EK Questions

  • Are the sleep variables that are on the same row as the non-sleep variables referring to the prior night?

  • I think the models that might make the most sense here are prior night sleep - > next day outcomes – otherwise, we’d be looking at sleep affecting outcomes 2 days later

Aversion to Suicide/Cognitive Bias on Concurrent & Next Day NSSI/SI

Background: Sleep moderation of Aversion to Suicide/Cognitive Bias on Concurrent & Next Day NSSI/SI (note: if doing both concurrent & next day is “too much” for a single paper, we can focus on concurrent only)

Hypothesis: Disrupted Sleep (on the night preceding/associated with the daily reports) will moderate the effects of subjective aversion to death and cognitive biases toward self-harm on concurrent and next-day NSSI Acts and Suicide Intent

Variables

  • Aversion/Fearlessness About Death: Avers
  • Cognitive Bias: CogBias
  • Sleep Variables to test as moderators: Objective Sleep (SleepTime, Efficnt); subjective sleep problems (SlpProb)
  • NSSI Outcome: NSIact (Note: Recoded to be dichotomous NSIact_dich)
  • Suicide Outcome: S_Intent (would be interesting to look at S_Plan but I think there are too few instances)

Aversion/Fearlessness About Death Models with NSSI outcome

Note: NSSI is yes/no

Regression results

Aversion x Sleep Probs looks to be the most promising model here

  Sleep Time Sleep Eff Sleep Probs
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.13 0.13 – 0.13 <0.001 0.13 0.13 – 0.13 <0.001 0.12 0.12 – 0.12 <0.001
aversion to self-harm(FAD
1+FAD 2)
0.86 0.86 – 0.86 <0.001 0.86 0.86 – 0.86 <0.001 0.87 0.87 – 0.87 <0.001
Minutes 1.00 1.00 – 1.00 0.672
Avers_pcent:SleepTime_pcent 1.00 1.00 – 1.00 0.314
Sleep Efficiency Score(%) 1.00 1.00 – 1.00 0.109
Avers_pcent:Efficnt_pcent 1.00 1.00 – 1.00 <0.001
sleep problems+felt
sleepy all day
1.30 1.30 – 1.30 <0.001
Avers_pcent:SlpProb_pcent 0.94 0.94 – 0.95 <0.001
Random Effects
σ2 3.29 3.29 3.29
τ00 3.56 IDcode 3.57 IDcode 3.98 IDcode
ICC 0.52 0.52 0.55
N 130 IDcode 130 IDcode 130 IDcode
Observations 2664 2664 3220
Marginal R2 / Conditional R2 0.010 / 0.525 0.010 / 0.525 0.019 / 0.557

Plot of Aversion x Sleep Probs

Simple slopes probe of Aversion x Sleep Probs

## JOHNSON-NEYMAN INTERVAL
## 
## When SlpProb_pcent is OUTSIDE the interval [-2.55, -2.45], the slope of
## Avers_pcent is p < .05.
## 
## Note: The range of observed values of SlpProb_pcent is [-2.43, 3.48]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of Avers_pcent when SlpProb_pcent = -0.9516498613 (- 1 SD): 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.09   0.04    -2.03   0.04
## 
## Slope of Avers_pcent when SlpProb_pcent = -0.0004720145 (Mean): 
## 
##    Est.   S.E.    z val.      p
## ------- ------ --------- ------
##   -0.14   0.00   -270.35   0.00
## 
## Slope of Avers_pcent when SlpProb_pcent =  0.9507058323 (+ 1 SD): 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.20   0.04    -5.04   0.00

