baseball = read.csv("baseball.csv")
str(baseball)
'data.frame':   1232 obs. of  15 variables:
 $ Team        : chr  "ARI" "ATL" "BAL" "BOS" ...
 $ League      : chr  "NL" "NL" "AL" "AL" ...
 $ Year        : int  2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
 $ RS          : int  734 700 712 734 613 748 669 667 758 726 ...
 $ RA          : int  688 600 705 806 759 676 588 845 890 670 ...
 $ W           : int  81 94 93 69 61 85 97 68 64 88 ...
 $ OBP         : num  0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
 $ SLG         : num  0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
 $ BA          : num  0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
 $ Playoffs    : int  0 1 1 0 0 0 1 0 0 1 ...
 $ RankSeason  : int  NA 4 5 NA NA NA 2 NA NA 6 ...
 $ RankPlayoffs: int  NA 5 4 NA NA NA 4 NA NA 2 ...
 $ G           : int  162 162 162 162 162 162 162 162 162 162 ...
 $ OOBP        : num  0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
 $ OSLG        : num  0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...
nrow(baseball)
[1] 1232
#Though the dataset contains data from 1962 until 2012, we removed several years with shorter-than-usual seasons. Using the table() function, identify the total number of years included in this dataset.
table(baseball$Year)

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1973 
  20   20   20   20   20   20   20   24   24   24   24 
1974 1975 1976 1977 1978 1979 1980 1982 1983 1984 1985 
  24   24   24   26   26   26   26   26   26   26   26 
1986 1987 1988 1989 1990 1991 1992 1993 1996 1997 1998 
  26   26   26   26   26   26   26   28   28   28   30 
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
  30   30   30   30   30   30   30   30   30   30   30 
2010 2011 2012 
  30   30   30 
length(table(baseball$Year))
[1] 47
baseball = subset(baseball, Playoffs == 1)
nrow(baseball)
[1] 244
table(baseball$Year)

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1973 
   2    2    2    2    2    2    2    4    4    4    4 
1974 1975 1976 1977 1978 1979 1980 1982 1983 1984 1985 
   4    4    4    4    4    4    4    4    4    4    4 
1986 1987 1988 1989 1990 1991 1992 1993 1996 1997 1998 
   4    4    4    4    4    4    4    4    8    8    8 
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
   8    8    8    8    8    8    8    8    8    8    8 
2010 2011 2012 
   8    8   10 
table(table(baseball$Year))

 2  4  8 10 
 7 23 16  1 
PlayoffTable = table(baseball$Year)
PlayoffTable

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1973 
   2    2    2    2    2    2    2    4    4    4    4 
1974 1975 1976 1977 1978 1979 1980 1982 1983 1984 1985 
   4    4    4    4    4    4    4    4    4    4    4 
1986 1987 1988 1989 1990 1991 1992 1993 1996 1997 1998 
   4    4    4    4    4    4    4    4    8    8    8 
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
   8    8    8    8    8    8    8    8    8    8    8 
2010 2011 2012 
   8    8   10 
str(names(PlayoffTable))
 chr [1:47] "1962" "1963" "1964" "1965" "1966" "1967" ...
PlayoffTable[c("1990", "2001")]

1990 2001 
   4    8 
baseball$NumCompetitors = PlayoffTable[as.character(baseball$Year)]
baseball$NumCompetitors
  [1] 10 10 10 10 10 10 10 10 10 10  8  8  8  8  8  8  8  8
 [19]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 [37]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 [55]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 [73]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
 [91]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
[109]  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8  8
[127]  8  8  8  8  8  8  8  8  8  8  8  8  4  4  4  4  4  4
[145]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
[163]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
[181]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
[199]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
[217]  4  4  4  4  4  4  4  4  4  4  4  4  4  4  2  2  2  2
[235]  2  2  2  2  2  2  2  2  2  2
table(baseball$NumCompetitors)

  2   4   8  10 
 14  92 128  10 
baseball$WorldSeries = as.numeric(baseball$RankPlayoffs == 1)
table(baseball$WorldSeries)

