#PACKAGE YANG DIPERLUKAN UNTUK SPASIAL 
library(tmap) 
library(raster) 
## Loading required package: sp
library(spdep) 
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Linking to GEOS 3.13.0, GDAL 3.10.1, PROJ 9.5.1; sf_use_s2() is TRUE
library(spatialreg) 
## Loading required package: Matrix
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     get.ClusterOption, get.coresOption, get.mcOption,
##     get.VerboseOption, get.ZeroPolicyOption, set.ClusterOption,
##     set.coresOption, set.mcOption, set.VerboseOption,
##     set.ZeroPolicyOption
library(rgdax)
## Loading required package: digest
## Loading required package: jsonlite
## Loading required package: RCurl
## Loading required package: httr
## Loading required package: plyr
#PACKAGE TAMBAHAN UNTUK ASUMSI DAN MEMBACA EXCEL 
library(readxl) 
library(lmtest) 
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'lmtest'
## The following object is masked from 'package:RCurl':
## 
##     reset
library(tseries)  
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(car) 
## Loading required package: carData
library(sf) 
library(readr)
#INPUT SHP FILE 
setwd("C:/Users/anand/Downloads/SEMESTER VI/ADS/Pertemuan 7")
spJatim <- st_read("3SK3_PADS07_03_Ananda_petajatimkab.shp")
## Reading layer `3SK3_PADS07_03_Ananda_petajatimkab' from data source 
##   `C:\Users\anand\Downloads\SEMESTER VI\ADS\Pertemuan 7\3SK3_PADS07_03_Ananda_petajatimkab.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 38 features and 26 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 110.8984 ymin: -8.780764 xmax: 116.2634 ymax: -5.527337
## CRS:           NA
names(spJatim)
##  [1] "KODE_KAB"   "POLY_ID"    "NAMA_KAB"   "KODE_PROP"  "NAMA_PROP" 
##  [6] "AKI"        "AKBn"       "AKB"        "BBLR"       "PERSALINAN"
## [11] "FE1"        "FE13"       "PHBS"       "JAMBA_EHAT" "AIRLAYAK"  
## [16] "RUMAHSEHAT" "MISKIN"     "IPM"        "AHH"        "RLS"       
## [21] "PENDUDUK"   "LUAS"       "KEPADATAN"  "KORX"       "KORY"      
## [26] "CATEGORIES" "geometry"
#Menampilkan Peta Jawa 
tm_shape(spJatim) + tm_polygons() 

#MATRIKS PEMBOBOT
queen.nb=poly2nb(spJatim) #Pembobot queen
## Warning in poly2nb(spJatim): neighbour object has 2 sub-graphs;
## if this sub-graph count seems unexpected, try increasing the snap argument.
queen.jatim=nb2listw(queen.nb,style="W",zero.policy=TRUE)

#Menyimpan Matriks Pembobot 
bobot.queen = listw2mat(queen.jatim) #convert listw to matrix
write.csv(bobot.queen, "3SK3_PADS07_03_Ananda_Matriks Bobot Queen Jatim.csv")
#Memanggil bobot queen yang dimodifikasi 
bobot=read_excel("C:/Users/anand/Downloads/SEMESTER VI/ADS/Pertemuan 7/3SK3_PADS07_03_Ananda_Matriks Bobot Queen Jatim_Baru.xlsx") 
head(bobot) 
## # A tibble: 6 × 38
##      V1    V2    V3    V4    V5    V6    V7    V8    V9   V10   V11   V12   V13
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0     0.5   0.5   0     0      0    0         0     0     0     0     0     0
## 2 0.167 0     0.167 0.167 0      0    0         0     0     0     0     0     0
## 3 0.333 0.333 0     0.333 0      0    0         0     0     0     0     0     0
## 4 0     0.2   0.2   0     0.2    0.2  0         0     0     0     0     0     0
## 5 0     0     0     0.25  0      0.25 0.25      0     0     0     0     0     0
## 6 0     0     0     0.167 0.167  0    0.167     0     0     0     0     0     0
## # ℹ 25 more variables: V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>,
## #   V19 <dbl>, V20 <dbl>, V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>,
## #   V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>, V29 <dbl>, V30 <dbl>,
## #   V31 <dbl>, V32 <dbl>, V33 <dbl>, V34 <dbl>, V35 <dbl>, V36 <dbl>,
## #   V37 <dbl>, V38 <dbl>
bobot_modif=as.matrix(bobot) 
modif_bobot=mat2listw(bobot_modif,style="W",)
#MORAN TEST: PEMBOBOT QUEEN 
moran.test(spJatim$AKI,modif_bobot,randomisation=FALSE, zero.policy = TRUE) 
## 
##  Moran I test under normality
## 
## data:  spJatim$AKI  
## weights: modif_bobot    
## 
## Moran I statistic standard deviate = -0.3734, p-value = 0.6456
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       -0.07447108       -0.02702703        0.01614416
moran.plot(spJatim$AKI,modif_bobot)