Aversion/Fearlessness About Death Models with SI outcome

Regression results

No significant interaction effects

  Sleep Time Sleep Eff Sleep Probs
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.77 1.61 – 1.93 <0.001 1.77 1.61 – 1.93 <0.001 1.82 1.65 – 1.98 <0.001
aversion to self-harm(FAD
1+FAD 2)
-0.09 -0.11 – -0.07 <0.001 -0.09 -0.11 – -0.07 <0.001 -0.09 -0.11 – -0.08 <0.001
Minutes -0.00 -0.00 – 0.00 0.209
Avers_pcent:SleepTime_pcent 0.00 -0.00 – 0.00 0.282
Sleep Efficiency Score(%) 0.00 -0.00 – 0.01 0.490
Avers_pcent:Efficnt_pcent 0.00 -0.00 – 0.00 0.110
sleep problems+felt
sleepy all day
0.11 0.08 – 0.15 <0.001
Avers_pcent:SlpProb_pcent -0.01 -0.03 – 0.00 0.099
Random Effects
σ2 0.75 0.75 0.78
τ00 0.83 IDcode 0.83 IDcode 0.86 IDcode
ICC 0.53 0.53 0.52
N 130 IDcode 130 IDcode 130 IDcode
Observations 2663 2663 3219
Marginal R2 / Conditional R2 0.015 / 0.533 0.015 / 0.533 0.025 / 0.536

Cognitive Bias Models with NSSI outcome

Note: NSSI is yes/no

Regression results

Cognitive bias has a decent main effect but no significant interactions

  Sleep Time Sleep Eff Sleep Probs
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.06 0.03 – 0.10 <0.001 0.06 0.03 – 0.10 <0.001 0.06 0.04 – 0.10 <0.001
cog bias to NSSI(NSSI
Urge+NSSI Ideation Freq)
1.98 1.83 – 2.14 <0.001 1.97 1.82 – 2.12 <0.001 1.94 1.81 – 2.08 <0.001
Minutes 1.00 1.00 – 1.00 0.683
CogBias_pcent:SleepTime_pcent 1.00 1.00 – 1.00 0.050
Sleep Efficiency Score(%) 1.00 0.98 – 1.02 0.799
CogBias_pcent:Efficnt_pcent 1.00 0.99 – 1.01 0.632
sleep problems+felt
sleepy all day
1.11 0.95 – 1.30 0.195
CogBias_pcent:SlpProb_pcent 0.95 0.90 – 1.00 0.064
Random Effects
σ2 3.29 3.29 3.29
τ00 6.96 IDcode 6.85 IDcode 6.93 IDcode
ICC 0.68 0.68 0.68
N 130 IDcode 130 IDcode 130 IDcode
Observations 2670 2670 3228
Marginal R2 / Conditional R2 0.216 / 0.748 0.213 / 0.745 0.210 / 0.746

Cognitive Bias Models with SI outcome

Regression results

Sleep time and sleep probs are significant

  Sleep Time Sleep Eff Sleep Probs
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.77 1.61 – 1.94 <0.001 1.78 1.61 – 1.94 <0.001 1.81 1.65 – 1.97 <0.001
cog bias to NSSI(NSSI
Urge+NSSI Ideation Freq)
0.18 0.16 – 0.19 <0.001 0.18 0.16 – 0.19 <0.001 0.17 0.16 – 0.18 <0.001
Minutes -0.00 -0.00 – 0.00 0.585
CogBias_pcent:SleepTime_pcent -0.00 -0.00 – -0.00 0.011
Sleep Efficiency Score(%) 0.00 -0.00 – 0.01 0.562
CogBias_pcent:Efficnt_pcent -0.00 -0.00 – 0.00 0.217
sleep problems+felt
sleepy all day
0.05 0.02 – 0.08 0.001
CogBias_pcent:SlpProb_pcent 0.02 0.01 – 0.03 0.003
Random Effects
σ2 0.58 0.58 0.62
τ00 0.84 IDcode 0.84 IDcode 0.87 IDcode
ICC 0.59 0.59 0.59
N 130 IDcode 130 IDcode 130 IDcode
Observations 2669 2669 3227
Marginal R2 / Conditional R2 0.115 / 0.640 0.114 / 0.639 0.115 / 0.633

