Import two related datasets from TidyTuesday Project.
exped_tidy <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-01-21/exped_tidy.csv')
## Rows: 882 Columns: 69
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (22): EXPID, PEAKID, SEASON_FACTOR, HOST_FACTOR, ROUTE1, ROUTE2, NATION...
## dbl (17): YEAR, SEASON, HOST, SMTDAYS, TOTDAYS, TERMREASON, HIGHPOINT, CAMP...
## lgl (27): ROUTE3, ROUTE4, SUCCESS1, SUCCESS2, SUCCESS3, SUCCESS4, ASCENT3, ...
## date (3): BCDATE, SMTDATE, TERMDATE
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
peaks_tidy <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-01-21/peaks_tidy.csv')
## Rows: 480 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (14): PEAKID, PKNAME, PKNAME2, LOCATION, HIMAL_FACTOR, REGION_FACTOR, RE...
## dbl (12): HEIGHTM, HEIGHTF, HIMAL, REGION, TREKYEAR, PHOST, PSTATUS, PEAKMEM...
## lgl (3): OPEN, UNLISTED, TREKKING
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Describe the two datasets:
Data1 exped_tidy
set.seed(1234)
exped_tidy_small <- exped_tidy %>% select(EXPID, PEAKID, YEAR) %>% sample_n(10)
peaks_tidy_small <- peaks_tidy %>% select(PEAKID, PKNAME, PKNAME2) %>% sample_n(10)
exped_tidy_small
## # A tibble: 10 × 3
## EXPID PEAKID YEAR
## <chr> <chr> <dbl>
## 1 EVER22132 EVER 2022
## 2 JUG324201 JUG3 2024
## 3 LHOT21105 LHOT 2021
## 4 MAKA23106 MAKA 2023
## 5 AMAD23303 AMAD 2023
## 6 CHND22301 CHND 2022
## 7 LHOT21102 LHOT 2021
## 8 LHOT21107 LHOT 2021
## 9 HIML23314 HIML 2023
## 10 LHOT23107 LHOT 2023
peaks_tidy_small
## # A tibble: 10 × 3
## PEAKID PKNAME PKNAME2
## <chr> <chr> <chr>
## 1 DINS Dingjung Ri Dingjung Ri South
## 2 JAGD Jagdula <NA>
## 3 SANK Sano Kailash <NA>
## 4 YNGS Yangra Kangri South Yangra South, Ganesh I South
## 5 DING Dingjung North Kangkuru, Rima Mancho
## 6 YANG Yangri Jugal
## 7 TUKU Tukuche <NA>
## 8 GIME Gimmigela Chuli East Twins
## 9 ANN2 Annapurna II <NA>
## 10 PHUN Phu Kang North Phu Khang North
Data 2 peaks_tidy
set.seed(1234)
exped_tidy_small <- exped_tidy %>% select(EXPID, PEAKID, YEAR) %>% sample_n(10)
peaks_tidy_small <- peaks_tidy %>% select(PEAKID, PKNAME, PKNAME2) %>% sample_n(10)
exped_tidy_small
## # A tibble: 10 × 3
## EXPID PEAKID YEAR
## <chr> <chr> <dbl>
## 1 EVER22132 EVER 2022
## 2 JUG324201 JUG3 2024
## 3 LHOT21105 LHOT 2021
## 4 MAKA23106 MAKA 2023
## 5 AMAD23303 AMAD 2023
## 6 CHND22301 CHND 2022
## 7 LHOT21102 LHOT 2021
## 8 LHOT21107 LHOT 2021
## 9 HIML23314 HIML 2023
## 10 LHOT23107 LHOT 2023
peaks_tidy_small
## # A tibble: 10 × 3
## PEAKID PKNAME PKNAME2
## <chr> <chr> <chr>
## 1 DINS Dingjung Ri Dingjung Ri South
## 2 JAGD Jagdula <NA>
## 3 SANK Sano Kailash <NA>
## 4 YNGS Yangra Kangri South Yangra South, Ganesh I South
## 5 DING Dingjung North Kangkuru, Rima Mancho
## 6 YANG Yangri Jugal
## 7 TUKU Tukuche <NA>
## 8 GIME Gimmigela Chuli East Twins
## 9 ANN2 Annapurna II <NA>
## 10 PHUN Phu Kang North Phu Khang North
Describe the resulting data:
How is it different from the original two datasets? 1 row compared to 10 rows in the original datasets all columns from the two datasets
exped_tidy_small %>% inner_join(peaks_tidy_small)
## Joining with `by = join_by(PEAKID)`
## # A tibble: 0 × 5
## # ℹ 5 variables: EXPID <chr>, PEAKID <chr>, YEAR <dbl>, PKNAME <chr>,
## # PKNAME2 <chr>
Describe the resulting data:
How is it different from the original two datasets? 1 row compared to 10 rows in the original datasets all columns from the two datasets
peaks_tidy_small %>% inner_join(exped_tidy_small)
## Joining with `by = join_by(PEAKID)`
## # A tibble: 0 × 5
## # ℹ 5 variables: PEAKID <chr>, PKNAME <chr>, PKNAME2 <chr>, EXPID <chr>,
## # YEAR <dbl>
Describe the resulting data:
How is it different from the original two datasets?
Describe the resulting data:
How is it different from the original two datasets?
Describe the resulting data:
How is it different from the original two datasets?
Describe the resulting data:
How is it different from the original two datasets?