#MENGHITUNG MORAN.MC 
moran_mc <- moran.mc(spJatim$AKI,modif_bobot,nsim = 999,zero.policy = 
TRUE) 
#HISTOGRAM 
hist(moran_mc$res, 
breaks=30, 
col="darkred", 
min="", 
xlab="", 
border="white") 
## Warning in plot.window(xlim, ylim, "", ...): "min" is not a graphical parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "min"
## is not a graphical parameter
## Warning in axis(1, ...): "min" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "min" is not a graphical parameter
abline(v = moran_mc$statistic,col="green",lwd=2) #garis nilai Moran I Aktual 
abline(v = mean(moran_mc$res),col="white",lwd=2)

#NILAI-NILAI STATISTIK 
I_obs <- round(moran_mc$statistic,4) 
E_I <- round(mean(moran_mc$res),4) 
mean_sim <- round(mean(moran_mc$res),4) 
sd_sim <- round(sd(moran_mc$res),4) 
z_val <- round((I_obs - mean_sim)/sd_sim,4)

#TAMBAH KE GRAFIK HISTOGRAM 
mtext(paste0("I: ",I_obs, 
             "    E[I]: ",E_I, 
             "    mean: ",mean_sim, 
             "    sd: ",sd_sim, 
             "    z-value: ",z_val), 
      side = 1,line = 4,cex = 0.9)