  0   1 
197  47 
#Which of the following variables is a significant predictor of the WorldSeries variable in a bivariate logistic regression model?
#Varibales to use as predictors for each bivariate model(Year, RS, RA, W, OBP, SLG, BA, RankSeason, OOBP,OSLG, NumCompetitors, League)
model1<-glm(WorldSeries~Year, data=baseball, family="binomial")
summary(model1)

Call:
glm(formula = WorldSeries ~ Year, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)   
(Intercept) 72.23602   22.64409    3.19  0.00142 **
Year        -0.03700    0.01138   -3.25  0.00115 **
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 228.35  on 242  degrees of freedom
AIC: 232.35

Number of Fisher Scoring iterations: 4

#RS is not significant

model2<-glm(WorldSeries~RS, data=baseball, family="binomial")
summary(model2)

Call:
glm(formula = WorldSeries ~ RS, family = "binomial", data = baseball)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.661226   1.636494   0.404    0.686
RS          -0.002681   0.002098  -1.278    0.201

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 237.45  on 242  degrees of freedom
AIC: 241.45

Number of Fisher Scoring iterations: 4
model3<-glm(WorldSeries~RA, data=baseball, family="binomial")
summary(model3)

Call:
glm(formula = WorldSeries ~ RA, family = "binomial", data = baseball)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)  
(Intercept)  1.888174   1.483831   1.272   0.2032  
RA          -0.005053   0.002273  -2.223   0.0262 *
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 233.88  on 242  degrees of freedom
AIC: 237.88

Number of Fisher Scoring iterations: 4
model4<-glm(WorldSeries~W, data=baseball, family="binomial")
summary(model4)

Call:
glm(formula = WorldSeries ~ W, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept) -6.85568    2.87620  -2.384   0.0171 *
W            0.05671    0.02988   1.898   0.0577 .
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 235.51  on 242  degrees of freedom
AIC: 239.51

Number of Fisher Scoring iterations: 4
model5<-glm(WorldSeries~OBP, data=baseball, family="binomial")
summary(model5)

Call:
glm(formula = WorldSeries ~ OBP, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)    2.741      3.989   0.687    0.492
OBP          -12.402     11.865  -1.045    0.296

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 238.02  on 242  degrees of freedom
AIC: 242.02

Number of Fisher Scoring iterations: 4
model7<-glm(WorldSeries~BA, data=baseball, family="binomial")
summary(model7)

Call:
glm(formula = WorldSeries ~ BA, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -0.6392     3.8988  -0.164    0.870
BA           -2.9765    14.6123  -0.204    0.839

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 239.08  on 242  degrees of freedom
AIC: 243.08

Number of Fisher Scoring iterations: 4
model8<-glm(WorldSeries~RankSeason, data=baseball, family="binomial")
summary(model8) 

Call:
glm(formula = WorldSeries ~ RankSeason, family = "binomial", 
    data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)  -0.8256     0.3268  -2.527   0.0115 *
RankSeason   -0.2069     0.1027  -2.016   0.0438 *
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 234.75  on 242  degrees of freedom
AIC: 238.75

Number of Fisher Scoring iterations: 4
model9<-glm(WorldSeries~OOBP, data=baseball, family="binomial")
summary(model9)

Call:
glm(formula = WorldSeries ~ OOBP, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept)  -0.9306     8.3728  -0.111    0.912
OOBP         -3.2233    26.0587  -0.124    0.902

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 84.926  on 113  degrees of freedom
Residual deviance: 84.910  on 112  degrees of freedom
  (130 observations deleted due to missingness)
AIC: 88.91

Number of Fisher Scoring iterations: 4
model10<-glm(WorldSeries~OSLG, data=baseball, family="binomial")
summary(model10)

Call:
glm(formula = WorldSeries ~ OSLG, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.08725    6.07285  -0.014    0.989
OSLG        -4.65992   15.06881  -0.309    0.757

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 84.926  on 113  degrees of freedom
Residual deviance: 84.830  on 112  degrees of freedom
  (130 observations deleted due to missingness)
AIC: 88.83

