library(vars)
## Loading required package: MASS
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: urca
## Loading required package: lmtest
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
fred_qd <- read.csv("fred_qd.csv")
fred_qd <- fred_qd[-(1:2),]
variables <- subset(fred_qd, select = c("INDPRO", "UNRATE", "GDPC1", "GCEC1", "PCECC96",
"GPDIC1", "TOTALSLx", "FEDFUNDS", "PCECTPI",
"USSTHPI", "GS10TB3Mx", "S.P.PE.ratio"))
variables <- na.omit(variables)
variables$GDPC1 <- log(variables$GDPC1)
variables$GCEC1 <- log(variables$GCEC1)
variables$PCECC96 <- log(variables$PCECC96)
variables$GPDIC1 <- log(variables$GPDIC1)
variables$TOTALSLx <- log(variables$TOTALSLx)
var_out <- VAR(variables, type = "const", p = 1)
stargazer(var_out[["varresult"]], type = "text")
##
## =====================================================================================================================================================================================
## Dependent variable:
## ------------------------------------------------------------------------------------------------------------------------------------------------------
## y
## (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## INDPRO.l1 0.982*** 0.015 0.0001 -0.0001 0.0002 -0.00000 -0.0003 -0.025 -0.044*** -0.471*** 0.006 -0.229*
## (0.043) (0.024) (0.0003) (0.0002) (0.0003) (0.001) (0.0003) (0.026) (0.010) (0.128) (0.018) (0.127)
##
## UNRATE.l1 0.429*** 0.745*** 0.002*** -0.002*** 0.003*** 0.008*** 0.001*** -0.021 0.040* 0.038 0.051 -0.169
## (0.090) (0.050) (0.001) (0.001) (0.001) (0.002) (0.001) (0.055) (0.021) (0.268) (0.037) (0.265)
##
## GDPC1.l1 -15.762 11.130 0.591*** -0.397*** -0.164 -1.237*** -0.693*** 17.900 7.139* -131.320** -12.207 37.679
## (18.035) (10.038) (0.134) (0.101) (0.132) (0.458) (0.105) (11.051) (4.200) (53.585) (7.403) (53.052)
##
## GCEC1.l1 3.705 -2.151 0.061** 1.025*** 0.073** -0.039 0.043* -5.092** -2.638*** 0.892 2.343 -1.774
## (3.847) (2.141) (0.029) (0.022) (0.028) (0.098) (0.022) (2.357) (0.896) (11.430) (1.579) (11.316)
##
## PCECC96.l1 6.035 -5.163 0.193* 0.287*** 0.896*** 1.138*** 0.668*** -9.128 1.599 101.010** 9.618 3.755
## (14.805) (8.240) (0.110) (0.083) (0.108) (0.376) (0.086) (9.072) (3.448) (43.989) (6.077) (43.551)
##
## GPDIC1.l1 8.318*** -5.371*** 0.081*** 0.025** 0.093*** 1.126*** 0.154*** -0.551 -0.168 47.638*** 0.087 -12.399*
## (2.302) (1.281) (0.017) (0.013) (0.017) (0.058) (0.013) (1.410) (0.536) (6.838) (0.945) (6.770)
##
## TOTALSLx.l1 -4.288* 2.056 -0.012 0.023* 0.001 -0.145** 0.883*** -1.724 -1.381** -6.910 0.421 5.189
## (2.299) (1.280) (0.017) (0.013) (0.017) (0.058) (0.013) (1.409) (0.535) (6.831) (0.944) (6.763)
##
## FEDFUNDS.l1 -0.176** 0.089** -0.002*** 0.001*** -0.002*** -0.004** -0.0001 0.886*** 0.028 -0.531** 0.042 0.046