#REGRESI OLS 
reg1=lm(spJatim$AKI~spJatim$AHH+spJatim$PERSALINAN+spJatim$FE13+spJatim$
 RLS) 
summary(reg1) 
## 
## Call:
## lm(formula = spJatim$AKI ~ spJatim$AHH + spJatim$PERSALINAN + 
##     spJatim$FE13 + spJatim$RLS)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -46.260 -24.421  -8.053  12.755 122.707 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1423.364    349.532   4.072 0.000274 ***
## spJatim$AHH         -11.178      4.392  -2.545 0.015790 *  
## spJatim$PERSALINAN   -5.130      2.202  -2.330 0.026082 *  
## spJatim$FE13         -1.060      1.549  -0.684 0.498496    
## spJatim$RLS           7.207      5.693   1.266 0.214387    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 37.15 on 33 degrees of freedom
## Multiple R-squared:  0.329,  Adjusted R-squared:  0.2476 
## F-statistic: 4.045 on 4 and 33 DF,  p-value: 0.008897
AIC_reg1 = AIC(reg1) #melihat nilai AIC 
AIC_reg1 
## [1] 389.2217
#UJI ASUMSI MODEL 
#NORMALITAS 
res <- reg1$residuals 
jarque.bera.test(res) 
## 
##  Jarque Bera Test
## 
## data:  res
## X-squared = 19.032, df = 2, p-value = 7.365e-05
#HOMOSKEDASTISITAS 
bptest(reg1) 
## 
##  studentized Breusch-Pagan test
## 
## data:  reg1
## BP = 4.955, df = 4, p-value = 0.2919
#NON-MULTIKOLINEARITAS 
vif(reg1)
##        spJatim$AHH spJatim$PERSALINAN       spJatim$FE13        spJatim$RLS 
##           2.195182           1.255353           1.494786           2.523349
#IDENTIFIKASI MODEL SPASIAL 
uji_lm=lm.LMtests(reg1,modif_bobot,test = "all",zero.policy = T) 
## Please update scripts to use lm.RStests in place of lm.LMtests
summary(uji_lm)
##  Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
##  dependence
## data:  
## model: lm(formula = spJatim$AKI ~ spJatim$AHH + spJatim$PERSALINAN +
## spJatim$FE13 + spJatim$RLS)
## test weights: listw
##  
##          statistic parameter p.value  
## RSerr       4.8330         1 0.02792 *
## RSlag       1.3216         1 0.25031  
## adjRSerr    6.2472         1 0.01244 *
## adjRSlag    2.7357         1 0.09813 .
## SARMA       7.5687         2 0.02272 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#SAR 
sar <- lagsarlm(spJatim$AKI~spJatim$AHH+spJatim$PERSALINAN+spJatim$FE13+spJatim
 $RLS,spJatim,modif_bobot) 
summary(sar,Nagelkerke=TRUE) 
## 
## Call:lagsarlm(formula = spJatim$AKI ~ spJatim$AHH + spJatim$PERSALINAN + 
##     spJatim$FE13 + spJatim$RLS, data = spJatim, listw = modif_bobot)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -42.5086 -22.9357  -7.2721  10.9375 117.5502 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##                     Estimate Std. Error z value  Pr(>|z|)
## (Intercept)        1506.5287   314.7750  4.7860 1.701e-06
## spJatim$AHH         -12.1498     3.9716 -3.0592   0.00222
## spJatim$PERSALINAN   -4.9299     1.9859 -2.4824   0.01305
## spJatim$FE13         -1.0853     1.3937 -0.7788   0.43611
## spJatim$RLS           6.9722     5.1152  1.3630   0.17287
## 
## Rho: -0.29373, LR test value: 1.9941, p-value: 0.15791
## Asymptotic standard error: 0.1683
##     z-value: -1.7453, p-value: 0.080938
## Wald statistic: 3.046, p-value: 0.080938
## 
## Log likelihood: -187.6138 for lag model
## ML residual variance (sigma squared): 1112, (sigma: 33.346)
## Nagelkerke pseudo-R-squared: 0.36328 
## Number of observations: 38 
## Number of parameters estimated: 7 
## AIC: 389.23, (AIC for lm: 389.22)
## LM test for residual autocorrelation
## test value: 6.9852, p-value: 0.0082187
#UJI HOMOSKEDASTISITAS MODEL TERBAIK 
bptest.Sarlm(sar)
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 5.3212, df = 4, p-value = 0.2559
#SEM 
sem <- errorsarlm(spJatim$AKI~spJatim$AHH+spJatim$PERSALINAN+spJatim$FE13+spJatim$RLS,spJatim,modif_bobot) 
summary(sem,Nagelkerke=TRUE) 
## 
## Call:errorsarlm(formula = spJatim$AKI ~ spJatim$AHH + spJatim$PERSALINAN + 
##     spJatim$FE13 + spJatim$RLS, data = spJatim, listw = modif_bobot)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -43.9282 -19.0980  -3.7339  17.8265  87.2656 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##                     Estimate Std. Error z value  Pr(>|z|)
## (Intercept)        1661.0564   218.9027  7.5881 3.242e-14
## spJatim$AHH         -11.8774     2.3827 -4.9849 6.199e-07
## spJatim$PERSALINAN   -5.5701     1.3711 -4.0626 4.854e-05
## spJatim$FE13         -2.8076     1.0753 -2.6110  0.009027
## spJatim$RLS           9.0319     3.8446  2.3492  0.018813
## 
## Lambda: -0.8194, LR test value: 11.495, p-value: 0.00069799
## Asymptotic standard error: 0.12368
##     z-value: -6.6249, p-value: 3.4744e-11
## Wald statistic: 43.89, p-value: 3.4744e-11
## 
## Log likelihood: -182.8636 for error model
## ML residual variance (sigma squared): 726.63, (sigma: 26.956)
## Nagelkerke pseudo-R-squared: 0.50413 
## Number of observations: 38 
## Number of parameters estimated: 7 
## AIC: 379.73, (AIC for lm: 389.22)
#UJI HOMOSKEDASTISITAS MODEL TERBAIK 
bptest.Sarlm(sem) 
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 8.5182, df = 4, p-value = 0.07434
#SAC 
sac <- sacsarlm(spJatim$AKI~spJatim$AHH+spJatim$PERSALINAN+spJatim$FE13+spJatim$RLS,spJatim,modif_bobot) 
summary(sac, Nagelkerke=TRUE) 
## 
## Call:sacsarlm(formula = spJatim$AKI ~ spJatim$AHH + spJatim$PERSALINAN + 
##     spJatim$FE13 + spJatim$RLS, data = spJatim, listw = modif_bobot)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -38.3508 -19.1480  -4.6708  16.1811  83.2744 
## 
## Type: sac 
## Coefficients: (asymptotic standard errors) 
##                     Estimate Std. Error z value  Pr(>|z|)
## (Intercept)        1449.0489   263.0812  5.5080  3.63e-08
## spJatim$AHH         -10.0439     2.5992 -3.8643 0.0001114
## spJatim$PERSALINAN   -4.8388     1.4124 -3.4259 0.0006127
## spJatim$FE13         -2.8640     1.0100 -2.8357 0.0045730
## spJatim$RLS           8.2539     3.6212  2.2793 0.0226466
## 
## Rho: 0.23812
## Asymptotic standard error: 0.18793
##     z-value: 1.2671, p-value: 0.20513
## Lambda: -0.90673
## Asymptotic standard error: 0.11106
##     z-value: -8.1644, p-value: 2.2204e-16
## 
## LR test value: 12.825, p-value: 0.0016412
## 
## Log likelihood: -182.1986 for sac model
## ML residual variance (sigma squared): 651.06, (sigma: 25.516)
## Nagelkerke pseudo-R-squared: 0.52119 
## Number of observations: 38 
## Number of parameters estimated: 8 
## AIC: 380.4, (AIC for lm: 389.22)
#UJI HOMOSKEDASTISITAS MODEL TERBAIK 
bptest.Sarlm(sac) 
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 7.9486, df = 4, p-value = 0.09348
#MEMBANDINGKAN MODEL 
LR.Sarlm(sem, sac)
## 
##  Likelihood ratio for spatial linear models
## 
## data:  
## Likelihood ratio = -1.33, df = 1, p-value = 0.2488
## sample estimates:
## Log likelihood of sem Log likelihood of sac 
##             -182.8636             -182.1986