Number of Fisher Scoring iterations: 4
model11<-glm(WorldSeries~NumCompetitors, data=baseball, family="binomial")
summary(model11)

Call:
glm(formula = WorldSeries ~ NumCompetitors, family = "binomial", 
    data = baseball)

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)     0.03868    0.43750   0.088 0.929559    
NumCompetitors -0.25220    0.07422  -3.398 0.000678 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 226.96  on 242  degrees of freedom
AIC: 230.96

Number of Fisher Scoring iterations: 4
model12<-glm(WorldSeries~League, data=baseball, family="binomial")
summary(model12)

Call:
glm(formula = WorldSeries ~ League, family = "binomial", data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.3558     0.2243  -6.045  1.5e-09 ***
LeagueNL     -0.1583     0.3252  -0.487    0.626    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 238.88  on 242  degrees of freedom
AIC: 242.88

Number of Fisher Scoring iterations: 4
LogModel = glm(WorldSeries ~ Year + RA + RankSeason + NumCompetitors, data=baseball, family=binomial)
summary(LogModel)

Call:
glm(formula = WorldSeries ~ Year + RA + RankSeason + NumCompetitors, 
    family = binomial, data = baseball)

Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)    12.5874376 53.6474210   0.235    0.814
Year           -0.0061425  0.0274665  -0.224    0.823
RA             -0.0008238  0.0027391  -0.301    0.764
RankSeason     -0.0685046  0.1203459  -0.569    0.569
NumCompetitors -0.1794264  0.1815933  -0.988    0.323

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 226.37  on 239  degrees of freedom
AIC: 236.37

Number of Fisher Scoring iterations: 4
cor(baseball[c("Year", "RA", "RankSeason", "NumCompetitors")])
                    Year        RA RankSeason
Year           1.0000000 0.4762422  0.3852191
RA             0.4762422 1.0000000  0.3991413
RankSeason     0.3852191 0.3991413  1.0000000
NumCompetitors 0.9139548 0.5136769  0.4247393
               NumCompetitors
Year                0.9139548
RA                  0.5136769
RankSeason          0.4247393
NumCompetitors      1.0000000
model13 = glm(WorldSeries ~ Year + RA, data=baseball, family=binomial)
summary(model13)

Call:
glm(formula = WorldSeries ~ Year + RA, family = binomial, data = baseball)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)  
(Intercept) 63.610741  25.654830   2.479   0.0132 *
Year        -0.032084   0.013323  -2.408   0.0160 *
RA          -0.001766   0.002585  -0.683   0.4945  
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 227.88  on 241  degrees of freedom
AIC: 233.88

Number of Fisher Scoring iterations: 4
model14 = glm(WorldSeries ~ Year + RankSeason, data=baseball, family=binomial)
summary(model14)

Call:
glm(formula = WorldSeries ~ Year + RankSeason, family = binomial, 
    data = baseball)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)   
(Intercept) 63.64855   24.37063   2.612  0.00901 **
Year        -0.03254    0.01231  -2.643  0.00822 **
RankSeason  -0.10064    0.11352  -0.887  0.37534   
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 227.55  on 241  degrees of freedom
AIC: 233.55

Number of Fisher Scoring iterations: 4
model15 = glm(WorldSeries ~ Year + NumCompetitors, data=baseball, family=binomial)
summary(model15)

Call:
glm(formula = WorldSeries ~ Year + NumCompetitors, family = binomial, 
    data = baseball)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept)    13.350467  53.481896   0.250    0.803
Year           -0.006802   0.027328  -0.249    0.803
NumCompetitors -0.212610   0.175520  -1.211    0.226

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 226.90  on 241  degrees of freedom
AIC: 232.9

Number of Fisher Scoring iterations: 4
model16 = glm(WorldSeries ~ RA + RankSeason, data=baseball, family=binomial)
summary(model16)

Call:
glm(formula = WorldSeries ~ RA + RankSeason, family = binomial, 
    data = baseball)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)  1.487461   1.506143   0.988    0.323
RA          -0.003815   0.002441  -1.563    0.118
RankSeason  -0.140824   0.110908  -1.270    0.204