Plot/probe for Cog Bias x Sleep Time

Plot of Cog Bias x Sleep Time

Simple slopes probe of Cog Bias x Sleep Time

## JOHNSON-NEYMAN INTERVAL
## 
## When SleepTime_pcent is OUTSIDE the interval [765.46, 6053.16], the slope
## of CogBias_pcent is p < .05.
## 
## Note: The range of observed values of SleepTime_pcent is [-503.91, 875.82]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of CogBias_pcent when SleepTime_pcent = -121.8009758 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.19   0.01    21.75   0.00
## 
## Slope of CogBias_pcent when SleepTime_pcent =   -0.9392126 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.18   0.01    28.87   0.00
## 
## Slope of CogBias_pcent when SleepTime_pcent =  119.9225506 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.16   0.01    18.82   0.00

Plot/probe for Cog Bias x Sleep Probs

Plot of Cog Bias x Sleep Probs

Simple slopes probe of Cog Bias x Sleep Probs

## JOHNSON-NEYMAN INTERVAL
## 
## When SlpProb_pcent is OUTSIDE the interval [-31.79, -6.29], the slope of
## CogBias_pcent is p < .05.
## 
## Note: The range of observed values of SlpProb_pcent is [-2.43, 3.48]
## 
## SIMPLE SLOPES ANALYSIS
## 
## Slope of CogBias_pcent when SlpProb_pcent = -0.954610981 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.16   0.01    19.40   0.00
## 
## Slope of CogBias_pcent when SlpProb_pcent = -0.001424105 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.17   0.01    30.13   0.00
## 
## Slope of CogBias_pcent when SlpProb_pcent =  0.951762770 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.19   0.01    25.24   0.00

Sleep moderation of Neg Self Perception and Emotional Reactivity on concurrent & next day NSSI/SI

Hypothesis: Disrupted sleep (on the night immediately preceding the daily reports) will moderate (intensify) the effects of self-criticism and emotional reactivity on same and next day NSSI acts (or urges) and Suicide Intent.

Variables

  • Emotional Reactivity: EmotReactivity
  • Neg Self-Perception: SelfCritical
  • Sleep Variables to test as moderators: Objective Sleep (Sleeptime, Efficnt, #Awakenings); subjective sleep problems (SlpProb) -
  • NSSI Outcome: NSIact (Note: Recoded to be dichotomous NSIact_dich)
  • Suicide Outcome: S_Intent

Emotional Reactivity Models with NSSI outcome

Note: NSSI is yes/no

Regression results

Moderation with of awakenings is significant but the ES is supeerrrr small

  Sleep Time Sleep Eff Number of awakenings
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.11 0.11 – 0.11 <0.001 0.11 0.11 – 0.11 <0.001 0.11 0.11 – 0.11 <0.001
emotional reactivity
total
1.65 1.65 – 1.65 <0.001 1.65 1.64 – 1.65 <0.001 1.65 1.65 – 1.66 <0.001
Minutes 1.00 1.00 – 1.00 0.794
EmotReactivity_pcent:SleepTime_pcent 1.00 1.00 – 1.00 0.258
Sleep Efficiency Score(%) 1.00 1.00 – 1.00 0.023
EmotReactivity_pcent:Efficnt_pcent 1.00 1.00 – 1.00 <0.001
#Awakenings 1.00 1.00 – 1.00 0.800
EmotReactivity_pcent:Awaken_pcent 1.01 1.01 – 1.01 <0.001
Random Effects
σ2 3.29 3.29 3.29
τ00 3.96 IDcode 3.97 IDcode 3.97 IDcode
ICC 0.55 0.55 0.55
N 130 IDcode 130 IDcode 130 IDcode
Observations 2690 2690 2690
Marginal R2 / Conditional R2 0.058 / 0.572 0.057 / 0.573 0.059 / 0.574