Penugasan

#INPUT SHP FILE 
setwd("C:/Users/anand/Downloads/SEMESTER VI/ADS/Pertemuan 7")
spJawa <- st_read("3SK3_PADS07_03_Ananda_petajawa.shp")
## Reading layer `3SK3_PADS07_03_Ananda_petajawa' from data source 
##   `C:\Users\anand\Downloads\SEMESTER VI\ADS\Pertemuan 7\3SK3_PADS07_03_Ananda_petajawa.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 118 features and 25 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 105.0999 ymin: -8.780223 xmax: 116.2702 ymax: -5.042965
## CRS:           NA
names(spJawa)
##  [1] "zkepadatan" "kepadatan"  "kabkota"    "kodekab"    "Luas"      
##  [6] "HLS_2021"   "IPG_2021"   "IDG_2021"   "RLS_2021"   "UHH_2021"  
## [11] "Perkapita_" "IPM_2021"   "Laki"       "Perempuan"  "Penduduk"  
## [16] "Persen2021" "Persen2022" "Jumlah2021" "Jumlah2022" "Lat_Pusat" 
## [21] "Long_Pusat" "Lat_cntrd"  "Long_cntrd" "MORAN_STD"  "MORAN_LAG" 
## [26] "geometry"
#Menampilkan Peta Jawa 
tm_shape(spJawa) + tm_polygons() 