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 232.22  on 241  degrees of freedom
AIC: 238.22

Number of Fisher Scoring iterations: 4
model17 = glm(WorldSeries ~ RA + NumCompetitors, data=baseball, family=binomial)
summary(model17)

Call:
glm(formula = WorldSeries ~ RA + NumCompetitors, family = binomial, 
    data = baseball)

Coefficients:
                Estimate Std. Error z value Pr(>|z|)   
(Intercept)     0.716895   1.528736   0.469  0.63911   
RA             -0.001233   0.002661  -0.463  0.64313   
NumCompetitors -0.229385   0.088399  -2.595  0.00946 **
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 226.74  on 241  degrees of freedom
AIC: 232.74

Number of Fisher Scoring iterations: 4
model18 = glm(WorldSeries ~ RankSeason + NumCompetitors, data=baseball, family=binomial)
summary(model18)

Call:
glm(formula = WorldSeries ~ RankSeason + NumCompetitors, family = binomial, 
    data = baseball)

Coefficients:
               Estimate Std. Error z value Pr(>|z|)   
(Intercept)     0.12277    0.45737   0.268  0.78837   
RankSeason     -0.07697    0.11711  -0.657  0.51102   
NumCompetitors -0.22784    0.08201  -2.778  0.00546 **
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 239.12  on 243  degrees of freedom
Residual deviance: 226.52  on 241  degrees of freedom
AIC: 232.52