Emotional Reactivity Models with SI outcome

Regression results

Nothing is significant

  Sleep Time Sleep Eff Number of awakenings
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.77 1.61 – 1.93 <0.001 1.77 1.61 – 1.93 <0.001 1.77 1.61 – 1.93 <0.001
emotional reactivity
total
0.21 0.19 – 0.24 <0.001 0.22 0.19 – 0.24 <0.001 0.22 0.19 – 0.24 <0.001
Minutes -0.00 -0.00 – 0.00 0.800
EmotReactivity_pcent:SleepTime_pcent -0.00 -0.00 – 0.00 0.097
Sleep Efficiency Score(%) 0.00 -0.00 – 0.01 0.420
EmotReactivity_pcent:Efficnt_pcent -0.00 -0.00 – 0.00 0.957
#Awakenings 0.00 -0.00 – 0.00 0.765
EmotReactivity_pcent:Awaken_pcent -0.00 -0.00 – 0.00 0.597
Random Effects
σ2 0.68 0.68 0.68
τ00 0.83 IDcode 0.83 IDcode 0.83 IDcode
ICC 0.55 0.55 0.55
N 130 IDcode 130 IDcode 130 IDcode
Observations 2688 2688 2688
Marginal R2 / Conditional R2 0.052 / 0.573 0.052 / 0.572 0.052 / 0.572

Neg Self Perception Models with NSSI outcome

Note: NSSI is yes/no

Regression results

Nothing significant
  Sleep Time Sleep Eff Number of awakenings
Predictors Odds Ratios CI p Odds Ratios CI p Odds Ratios CI p
(Intercept) 0.11 0.07 – 0.16 <0.001 0.11 0.07 – 0.16 <0.001 0.11 0.07 – 0.16 <0.001
self-judgement+self-hate+self
criticism
1.99 1.76 – 2.24 <0.001 1.99 1.76 – 2.24 <0.001 1.98 1.76 – 2.24 <0.001
Minutes 1.00 1.00 – 1.00 0.662
SelfCritical_pcent:SleepTime_pcent 1.00 1.00 – 1.00 0.966
Sleep Efficiency Score(%) 1.00 0.99 – 1.02 0.583
SelfCritical_pcent:Efficnt_pcent 0.99 0.98 – 1.01 0.470
#Awakenings 1.00 0.99 – 1.01 0.978
SelfCritical_pcent:Awaken_pcent 1.00 0.99 – 1.01 0.544
Random Effects
σ2 3.29 3.29 3.29
τ00 4.04 IDcode 4.04 IDcode 4.05 IDcode
ICC 0.55 0.55 0.55
N 130 IDcode 130 IDcode 130 IDcode
Observations 2664 2664 2664
Marginal R2 / Conditional R2 0.070 / 0.583 0.071 / 0.583 0.070 / 0.583

Neg Self Perception Models with NSSI outcome

Regression results

Moderation with of Sleeptime is significant at p=.049 so I don’t think we should pursue

  Sleep Time Sleep Eff Number of awakenings
Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.77 1.61 – 1.93 <0.001 1.78 1.62 – 1.94 <0.001 1.77 1.61 – 1.93 <0.001
self-judgement+self-hate+self
criticism
0.31 0.28 – 0.34 <0.001 0.31 0.28 – 0.34 <0.001 0.31 0.28 – 0.34 <0.001
Minutes -0.00 -0.00 – 0.00 0.935
SelfCritical_pcent:SleepTime_pcent -0.00 -0.00 – -0.00 0.049
Sleep Efficiency Score(%) 0.00 -0.00 – 0.01 0.340
SelfCritical_pcent:Efficnt_pcent 0.00 -0.00 – 0.00 0.573
#Awakenings -0.00 -0.00 – 0.00 0.871
SelfCritical_pcent:Awaken_pcent -0.00 -0.00 – 0.00 0.494
Random Effects
σ2 0.65 0.65 0.65
τ00 0.83 IDcode 0.83 IDcode 0.83 IDcode
ICC 0.56 0.56 0.56
N 130 IDcode 130 IDcode 130 IDcode
Observations 2662 2662 2662
Marginal R2 / Conditional R2 0.071 / 0.592 0.071 / 0.591 0.071 / 0.591

Mediation Models

Model Aversion/FAD and cognitive bias mediate the effect of NSSI acts on next day suicide intent.

Notes I think the effect of NSSI is in the wrong direction here– there’s no significant effect when I use NSSI acts as a continuous variable

Aversion/FAD and cognitive bias mediate the effect of NSSI acts on next day suicide intent.