#MATRIKS PEMBOBOT
queen.nb=poly2nb(spJawa) #Pembobot queen
## Warning in poly2nb(spJawa): neighbour object has 2 sub-graphs;
## if this sub-graph count seems unexpected, try increasing the snap argument.
queen.jawa=nb2listw(queen.nb,style="W",zero.policy=TRUE)

#Menyimpan Matriks Pembobot 
bobot.queen = listw2mat(queen.jawa) #convert listw to matrix
write.csv(bobot.queen, "3SK3_PADS07_03_Ananda_Matriks Bobot Queen Jawa.csv")
#Memanggil bobot queen yang dimodifikasi 
bobot=read_excel("C:/Users/anand/Downloads/SEMESTER VI/ADS/Pertemuan 7/3SK3_PADS07_03_Ananda_Matriks Bobot Queen Jawa_Baru.xlsx") 
head(bobot) 
## # A tibble: 6 × 118
##      V1    V2    V3    V4    V5    V6    V7    V8    V9   V10   V11   V12   V13
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0     0.143     0 0         0 0         0 0         0     0     0     0     0
## 2 0.167 0         0 0         0 0         0 0         0     0     0     0     0
## 3 0     0         0 0         0 0         0 0         0     0     0     0     0
## 4 0     0         0 0         0 0.167     0 0.167     0     0     0     0     0
## 5 0     0         0 0         0 0         0 0         0     0     0     0     0
## 6 0     0         0 0.143     0 0         0 0         0     0     0     0     0
## # ℹ 105 more variables: V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>,
## #   V19 <dbl>, V20 <dbl>, V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>,
## #   V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>, V29 <dbl>, V30 <dbl>,
## #   V31 <dbl>, V32 <dbl>, V33 <dbl>, V34 <dbl>, V35 <dbl>, V36 <dbl>,
## #   V37 <dbl>, V38 <dbl>, V39 <dbl>, V40 <dbl>, V41 <dbl>, V42 <dbl>,
## #   V43 <dbl>, V44 <dbl>, V45 <dbl>, V46 <dbl>, V47 <dbl>, V48 <dbl>,
## #   V49 <dbl>, V50 <dbl>, V51 <dbl>, V52 <dbl>, V53 <dbl>, V54 <dbl>, …
bobot_modif=as.matrix(bobot) 
modif_bobot=mat2listw(bobot_modif,style="W",)
#MORAN TEST: PEMBOBOT QUEEN 
moran.test(spJawa$Persen2021,modif_bobot,randomisation=FALSE,  
zero.policy = TRUE) 
## 
##  Moran I test under normality
## 
## data:  spJawa$Persen2021  
## weights: modif_bobot    
## 
## Moran I statistic standard deviate = 6.7894, p-value = 5.632e-12
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##       0.447298816      -0.008547009       0.004507950
moran.plot(spJawa$Persen2021,modif_bobot)

#MENGHITUNG MORAN.MC 
moran_mc <- moran.mc(spJawa$Persen2021,modif_bobot,nsim = 999,zero.policy = TRUE)

#HISTOGRAM 
hist(moran_mc$res, 
breaks=30, 
col="darkred", 
min="", 
xlab="", 
border="white") 
## Warning in plot.window(xlim, ylim, "", ...): "min" is not a graphical parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "min"
## is not a graphical parameter
## Warning in axis(1, ...): "min" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "min" is not a graphical parameter
abline(v = moran_mc$statistic,col="green",lwd=2) #garis nilai Moran I Aktual 
abline(v = mean(moran_mc$res),col="white",lwd=2)