## (0.073) (0.041) (0.001) (0.0004) (0.001) (0.002) (0.0004) (0.045) (0.017) (0.216) (0.030) (0.214)
##
## PCECTPI.l1 0.024 -0.009 0.001* 0.0004 0.001** 0.001 -0.001 -0.040 0.948*** -0.106 0.005 -0.252
## (0.066) (0.037) (0.0005) (0.0004) (0.0005) (0.002) (0.0004) (0.040) (0.015) (0.196) (0.027) (0.194)
##
## USSTHPI.l1 -0.002 0.001 -0.00005 -0.0001*** 0.00001 -0.0002** -0.0002*** 0.007*** 0.005*** 0.983*** -0.004** -0.006
## (0.004) (0.002) (0.00003) (0.00002) (0.00003) (0.0001) (0.00003) (0.003) (0.001) (0.013) (0.002) (0.013)
##
## GS10TB3Mx.l1 -0.361** 0.170** -0.003*** 0.001 -0.002** -0.012*** -0.001 0.006 0.004 -0.519 0.801*** -0.180
## (0.145) (0.081) (0.001) (0.001) (0.001) (0.004) (0.001) (0.089) (0.034) (0.431) (0.059) (0.426)
##
## S.P.PE.ratio.l1 0.047*** -0.007 0.0003** 0.0001 0.0003** 0.001*** -0.0002** -0.00001 0.001 0.088* 0.006 0.810***
## (0.015) (0.008) (0.0001) (0.0001) (0.0001) (0.0004) (0.0001) (0.009) (0.004) (0.045) (0.006) (0.045)
##
## const 33.116 -16.406 1.061** 0.609* 1.080** 1.844 0.031 -26.016 -43.558*** 68.586 6.449 -278.103
## (57.819) (32.180) (0.430) (0.324) (0.424) (1.469) (0.337) (35.428) (13.464) (171.788) (23.732) (170.079)
##
## -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
## Observations 198 198 198 198 198 198 198 198 198 198 198 198
## R2 0.996 0.835 0.999 0.999 0.999 0.996 1.000 0.959 1.000 0.998 0.826 0.834
## Adjusted R2 0.996 0.824 0.999 0.999 0.999 0.996 1.000 0.957 1.000 0.998 0.814 0.823
## Residual Std. Error (df = 185) 1.329 0.740 0.010 0.007 0.010 0.034 0.008 0.814 0.310 3.949 0.546 3.910
## F Statistic (df = 12; 185) 3,999.985*** 77.862*** 25,246.390*** 17,723.740*** 30,277.540*** 3,910.969*** 84,886.210*** 364.183*** 106,258.800*** 7,286.319*** 72.950*** 77.574***
## =====================================================================================================================================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
forecast <- predict(var_out, n.ahead = 20)
plot(forecast, names = c("UNRATE", "GS10TB3Mx", "FEDFUNDS"))
b <- diag(1,12)
b[lower.tri(b, diag=TRUE)] <- NA
svar_out <- SVAR(var_out, Bmat = b, max.iter=1000)
## Warning in SVAR(var_out, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
irf_tech <- irf(svar_out, impulse="INDPRO", n.ahead=20, lrtest = NULL)
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
## Warning in SVAR(x = varboot, Bmat = b, max.iter = 1000): The B-model is just
## identified. No test possible.
svec_vars <- subset(variables, select = -UNRATE)
svec_vars <- na.omit(svec_vars) # Ensure no NAs
library(urca)
vecm <- ca.jo(svec_vars, type="trace", ecdet="const", K=2, spec="longrun")
summary(vecm)
