, 0.1, 0.3),
  t_value = c(4.85, 3.20, 2.10, 0.70),
  Pr_t = c("<0.001", "0.004", "0.045", "0.500")
)
# Check which predictor variables are statistically significant at the 0.05 significance level
significant_predictors <- regression_output[as.numeric(gsub("<", "", regression_output$Pr_t)) < 0.05, ]
# Print the significant predictors
significant_predictors
NA
LS0tDQp0aXRsZTogIkZpbmFsIEV4YW0iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIENvbnNpZGVyIHRoZSBmb2xsb3dpbmcgdmVjdG9ycyByZXByZXNlbnRpbmcgdGhlIG51bWJlciBvZiBmaWVsZCBnb2FscyBtYWRlIGFuZCBhdHRlbXB0ZWQgYnkgYSBiYXNrZXRiYWxsIHBsYXllciBpbiBmaXZlIGdhbWVzOkZpZWxkIEdvYWxzIE1hZGU6IGMoMTgsIDcsIDYsIDksIDEwLDEzKSBGaWVsZCBHb2FscyBBdHRlbXB0ZWQ6IGMoMzYsIDIzLCAxMiwgMTgsIDI0LDIyKUNhbGN1bGF0ZSB0aGUgZmllbGQgZ29hbCBwZXJjZW50YWdlIGZvciBlYWNoIGdhbWUgYW5kIHNlbGVjdCB0aGUgY29ycmVjdCBhdmVyYWdlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBmb3IgdGhlIGZpdmUgZ2FtZXMuDQoNCg0KYGBge3J9DQojIEZpZWxkIEdvYWxzIE1hZGUNCmZpZWxkX2dvYWxzX21hZGUgPC0gYygxOCwgNywgNiwgOSwgMTAsIDEzKQ0KIyBGaWVsZCBHb2FscyBBdHRlbXB0ZWQNCmZpZWxkX2dvYWxzX2F0dGVtcHRlZCA8LSBjKDM2LCAyMywgMTIsIDE4LCAyNCwgMjIpDQojIENhbGN1bGF0ZSBGaWVsZCBHb2FsIFBlcmNlbnRhZ2UNCmZpZWxkX2dvYWxfcGVyY2VudGFnZSA8LSBmaWVsZF9nb2Fsc19tYWRlIC8gZmllbGRfZ29hbHNfYXR0ZW1wdGVkICogMTAwDQojIENhbGN1bGF0ZSBBdmVyYWdlIEZpZWxkIEdvYWwgUGVyY2VudGFnZQ0KYXZlcmFnZV9maWVsZF9nb2FsX3BlcmNlbnRhZ2UgPC0gbWVhbihmaWVsZF9nb2FsX3BlcmNlbnRhZ2UpDQojIFByaW50IHRoZSBhdmVyYWdlIGZpZWxkIGdvYWwgcGVyY2VudGFnZQ0KYXZlcmFnZV9maWVsZF9nb2FsX3BlcmNlbnRhZ2UNCg0KDQpgYGANCg0KIyBUaGUgYXZlcmFnZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIHRoZSBmaXZlIGdhbWVzIGlzIDQ3JQ0KDQoNCkNvbnNpZGVyIHRoZSBmb2xsb3dpbmcgdmVjdG9ycyByZXByZXNlbnRpbmcgdGhlIG51bWJlciBvZiB0aHJlZS1wb2ludGVycyBtYWRlIGFuZCBhdHRlbXB0ZWQgYnkgYSBiYXNrZXRiYWxsIHBsYXllciBpbiBmaXZlIGdhbWVzOg0KDQpUaHJlZS1Qb2ludGVycyBNYWRlOiBjKDMsIDUsMCwgNiwgMywgNykgVGhyZWUtUG9pbnRlcnMgQXR0ZW1wdGVkOiBjKDksIDEwLCA4LDEyLCAxMSwgMTIpDQoNCkNhbGN1bGF0ZSB0aGUgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBmb3IgZWFjaCBnYW1lIGFuZCBzZWxlY3QgdGhlIGNvcnJlY3QgYXZlcmFnZSB0aHJlZS1wb2ludCBzaG9vdGluZyBwZXJjZW50YWdlIGZvciB0aGUgZml2ZSBnYW1lcy4NCg0KDQpgYGB7cn0NCiMgVGhyZWUtUG9pbnRlcnMgTWFkZQ0KdGhyZWVfcG9pbnRlcnNfbWFkZSA8LSBjKDMsIDUsIDAsIDYsIDMsIDcpDQojIFRocmVlLVBvaW50