#NILAI-NILAI STATISTIK 
I_obs <- round(moran_mc$statistic,4) 
E_I <- round(mean(moran_mc$res),4) 
mean_sim <- round(mean(moran_mc$res),4) 
sd_sim <- round(sd(moran_mc$res),4) 
z_val <- round((I_obs - mean_sim)/sd_sim,4)

#TAMBAH KE GRAFIK HISTOGRAM 
mtext(paste0("I: ",I_obs, 
             "    E[I]: ",E_I, 
             "    mean: ",mean_sim, 
             "    sd: ",sd_sim, 
             "    z-value: ",z_val), 
      side = 1,line = 4,cex = 0.9)

#REGRESI OLS 
reg_1=lm(spJawa$Persen2021~spJawa$RLS_2021) 
summary(reg_1) 
## 
## Call:
## lm(formula = spJawa$Persen2021 ~ spJawa$RLS_2021)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5914 -1.9282 -0.2212  1.6376  9.2085 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      26.5537     1.4050   18.90   <2e-16 ***
## spJawa$RLS_2021  -1.9271     0.1636  -11.78   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.845 on 116 degrees of freedom
## Multiple R-squared:  0.5446, Adjusted R-squared:  0.5406 
## F-statistic: 138.7 on 1 and 116 DF,  p-value: < 2.2e-16
AIC_reg_1 = AIC(reg_1) #melihat nilai AIC
AIC_reg_1 
## [1] 585.6171
#UJI ASUMSI MODEL 
#NORMALITAS 
res <- reg_1$residuals 
jarque.bera.test(res) 
## 
##  Jarque Bera Test
## 
## data:  res
## X-squared = 6.7634, df = 2, p-value = 0.03399
#HOMOSKEDASTISITAS 
bptest(reg_1)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg_1
## BP = 6.5841, df = 1, p-value = 0.01029
#IDENTIFIKASI MODEL SPASIAL 
uji_lm <- lm.LMtests(reg_1,modif_bobot,test = "all", zero.policy = TRUE)
## Please update scripts to use lm.RStests in place of lm.LMtests
summary(uji_lm)
##  Rao's score (a.k.a Lagrange multiplier) diagnostics for spatial
##  dependence
## data:  
## model: lm(formula = spJawa$Persen2021 ~ spJawa$RLS_2021)
## test weights: listw
##  
##          statistic parameter   p.value    
## RSerr     28.55743         1 9.096e-08 ***
## RSlag     15.99188         1 6.361e-05 ***
## adjRSerr  12.72620         1 0.0003606 ***
## adjRSlag   0.16064         1 0.6885702    
## SARMA     28.71807         2 5.807e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#SEM 
sem <- errorsarlm(spJawa$Persen2021~spJawa$RLS,data=spJawa, modif_bobot, zero.policy = TRUE) 
summary(sem,Nagelkerke=TRUE) 
## 
## Call:errorsarlm(formula = spJawa$Persen2021 ~ spJawa$RLS, data = spJawa, 
##     listw = modif_bobot, zero.policy = TRUE)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -5.26637 -1.52394 -0.25458  1.55197  7.76906 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##             Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 26.08450    1.58470  16.460 < 2.2e-16
## spJawa$RLS  -1.84778    0.17421 -10.607 < 2.2e-16
## 
## Lambda: 0.4737, LR test value: 22.926, p-value: 1.6835e-06
## Asymptotic standard error: 0.095851
##     z-value: 4.9421, p-value: 7.7305e-07
## Wald statistic: 24.424, p-value: 7.7305e-07
## 
## Log likelihood: -278.3455 for error model
## ML residual variance (sigma squared): 6.1865, (sigma: 2.4873)
## Nagelkerke pseudo-R-squared: 0.62498 
## Number of observations: 118 
## Number of parameters estimated: 4 
## AIC: 564.69, (AIC for lm: 585.62)
#UJI HOMOSKEDASTISITAS MODEL TERBAIK 
bptest.Sarlm(sem) 
## 
##  studentized Breusch-Pagan test
## 
## data:  
## BP = 6.678, df = 1, p-value = 0.009761