##
## ######################
## # Johansen-Procedure #
## ######################
##
## Test type: trace statistic , without linear trend and constant in cointegration
##
## Eigenvalues (lambda):
## [1] 4.244765e-01 3.623027e-01 3.280448e-01 2.644437e-01 2.078169e-01
## [6] 1.553062e-01 1.304420e-01 8.905060e-02 5.164417e-02 3.757465e-02
## [11] 1.757392e-02 -3.001199e-15
##
## Values of teststatistic and critical values of test:
##
## test 10pct 5pct 1pct
## r <= 10 | 3.49 7.52 9.24 12.97
## r <= 9 | 11.04 17.85 19.96 24.60
## r <= 8 | 21.48 32.00 34.91 41.07
## r <= 7 | 39.86 49.65 53.12 60.16
## r <= 6 | 67.39 71.86 76.07 84.45
## r <= 5 | 100.64 97.18 102.14 111.01
## r <= 4 | 146.54 126.58 131.70 143.09
## r <= 3 | 207.04 159.48 165.58 177.20
## r <= 2 | 285.36 196.37 202.92 215.74
## r <= 1 | 373.99 236.54 244.15 257.68
## r = 0 | 482.83 282.45 291.40 307.64
##
## Eigenvectors, normalised to first column:
## (These are the cointegration relations)
##
## INDPRO.l2 GDPC1.l2 GCEC1.l2 PCECC96.l2
## INDPRO.l2 1.000000e+00 1.00000000 1.000000e+00 1.0000000
## GDPC1.l2 2.002974e+03 194.99101266 2.932293e+01 -2875.1923961
## GCEC1.l2 -1.826410e+01 -42.96562531 2.755937e+00 228.1103325
## PCECC96.l2 -8.970408e+02 81.51654680 -1.745068e+02 2441.4049753
## GPDIC1.l2 -5.640819e+02 -252.93249932 -4.159711e+01 331.5868467
## TOTALSLx.l2 8.266316e+00 18.17044179 4.321919e+01 -262.4733784
## FEDFUNDS.l2 -2.106141e+00 3.14617310 -2.096778e-01 -1.8423145
## PCECTPI.l2 -4.486252e+00 0.04431527 1.351608e+00 1.6835521
## USSTHPI.l2 -5.016644e-02 0.12663594 3.435979e-05 -0.8108266
## GS10TB3Mx.l2 -4.818216e+00 0.50900107 -4.095494e-01 -7.9825460
## S.P.PE.ratio.l2 -3.577552e+00 -0.55724874 6.217670e-01 -0.2176945
## constant -6.222928e+03 -585.70998830 1.068091e+03 2919.1399685
## GPDIC1.l2 TOTALSLx.l2 FEDFUNDS.l2 PCECTPI.l2
## INDPRO.l2 1.00000000 1.000000e+00 1.00000000 1.00000000
## GDPC1.l2 502.01130177 -2.120893e+02 73.03882843 30.48461130
## GCEC1.l2 -27.46476178 1.392725e+02 32.20273143 -53.87025332
## PCECC96.l2 -628.78271015 -1.765257e+02 -126.21324883 -40.62407193
## GPDIC1.l2 -28.73212589 3.651843e+01 5.79402273 -18.81132510
## TOTALSLx.l2 29.81339656 6.005892e+01 -15.04685869 -29.31726316
## FEDFUNDS.l2 -2.70585030 -1.637433e+00 2.33813218 -1.04768814
## PCECTPI.l2 1.44867820 1.915667e+00 0.40051521 0.65826617
## USSTHPI.l2 0.14686007 -4.367182e-02 0.00207614 0.04184591
## GS10TB3Mx.l2 3.28254084 -3.538643e+00 5.26167015 -2.93424776
## S.P.PE.ratio.l2 -0.07896348 -1.218266e-03 -0.20560723 0.05300475
## constant 913.95529135 1.572315e+03 137.99184424 736.28271568
## USSTHPI.l2 GS10TB3Mx.l2 S.P.PE.ratio.l2 constant
## INDPRO.l2 1.0000000 1.0000000 1.00000000 1.0000000
## GDPC1.l2 -2209.4638163 -1436.4109695 -165.13792170 -2765.3647673
## GCEC1.l2 55.6753803 985.1048024 39.71320055 663.6893740
## PCECC96.l2 1283.9474925 829.9231846 95.12118968 1281.5198889
## GPDIC1.l2 168.0781522 367.8283905 -3.71747443 431.5600076
## TOTALSLx.l2 223.6743608 -421.2416397 -3.65785060 -269.2952872
## FEDFUNDS.l2 