ZXJzIEF0dGVtcHRlZA0KdGhyZWVfcG9pbnRlcnNfYXR0ZW1wdGVkIDwtIGMoOSwgMTAsIDgsIDEyLCAxMSwgMTIpDQojIENhbGN1bGF0ZSBUaHJlZS1Qb2ludCBTaG9vdGluZyBQZXJjZW50YWdlDQp0aHJlZV9wb2ludF9wZXJjZW50YWdlIDwtIHRocmVlX3BvaW50ZXJzX21hZGUgLyB0aHJlZV9wb2ludGVyc19hdHRlbXB0ZWQgKiAxMDANCiMgQ2FsY3VsYXRlIEF2ZXJhZ2UgVGhyZWUtUG9pbnQgU2hvb3RpbmcgUGVyY2VudGFnZQ0KYXZlcmFnZV90aHJlZV9wb2ludF9wZXJjZW50YWdlIDwtIG1lYW4odGhyZWVfcG9pbnRfcGVyY2VudGFnZSkNCiMgUHJpbnQgdGhlIGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZQ0KYXZlcmFnZV90aHJlZV9wb2ludF9wZXJjZW50YWdlDQoNCmBgYA0KDQojIyMgQU5TOg0KVGhlIGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBmb3IgdGhlIGZpdmUgZ2FtZXMgaXMgMzYuNCUNCg0KDQoNCkNvbnNpZGVyIHRoZSBmb2xsb3dpbmcgZGF0YXNldCByZXByZXNlbnRpbmcgdGhlIHBlcmZvcm1hbmNlIG9mIGJhc2ViYWxsIHBsYXllcnMgaW4gYSBzZWFzb24uIEl0IGluY2x1ZGVzIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOiBQbGF5ZXJJRCwgSGl0cywgQXQtQmF0cywgSG9tZSBSdW5zIChIUiksIFdhbGtzIChCQiksIGFuZCBTdHJpa2VvdXRzIChTTykuDQoNClBsYXllcklEICAgICBIaXRzICAgIEF0LUJhdHMgICAgICAgIEhSICAgICAgICBCQiAgICAgU08NCg0KICAgIDEgICAgICAgICAgICAgMTEyICAgICAgIDQwMCAgICAgICAgICAgMjUgICAgICAgICAgNTAgICAgIDYwDQoNCiAgICAyICAgICAgICAgICAgIDEyNCAgICAgICA0NTAgICAgICAgICAgIDIyICAgICAgICAgIDYwICAgICA2NQ0KDQogICAgMyAgICAgICAgICAgICAxMjEgICAgICAgMzgwICAgICAgICAgICA4ICAgICAgICAgICAgMTkgICAgIDY3DQoNCiAgICA0ICAgICAgICAgICAgIDEwNiAgICAgICA1MDAgICAgICAgICAgIDIwICAgICAgICAgMTUwICAgICA5Mg0KDQogICAgNSAgICAgICAgICAgICAxNDAgICAgICAgNDAyICAgICAgICAgICAxMSAgICAgICAgICA1NSAgICAgNzANCg0KQ29tcHV0ZSB0aGUgb24tYmFzZSBwZXJjZW50YWdlIChPQlApIGZvciBlYWNoIHBsYXllciBhbmQgc2VsZWN0IHRoZSBwbGF5ZXIgd2l0aCB0aGUgaGlnaGVzdCBPQlAuDQoNCmEpIFBsYXllciAxIGIpIFBsYXllciAyIGMpIFBsYXllciAzIGQpIFBsYXllciA0IGUpIFBsYXllciA1DQoNClRvIGNhbGN1bGF0ZSBPQlAsIHlvdSBjYW4gdXNlIHRoZSBmb2xsb3dpbmcgZm9ybXVsYToNCg0KT0JQID0gKEhpdHMgKyBXYWxrcykgLyAoQXQtQmF0cyArIFdhbGtzKQ0KDQoNCmBgYHtyfQ0KIyBDcmVhdGUgYSBkYXRhIGZyYW1lIHdpdGggdGhlIHBsYXllciBkYXRhDQpwbGF5ZXJfZGF0YSA8LSBkYXRhLmZyYW1lKA0KICBQbGF5ZXJJRCA9IDE6NSwNCiAgSGl0cyA9IGMoMTEyLCAxMjQsIDEyMSwgMTA2LCAxNDApLA0KICBBdF9CYXRzID0gYyg0MDAsIDQ1MCwgMzgwLCA1MDAsIDQwMiksDQogIEhSID0gYygyNSwgMjIsIDgsIDIwLCAxMSksDQogIEJCID0gYyg1MCwgNjAsIDE5LCAxNTAsIDU1KSwNCiAgU08gPSBjKDYwLCA2NSwgNjcsIDkyLCA3MCkNCikNCiMgQ2FsY3VsYXRlIE9CUCBmb3IgZWFjaCBwbGF5ZXINCnBsYXllcl9kYXRhJE9CUCA8LSAocGxheWVyX2RhdGEkSGl0cyArIHBsYXllcl9kYXRhJEJCKSAvIChwbGF5ZXJfZGF0YSRBdF9CYXRzICsgcGxheWVyX2RhdGEkQkIpDQojIEZpbmQgdGhlIHBsYXllciB3aXRoIHRoZSBoaWdoZXN0IE9CUA0KaGlnaGVzdF9vYnBfcGxheWVyIDwtIHBsYXllcl9kYXRhW3doaWNoLm1heChwbGF5ZXJfZGF0YSRPQlApLCBdDQojIFByaW50IHRoZSBwbGF5ZXIgd2l0aCB0aGUgaGlnaGVzdCBPQlANCmhpZ2hlc3Rfb2JwX3BsYXllcg0KDQpgYGANCg0KIyMjIEFOUzoNClRoZSBwbGF5ZXIgd2l0aCB0aGUgaGlnaGVzdCBPQlAgaXMgUGxheWVyIDUgd2l0aCBhbiBPQlAgb2YgMC40Mw0KDQoNCkNvbnNpZGVyIGEgbXVsdGlwbGUgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgaW4gUjogbW9kZWwgPC0gbG0oR29hbHMgfiBBc3Npc3RzICsgU2hvdHMgKyBQZW5hbHRpZXMsIGRhdGEgPSBkYXRhc2V0KS4gR2l2ZW4gdGhlIG91dHB1dCB3ZSBvYnRhaW5lZCwgd2hpY2ggcHJlZGljdG9yIHZhcmlhYmxlcyBhcmUgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBhdCB0aGUgMC4wNSBzaWduaWZpY2FuY2UgbGV2ZWw/IFNlbGVjdCBhbGwgdGhhdCBhcHBseS4gDQoNCkNvZWZmaWNpZW50czoNCiAgICAgICAgICAgIEVzdGltYXRlICBTdGQuIEVycm9yICB0LXZhbHVlICBQcig+fHR8KQ0KKEludGVyY2VwdCkgICAxMC4yICAgICAgMi4xICAgICAgIDQuODUgICAgIDwwLjAwMQ0KQXNzaXN0cyAgICAgICAgMC42ICAgICAgMC4yICAgICAgIDMuMjAgICAgICAgICAwLjAwNA0KU2hvdHMgICAgICAgICAgMC4zICAgICAgMC4xICAgICAgIDIuMTAgICAgICAgICAwLjA0NQ0KUGVuYWx0aWVzICAgICAgMC4yICAgICAgMC4zICAgICAgIDAuNzAgICAgICAgMC41MDANCg0KUmVzaWR1YWwgc3RhbmRhcmQgZXJyb3I6IDIuNSBvbiA4MCBkZWdyZWVzIG9mIGZyZWVkb20NCk11bHRpcGxlIFItc3F1YXJlZDogMC43NSwgIEFkanVzdGVkIFItc3F1YXJlZDogMC43Mw0KDQpgYGB7cn0NCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSB3aXRoIHRoZSByZWdyZXNzaW9uIG91dHB1dA0KcmVncmVzc2lvbl9vdXRwdXQgPC0gZGF0YS5mcmFtZSgNCiAgUHJlZGljdG9yID0gYygiKEludGVyY2VwdCkiLCAiQXNzaXN0cyIsICJTaG90cyIsICJQZW5hbHRpZXMiKSwNCiAgRXN0aW1hdGUgPSBjKDEwLjIsIDAuNiwgMC4zLCAwLjIpLA0KICBTdGRfRXJyb3IgPSBjKDIuMSwgMC4yLCAwLjEsIDAuMyksDQogIHRfdmFsdWUgPSBjKDQuODUsIDMuMjAsIDIuMTAsIDAuNzApLA0KICBQcl90ID0gYygiPDAuMDAxIiwgIjAuMDA0IiwgIjAuMDQ1IiwgIjAuNTAwIikNCikNCiMgQ2hlY2sgd2hpY2ggcHJlZGljdG9yIHZhcmlhYmxlcyBhcmUgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBhdCB0aGUgMC4wNSBzaWduaWZpY2FuY2UgbGV2ZWwNCnNpZ25pZmljYW50X3ByZWRpY3RvcnMgPC0gcmVncmVzc2lvbl9vdXRwdXRbYXMubnVtZXJpYyhnc3ViKCI8IiwgIiIsIHJlZ3Jlc3Npb25fb3V0cHV0JFByX3QpKSA8IDAuMDUsIF0NCiMgUHJpbnQgdGhlIHNpZ25pZmljYW50IHByZWRpY3RvcnMNCnNpZ25pZmljYW50X3ByZWRpY3RvcnMNCg0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=