Mediation output

## lavaan 0.6-19 ended normally after 81 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
## 
##                                                   Used       Total
##   Number of observations                          2899        3726
##   Number of clusters [IDcode]                      130            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                65.511
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S_Intent_t2 ~                                                         
##     Avers     (b2)   -0.019    0.010   -1.983    0.047   -0.019   -0.038
##     CogBias   (b1)    0.037    0.008    4.774    0.000    0.037    0.104
##     NSIct_dch        -0.121    0.059   -2.043    0.041   -0.121   -0.044
##   CogBias ~                                                             
##     NSIct_dch (a1)    3.672    0.127   28.816    0.000    3.672    0.480
##   Avers ~                                                               
##     NSIct_dch (a2)   -0.499    0.102   -4.873    0.000   -0.499   -0.092
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .S_Intent_t2       0.814    0.022   37.200    0.000    0.814    0.990
##    .CogBias           4.883    0.131   37.218    0.000    4.883    0.769
##    .Avers             3.156    0.085   37.211    0.000    3.156    0.991
## 
## 
## Level 2 [IDcode]:
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   S_Intent_t2 ~                                                         
##     Avers            -0.089    0.020   -4.523    0.000   -0.089   -0.307
##     CogBias           0.273    0.030    9.146    0.000    0.273    0.709
##     NSIact_dich      -0.812    0.298   -2.727    0.006   -0.812   -0.214
##   CogBias ~                                                             
##     NSIact_dich       4.664    0.822    5.675    0.000    4.664    0.474
##   Avers ~                                                               
##     NSIact_dich      -2.074    1.201   -1.727    0.084   -2.074   -0.158
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .S_Intent_t2       1.161    0.225    5.164    0.000    1.161    1.273
##    .CogBias           4.372    0.253   17.303    0.000    4.372    1.848
##    .Avers             7.459    0.370   20.186    0.000    7.459    2.367
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .S_Intent_t2       0.408    0.058    7.038    0.000    0.408    0.490
##    .CogBias           4.336    0.571    7.592    0.000    4.336    0.775
##    .Avers             9.676    1.224    7.908    0.000    9.676    0.975
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     total_indirect    0.057    0.043    1.347    0.178    0.057    0.026
##     cogbias_ind       0.138    0.029    4.709    0.000    0.138    0.050
##     aver_ind          0.010    0.005    1.837    0.066    0.010    0.004