2.7088050 -11.0722396 -0.19291373 -5.2412064
## PCECTPI.l2 4.1547210 -7.5201586 -0.08072138 10.8194661
## USSTHPI.l2 -0.2432953 1.4344899 0.04147200 0.1481053
## GS10TB3Mx.l2 3.7857557 0.5702959 -0.16667238 -13.4516356
## S.P.PE.ratio.l2 -0.1252484 -0.7704601 0.09415229 1.0570373
## constant 5569.6611352 -1262.7767627 357.22343126 7202.8995647
##
## Weights W:
## (This is the loading matrix)
##
## INDPRO.l2 GDPC1.l2 GCEC1.l2 PCECC96.l2
## INDPRO.d -4.290674e-03 2.371545e-03 5.431372e-02 1.434922e-02
## GDPC1.d -7.295334e-05 1.390245e-04 1.943582e-04 1.196281e-04
## GCEC1.d -6.561932e-05 4.752125e-05 -1.604640e-04 -4.753147e-05
## PCECC96.d -9.373373e-05 2.986379e-05 7.903476e-05 8.856465e-05
## GPDIC1.d -8.038770e-05 5.741374e-04 1.923099e-03 4.800575e-04
## TOTALSLx.d -3.095627e-05 -2.951009e-05 -2.235931e-04 1.695353e-04
## FEDFUNDS.d 3.069692e-04 -8.490529e-03 3.612912e-03 -3.768421e-03
## PCECTPI.d -1.902915e-03 5.418624e-03 -1.060618e-02 -1.864016e-03
## USSTHPI.d -8.176206e-03 -1.177362e-01 -1.555825e-01 2.181641e-02
## GS10TB3Mx.d 6.260549e-04 6.228821e-03 3.423733e-03 1.859737e-03
## S.P.PE.ratio.d 1.531489e-02 3.815920e-02 -3.293899e-01 7.161274e-03
## GPDIC1.l2 TOTALSLx.l2 FEDFUNDS.l2 PCECTPI.l2
## INDPRO.d 1.714386e-02 2.712088e-02 -2.669936e-02 -3.028465e-02
## GDPC1.d 2.522346e-04 3.627435e-04 -2.133272e-04 -1.442912e-04
## GCEC1.d -2.532795e-04 2.822785e-05 1.297853e-04 1.109922e-04
## PCECC96.d 3.001169e-04 4.275568e-04 -8.052179e-05 -1.527834e-04
## GPDIC1.d 8.252945e-04 1.691707e-06 -1.195859e-03 -1.926590e-04
## TOTALSLx.d 5.197163e-05 -1.578541e-04 6.462320e-05 9.089424e-05
## FEDFUNDS.d 3.306005e-02 -1.963933e-02 -2.057687e-02 1.266725e-02
## PCECTPI.d -3.688934e-03 -5.044148e-03 -8.742117e-03 -4.296591e-03
## USSTHPI.d -9.967697e-03 6.295849e-04 -8.834751e-02 -7.849126e-02
## GS10TB3Mx.d -3.199174e-02 2.233495e-02 4.830367e-05 7.089539e-03
## S.P.PE.ratio.d 3.871180e-02 3.982434e-02 -1.278810e-02 1.140188e-02
## USSTHPI.l2 GS10TB3Mx.l2 S.P.PE.ratio.l2 constant
## INDPRO.d -4.410701e-03 1.322153e-03 -1.571808e-02 3.734892e-12
## GDPC1.d -4.440811e-06 9.313197e-06 -7.312889e-05 4.469969e-14
## GCEC1.d 5.482202e-05 2.330589e-06 -2.595424e-05 3.720492e-14
## PCECC96.d -4.065453e-05 6.290372e-06 -8.251208e-05 2.181151e-14
## GPDIC1.d 4.759686e-05 1.105148e-05 -2.506585e-04 1.570066e-13
## TOTALSLx.d -1.978866e-05 5.888350e-06 -1.660523e-06 7.629201e-14
## FEDFUNDS.d 6.354350e-04 1.111775e-03 -2.404806e-03 -3.606621e-12
## PCECTPI.d -1.508513e-03 1.170717e-04 -6.218573e-04 -1.384011e-13
## USSTHPI.d 6.379480e-03 -2.559373e-03 8.427211e-03 2.059658e-11
## GS10TB3Mx.d -1.454972e-03 -4.618873e-04 9.761272e-04 2.631532e-12
## S.P.PE.ratio.d 3.472474e-03 -1.437000e-03 -4.404603e-02 -4.462760e-13
b <- diag(11)
b[lower.tri(b, diag=TRUE)] <- NA
lr <- matrix(NA, nrow=11, ncol=11)