Number of Fisher Scoring iterations: 4
#none of the models had 2 variables that were significant
LS0tCnRpdGxlOiAiSW4tQ2xhc3MgQWN0aXZpdHkgMTUiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCgoKYGBge3J9CmJhc2ViYWxsID0gcmVhZC5jc3YoImJhc2ViYWxsLmNzdiIpCnN0cihiYXNlYmFsbCkKYGBgCgoKYGBge3J9Cm5yb3coYmFzZWJhbGwpCiN0aGVyZSBhcmUgMTIzMiBwYWlycyBpbiB0aGUgZGF0YXNldApgYGAKCgpgYGB7cn0KCnRhYmxlKGJhc2ViYWxsJFllYXIpCmBgYAoKCmBgYHtyfQpsZW5ndGgodGFibGUoYmFzZWJhbGwkWWVhcikpCiMjVGhlcmUgYXJlIDQ3IHllYXJzIGluIHRoZSBkYXRhIHNldCAKYGBgCgoKCgpgYGB7cn0KYmFzZWJhbGwgPSBzdWJzZXQoYmFzZWJhbGwsIFBsYXlvZmZzID09IDEpCm5yb3coYmFzZWJhbGwpCmBgYAoKCmBgYHtyfQp0YWJsZShiYXNlYmFsbCRZZWFyKQpgYGAKCgoKCmBgYHtyfQp0YWJsZSh0YWJsZShiYXNlYmFsbCRZZWFyKSkKYGBgCgoKYGBge3J9ClBsYXlvZmZUYWJsZSA9IHRhYmxlKGJhc2ViYWxsJFllYXIpClBsYXlvZmZUYWJsZQpgYGAKCgoKYGBge3J9CnN0cihuYW1lcyhQbGF5b2ZmVGFibGUpKQpgYGAKCgoKYGBge3J9ClBsYXlvZmZUYWJsZVtjKCIxOTkwIiwgIjIwMDEiKV0KYGBgCgoKCmBgYHtyfQpiYXNlYmFsbCROdW1Db21wZXRpdG9ycyA9IFBsYXlvZmZUYWJsZVthcy5jaGFyYWN0ZXIoYmFzZWJhbGwkWWVhcildCmJhc2ViYWxsJE51bUNvbXBldGl0b3JzCmBgYAoKCgpgYGB7cn0KdGFibGUoYmFzZWJhbGwkTnVtQ29tcGV0aXRvcnMpCiNUaGVyZSB3ZXJlIDEyOCB0aW1lcyB3aGVuIDggdGVhbXMgZ290IGludml0ZWQgCmBgYAoKYGBge3J9CmJhc2ViYWxsJFdvcmxkU2VyaWVzID0gYXMubnVtZXJpYyhiYXNlYmFsbCRSYW5rUGxheW9mZnMgPT0gMSkKdGFibGUoYmFzZWJhbGwkV29ybGRTZXJpZXMpCiN0aGVyZSB3ZXJlIDE5NyBpbnN0YW5jZXMgd2hlcmUgYSB0ZWFtIGRpZCBub3QgbWFrZSBpdCB0byBhIHBsYXkgb2ZmCmBgYAoKCgpgYGB7cn0KI1doaWNoIG9mIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzIGlzIGEgc2lnbmlmaWNhbnQgcHJlZGljdG9yIG9mIHRoZSBXb3JsZFNlcmllcyB2YXJpYWJsZSBpbiBhIGJpdmFyaWF0ZSBsb2dpc3RpYyByZWdyZXNzaW9uIG1vZGVsPyBZZWFyIGlzIHNpZ25pZmljYW50IQojVmFyaWJhbGVzIHRvIHVzZSBhcyBwcmVkaWN0b3JzIGZvciBlYWNoIGJpdmFyaWF0ZSBtb2RlbChZZWFyLCBSUywgUkEsIFcsIE9CUCwgU0xHLCBCQSwgUmFua1NlYXNvbiwgT09CUCxPU0xHLCBOdW1Db21wZXRpdG9ycywgTGVhZ3VlKQptb2RlbDE8LWdsbShXb3JsZFNlcmllc35ZZWFyLCBkYXRhPWJhc2ViYWxsLCBmYW1pbHk9ImJpbm9taWFsIikKc3VtbWFyeShtb2RlbDEpCmBgYAoKI1JTIGlzIG5vdCBzaWduaWZpY2FudAoKYGBge3J9Cm1vZGVsMjwtZ2xtKFdvcmxkU2VyaWVzflJTLCBkYXRhPWJhc2ViYWxsLCBmYW1pbHk9ImJpbm9taWFsIikKc3VtbWFyeShtb2RlbDIpCmBgYAoKCgpgYGB7cn0KbW9kZWwzPC1nbG0oV29ybGRTZXJpZXN+UkEsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT0iYmlub21pYWwiKQpzdW1tYXJ5KG1vZGVsMykKI1JBIGlzIHNpZ25pZmljYW50CmBgYAoKCmBgYHtyfQptb2RlbDQ8LWdsbShXb3JsZFNlcmllc35XLCBkYXRhPWJhc2ViYWxsLCBmYW1pbHk9ImJpbm9taWFsIikKc3VtbWFyeShtb2RlbDQpCiNXIGlzIG5vdCBzaWduaWZpY2FudApgYGAKCgoKCmBgYHtyfQptb2RlbDU8LWdsbShXb3JsZFNlcmllc35PQlAsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT0iYmlub21pYWwiKQpzdW1tYXJ5KG1vZGVsNSkKI09CUCBpcyBub3QgU2lnbmlmaWNhbnQKYGBgCgoKCmBgYHtyfQptb2RlbDc8LWdsbShXb3JsZFNlcmllc35CQSwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PSJiaW5vbWlhbCIpCnN1bW1hcnkobW9kZWw3KQojQkEgaXMgbm90IHNpZ25pZmljYW50CmBgYAoKCgpgYGB7cn0KbW9kZWw4PC1nbG0oV29ybGRTZXJpZXN+UmFua1NlYXNvbiwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PSJiaW5vbWlhbCIpCnN1bW1hcnkobW9kZWw4KSAKI1JhbmtTZWFzb24gaXMgc2lnbmlmaWNhbnQKYGBgCgoKCgpgYGB7cn0KbW9kZWw5PC1nbG0oV29ybGRTZXJpZXN+T09CUCwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PSJiaW5vbWlhbCIpCnN1bW1hcnkobW9kZWw5KQojT09QQiBpcyBub3QgU2lnbmlmaWNhbnQKYGBgCgoKCmBgYHtyfQptb2RlbDEwPC1nbG0oV29ybGRTZXJpZXN+T1NMRywgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PSJiaW5vbWlhbCIpCnN1bW1hcnkobW9kZWwxMCkKI09TTEcgcyBub3Qgc2lnbmlmaWNhbnQgCmBgYAoKCmBgYHtyfQptb2RlbDExPC1nbG0oV29ybGRTZXJpZXN+TnVtQ29tcGV0aXRvcnMsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT0iYmlub21pYWwiKQpzdW1tYXJ5KG1vZGVsMTEpCiNOdW0gQ29tcGV0aXRvcnMgaXMgU2lnbmlmaWNhbnQKYGBgCgoKCgpgYGB7cn0KbW9kZWwxMjwtZ2xtKFdvcmxkU2VyaWVzfkxlYWd1ZSwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PSJiaW5vbWlhbCIpCnN1bW1hcnkobW9kZWwxMikKI0xlYWd1ZU5MIGlzIG5vdCBzaWduaWZpY2FudApgYGAKCgoKCmBgYHtyfQpMb2dNb2RlbCA9IGdsbShXb3JsZFNlcmllcyB+IFllYXIgKyBSQSArIFJhbmtTZWFzb24gKyBOdW1Db21wZXRpdG9ycywgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PWJpbm9taWFsKQpzdW1tYXJ5KExvZ01vZGVsKQojbm9uZSBvZiB0aGVzZSB2YXJpYWJsZXMgYXJlIHNpZ25pZmljYW50IApgYGAKCgoKCmBgYHtyfQpjb3IoYmFzZWJhbGxbYygiWWVhciIsICJSQSIsICJSYW5rU2Vhc29uIiwgIk51bUNvbXBldGl0b3JzIildKQpgYGAKCgoKCgpgYGB7cn0KbW9kZWwxMyA9IGdsbShXb3JsZFNlcmllcyB+IFllYXIgKyBSQSwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PWJpbm9taWFsKQpzdW1tYXJ5KG1vZGVsMTMpCmBgYAoKCgpgYGB7cn0KbW9kZWwxNCA9IGdsbShXb3JsZFNlcmllcyB+IFllYXIgKyBSYW5rU2Vhc29uLCBkYXRhPWJhc2ViYWxsLCBmYW1pbHk9Ymlub21pYWwpCnN1bW1hcnkobW9kZWwxNCkKCmBgYAoKYGBge3J9Cm1vZGVsMTUgPSBnbG0oV29ybGRTZXJpZXMgfiBZZWFyICsgTnVtQ29tcGV0aXRvcnMsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT1iaW5vbWlhbCkKc3VtbWFyeShtb2RlbDE1KQpgYGAKCgpgYGB7cn0KbW9kZWwxNiA9IGdsbShXb3JsZFNlcmllcyB+IFJBICsgUmFua1NlYXNvbiwgZGF0YT1iYXNlYmFsbCwgZmFtaWx5PWJpbm9taWFsKQpzdW1tYXJ5KG1vZGVsMTYpCmBgYAoKCgpgYGB7cn0KbW9kZWwxNyA9IGdsbShXb3JsZFNlcmllcyB+IFJBICsgTnVtQ29tcGV0aXRvcnMsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT1iaW5vbWlhbCkKc3VtbWFyeShtb2RlbDE3KQpgYGAKCgoKYGBge3J9Cm1vZGVsMTggPSBnbG0oV29ybGRTZXJpZXMgfiBSYW5rU2Vhc29uICsgTnVtQ29tcGV0aXRvcnMsIGRhdGE9YmFzZWJhbGwsIGZhbWlseT1iaW5vbWlhbCkKc3VtbWFyeShtb2RlbDE4KQpgYGAKCgoKCmBgYHtyfQojbm9uZSBvZiB0aGUgbW9kZWxzIGhhZCAyIHZhcmlhYmxlcyB0aGF0IHdlcmUgc2lnbmlmaWNhbnQKYGBgCgoKCgoKCgo=