Mediation Figure

Top line going from one variable to the other is level 1

Moderated mediation: sleep time moderating a and b paths

## lavaan 0.6-19 ended normally after 163 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        33
## 
##                                                   Used       Total
##   Number of observations                          2411        3726
##   Number of clusters [IDcode]                      129            
## 
## Model Test User Model:
##                                                       
##   Test statistic                              8834.327
##   Degrees of freedom                                12
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Regressions:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##   S_Intent_t2 ~                                                               
##     Avers     (b2)      -0.017    0.021   -0.800    0.424      -0.017   -0.034
##     CogBias   (b1)       0.061    0.021    2.888    0.004       0.061    0.169
##     NSIct_d             -0.147    0.063   -2.333    0.020      -0.147   -0.055
##     SleepTm  (mb0)      -0.000    0.000   -0.085    0.933      -0.000   -0.004
##     CgBsXST  (mb1)      -0.000    0.000   -1.304    0.192      -0.000   -0.083
##     AvrsXST  (mb2)       0.000    0.000    0.830    0.406       0.000    0.047
##   CogBias ~                                                                   
##     NSIct_d   (a1)       2.804    0.437    6.419    0.000       2.804    0.374
##     SleepTm (ma10)      -0.001    0.000   -2.371    0.018      -0.001   -0.047
##     NSI_XST  (ma1)       0.002    0.001    1.717    0.086       0.002    0.101
##   Avers ~                                                                     
##     NSIct_d   (a2)      -0.472    0.349   -1.356    0.175      -0.472   -0.089
##     SleepTm (ma20)      -0.001    0.000   -1.658    0.097      -0.001   -0.037
##     NSI_XST  (ma2)       0.000    0.001    0.114    0.909       0.000    0.008
## 
## Variances:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##    .S_Intent_t2          0.779    0.023   33.736    0.000       0.779    0.970
##    .CogBias              4.820    0.143   33.782    0.000       4.820    0.778
##    .Avers                3.092    0.092   33.778    0.000       3.092    0.992
## 
## 
## Level 2 [IDcode]:
## 
## Regressions:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##   S_Intent_t2 ~                                                               
##     Avers               -0.180    0.151   -1.192    0.233      -0.180   -0.529
##     CogBias              0.274    0.300    0.913    0.361       0.274    0.604
##     NSIact_dich         -0.834    0.341   -2.445    0.014      -0.834   -0.181
##     SleepTime           -0.002    0.002   -0.854    0.393      -0.002   -0.157
##     CogBiasXSlepTm      -0.000    0.001   -0.029    0.977      -0.000   -0.019
##     AversXSleepTim       0.000    0.000    0.599    0.549       0.000    0.270
##   CogBias ~                                                                   
##     NSIact_dich         -0.050   35.679   -0.001    0.999      -0.050   -0.005
##     SleepTime           -0.003    0.006   -0.440    0.660      -0.003   -0.092
##     NSIct_dchXSlpT       0.011    0.088    0.128    0.898       0.011    0.448
##   Avers ~                                                                     
##     NSIact_dich          0.006   69.094    0.000    1.000       0.006    0.000
##     SleepTime           -0.005    0.012   -0.458    0.647      -0.005   -0.136
##     NSIct_dchXSlpT      -0.005    0.170   -0.030    0.976      -0.005   -0.154
## 
## Intercepts:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##    .S_Intent_t2          2.109    1.091    1.932    0.053       2.109    1.951
##    .CogBias              5.552    2.559    2.170    0.030       5.552    2.331
##    .Avers                9.821    4.804    2.044    0.041       9.821    3.099
## 
## Variances:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##    .S_Intent_t2          0.404    0.073    5.500    0.000       0.404    0.346
##    .CogBias              4.458    0.636    7.011    0.000       4.458    0.786
##    .Avers                9.669    1.244    7.774    0.000       9.669    0.963
## 
## Defined Parameters:
##                    Estimate     Std.Err  z-value  P(>|z|)   Std.lv     Std.all
##     total_indirect       0.102    0.075    1.361    0.174       0.102    0.039
##     cogbias_ind          0.171    0.065    2.628    0.009       0.171    0.063
##     aver_ind             0.008    0.012    0.689    0.491       0.008    0.003

Moderated mediation: sleep problems moderating a and b paths

## lavaan 0.6-19 ended normally after 156 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        33
## 
##                                                   Used       Total
##   Number of observations                          2399        3726
##   Number of clusters [IDcode]                      129            
## 
## Model Test User Model:
##                                                       
##   Test statistic                              6074.606
##   Degrees of freedom                                15
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     Avers     (b2)     0.010    0.014    0.751    0.452     0.010    0.021
##     CogBias   (b1)     0.021    0.014    1.551    0.121     0.021    0.060
##     NSIct_d           -0.151    0.063   -2.391    0.017    -0.151   -0.057
##     SleepTm  (mb0)    -0.000    0.000   -0.867    0.386    -0.000   -0.020
##     CgBsXSP  (mb1)     0.005    0.004    1.287    0.198     0.005    0.057
##     AvrsXSP  (mb2)    -0.005    0.003   -1.326    0.185    -0.005   -0.044
##   CogBias ~                                                               
##     NSIct_d   (a1)     3.655    0.302   12.116    0.000     3.655    0.488
##     SlpProb (ma10)     0.337    0.053    6.387    0.000     0.337    0.131
##     NSI_XSP  (ma1)    -0.089    0.101   -0.883    0.377    -0.089   -0.037
##   Avers ~                                                                 
##     NSIct_d   (a2)    -0.182    0.243   -0.747    0.455    -0.182   -0.034
##     SlpProb (ma20)    -0.073    0.043   -1.706    0.088    -0.073   -0.040
##     NSI_XSP  (ma2)    -0.079    0.082   -0.966    0.334    -0.079   -0.046
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.781    0.023   33.665    0.000     0.781    0.993
##    .CogBias            4.738    0.141   33.706    0.000     4.738    0.765
##    .Avers              3.082    0.091   33.691    0.000     3.082    0.991
## 
## 
## Level 2 [IDcode]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     Avers             -0.030    0.074   -0.402    0.688    -0.030   -0.113
##     CogBias            0.103    0.108    0.954    0.340     0.103    0.292
##     NSIact_dich       -0.803    0.313   -2.562    0.010    -0.803   -0.224
##     SlpProb           -0.069    0.367   -0.187    0.851    -0.069   -0.054
##     CogBiasXSlpPrb     0.060    0.040    1.495    0.135     0.060    0.579
##     AversXSlpProb     -0.019    0.030   -0.637    0.524    -0.019   -0.198
##   CogBias ~                                                               
##     NSIact_dich        4.016    3.114    1.290    0.197     4.016    0.395
##     SlpProb            0.820    0.407    2.015    0.044     0.820    0.229
##     NSIct_dchXSlpP     0.175    1.143    0.153    0.878     0.175    0.049
##   Avers ~                                                                 
##     NSIact_dich       10.388    4.518    2.299    0.021    10.388    0.767
##     SlpProb            0.204    0.588    0.348    0.728     0.204    0.043
##     NSIct_dchXSlpP    -4.629    1.660   -2.789    0.005    -4.629   -0.975
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        1.335    0.889    1.502    0.133     1.335    1.596
##    .CogBias            2.313    1.036    2.232    0.026     2.313    0.975
##    .Avers              6.989    1.497    4.669    0.000     6.989    2.209
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.396    0.059    6.730    0.000     0.396    0.566
##    .CogBias            4.150    0.559    7.422    0.000     4.150    0.737
##    .Avers              8.716    1.155    7.549    0.000     8.716    0.871
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     total_indirect     0.111    0.060    1.833    0.067     0.111    0.037
##     cogbias_ind        0.078    0.051    1.538    0.124     0.078    0.029
##     aver_ind          -0.002    0.004   -0.530    0.596    -0.002   -0.001

##Sleep (time/prob) –> SelfCriticism—>SIntent with Emotion reactivity moderating SC –>SI path.

## lavaan 0.6-19 ended normally after 96 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        20
## 
##                                                   Used       Total
##   Number of observations                          2411        3726
##   Number of clusters [IDcode]                      129            
## 
## Model Test User Model:
##                                                       
##   Test statistic                              3773.543
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     SelfCrtcl  (b)    -0.003    0.037   -0.068    0.946    -0.003   -0.003
##     SlpProb           -0.026    0.020   -1.332    0.183    -0.026   -0.029
##     SleepTime         -0.000    0.000   -0.748    0.455    -0.000   -0.016
##     EmtRctvty (m0)    -0.040    0.035   -1.147    0.252    -0.040   -0.062
##     EmoXSC    (m1)     0.014    0.008    1.819    0.069     0.014    0.144
##   SelfCritical ~                                                          
##     SlpProb   (a1)     0.253    0.023   10.827    0.000     0.253    0.222
##     SleepTime (a2)    -0.000    0.000   -1.630    0.103    -0.000   -0.033
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.765    0.023   33.766    0.000     0.765    0.991
##    .SelfCritical       1.146    0.034   33.790    0.000     1.146    0.948
## 
## 
## Level 2 [IDcode]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     SelfCritical      -0.113    0.165   -0.685    0.493    -0.113   -0.123
##     SlpProb           -0.038    0.124   -0.302    0.763    -0.038   -0.024
##     SleepTime         -0.002    0.001   -1.636    0.102    -0.002   -0.116
##     EmotReactivity    -0.497    0.218   -2.281    0.023    -0.497   -0.518
##     EmoXSC             0.158    0.043    3.656    0.000     0.158    1.213
##   SelfCritical ~                                                          
##     SlpProb            0.663    0.151    4.404    0.000     0.663    0.394
##     SleepTime          0.001    0.001    0.738    0.461     0.001    0.069
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        2.173    0.785    2.768    0.006     2.173    2.164
##    .SelfCritical       2.061    0.711    2.898    0.004     2.061    1.879
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.399    0.064    6.237    0.000     0.399    0.395
##    .SelfCritical       1.011    0.137    7.399    0.000     1.011    0.840
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     total_indirect    -0.001    0.009   -0.068    0.946    -0.001   -0.001
##     SlpProb_ind       -0.001    0.009   -0.068    0.946    -0.001   -0.001
##     SlpTime_ind        0.000    0.000    0.068    0.946     0.000    0.000

Sleep –> emotional reactivity / self-critical –> NSSI/SI

Mediation output

## lavaan 0.6-19 ended normally after 114 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        23
## 
##                                                   Used       Total
##   Number of observations                          2425        3726
##   Number of clusters [IDcode]                      129            
## 
## Model Test User Model:
##                                                       
##   Test statistic                               906.300
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Level 1 [within]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     SlfCrtcl  (b2)     0.051    0.020    2.539    0.011     0.051    0.064
##     EmtRctvt  (b1)     0.014    0.016    0.880    0.379     0.014    0.022
##     SleepTim          -0.000    0.000   -0.610    0.542    -0.000   -0.013
##   EmotReactivity ~                                                        
##     SleepTim (a1a)    -0.001    0.000   -2.617    0.009    -0.001   -0.058
##     Efficnt  (a1b)     0.005    0.004    1.082    0.279     0.005    0.024
##   SelfCritical ~                                                          
##     SleepTim (a2a)    -0.000    0.000   -2.410    0.016    -0.000   -0.054
##     Efficnt  (a2b)    -0.000    0.003   -0.003    0.997    -0.000   -0.000
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.766    0.023   33.866    0.000     0.766    0.995
##    .EmotReactivity     1.825    0.054   33.916    0.000     1.825    0.997
##    .SelfCritical       1.212    0.036   33.899    0.000     1.212    0.997
## 
## 
## Level 2 [IDcode]:
## 
## Regressions:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##   S_Intent_t2 ~                                                           
##     SelfCritical       0.436    0.074    5.922    0.000     0.436    0.546
##     EmotReactivity     0.215    0.079    2.721    0.007     0.215    0.256
##     SleepTime         -0.002    0.001   -1.734    0.083    -0.002   -0.145
##   EmotReactivity ~                                                        
##     SleepTime         -0.002    0.001   -1.051    0.293    -0.002   -0.114
##     Efficnt            0.013    0.025    0.522    0.602     0.013    0.056
##   SelfCritical ~                                                          
##     SleepTime         -0.000    0.001   -0.088    0.930    -0.000   -0.009
##     Efficnt            0.039    0.026    1.540    0.124     0.039    0.161
## 
## Intercepts:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2       -0.144    0.511   -0.281    0.778    -0.144   -0.164
##    .EmotReactivity     3.435    1.947    1.764    0.078     3.435    3.302
##    .SelfCritical       0.953    2.008    0.475    0.635     0.953    0.870
## 
## Variances:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##    .S_Intent_t2        0.471    0.068    6.937    0.000     0.471    0.615
##    .EmotReactivity     1.069    0.147    7.258    0.000     1.069    0.988
##    .SelfCritical       1.170    0.157    7.454    0.000     1.170    0.975
## 
## Defined Parameters:
##                    Estimate   Std.Err  z-value  P(>|z|)   Std.lv   Std.all
##     total_indirect     0.000    0.000    0.632    0.527     0.000   -0.008
##     cogbias_ind        0.000    0.000    0.645    0.519     0.000   -0.001
##     EmoR_ind          -0.000    0.000   -0.147    0.883    -0.000   -0.003

Mediation Figure

Top line going from one variable to the other is level 1