library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
## ✔ broom        1.0.8     ✔ recipes      1.3.0
## ✔ dials        1.4.0     ✔ rsample      1.3.0
## ✔ dplyr        1.1.4     ✔ tibble       3.2.1
## ✔ ggplot2      3.5.2     ✔ tidyr        1.3.1
## ✔ infer        1.0.8     ✔ tune         1.3.0
## ✔ modeldata    1.4.0     ✔ workflows    1.2.0
## ✔ parsnip      1.3.1     ✔ workflowsets 1.1.0
## ✔ purrr        1.0.4     ✔ yardstick    1.3.2
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
library(ISLR)
library(kknn)
library(stringr)
## 
## Attaching package: 'stringr'
## The following object is masked from 'package:recipes':
## 
##     fixed
library(forcats)
library(ggplot2)
library(purrr)
library(discrim)
## 
## Attaching package: 'discrim'
## The following object is masked from 'package:dials':
## 
##     smoothness
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ lubridate 1.9.4     ✔ readr     2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ readr::col_factor() masks scales::col_factor()
## ✖ purrr::discard()    masks scales::discard()
## ✖ dplyr::filter()     masks stats::filter()
## ✖ stringr::fixed()    masks recipes::fixed()
## ✖ dplyr::lag()        masks stats::lag()
## ✖ readr::spec()       masks yardstick::spec()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(parsnip)
library(recipes)
library(workflows)
Smarket_train <- Smarket %>% filter(Year < 2005)
Smarket_test <- Smarket %>% filter(Year == 2005)

lr_spec <- logistic_reg() %>%
  set_mode("classification") %>%
  set_engine("glm")

lr_fit <- lr_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

summary(lr_fit$fit)
## 
## Call:
## stats::glm(formula = Direction ~ Lag1 + Lag2, family = stats::binomial, 
##     data = data)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.03222    0.06338   0.508    0.611
## Lag1        -0.05562    0.05171  -1.076    0.282
## Lag2        -0.04449    0.05166  -0.861    0.389
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1383.3  on 997  degrees of freedom
## Residual deviance: 1381.4  on 995  degrees of freedom
## AIC: 1387.4
## 
## Number of Fisher Scoring iterations: 3
augment(lr_fit, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
##           Truth
## Prediction Down  Up
##       Down   35  35
##       Up     76 106
augment(lr_fit, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.560
lr_spec2 <- logistic_reg() %>%
  set_mode("classification") %>%
  set_engine("glm")

lr_fit2 <- lr_spec2 %>%
  fit(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Smarket_train)

augment(lr_fit2, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
##           Truth
## Prediction Down Up
##       Down   77 97
##       Up     34 44
augment(lr_fit2, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.480
lr_spec3 <- logistic_reg() %>%
  set_mode("classification") %>%
  set_engine("glm")

lr_fit3 <- lr_spec3 %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augment(lr_fit3, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
##           Truth
## Prediction Down  Up
##       Down   35  35
##       Up     76 106
augment(lr_fit3, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.560
install.packages("discrim")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
library(discrim)
lda_spec <- discrim_linear() %>%
  set_mode("classification") %>%
  set_engine("MASS")

lda_fit <- lda_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augment(lda_fit, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
##           Truth
## Prediction Down  Up
##       Down   35  35
##       Up     76 106
augment(lda_fit, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.560
qda_spec <- discrim_quad() %>%
  set_mode("classification") %>%
  set_engine("MASS")

qda_fit <- qda_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augment(qda_fit, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
##           Truth
## Prediction Down  Up
##       Down   30  20
##       Up     81 121
augment(qda_fit, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.599
knn_spec <- nearest_neighbor(neighbors = 3) %>%
  set_mode("classification") %>%
  set_engine("kknn")

knn_fit <- knn_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augment(knn_fit, new_data = Smarket_test) %>%
  conf_mat(truth = Direction, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
##           Truth
## Prediction Down Up
##       Down   43 58
##       Up     68 83
augment(knn_fit, new_data = Smarket_test) %>%
  accuracy(truth = Direction, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary           0.5
Caravan_test <- Caravan[seq_len(1000), ]
Caravan_train <- Caravan[-seq_len(1000), ]

rec_spec <- recipe(Purchase ~ ., data = Caravan_train) %>%
  step_normalize(all_numeric_predictors())

Caravan_wf <- workflow() %>%
  add_recipe(rec_spec)

knn_spec <- nearest_neighbor() %>%
  set_mode("classification") %>%
  set_engine("kknn")
knn1_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 1))

knn3_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 3))

knn5_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 5))

knn1_fit <- fit(knn1_wf, data = Caravan_train)
knn3_fit <- fit(knn3_wf, data = Caravan_train)
knn5_fit <- fit(knn5_wf, data = Caravan_train)

augment(knn1_fit, new_data = Caravan_test) %>%
  conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
##           Truth
## Prediction  No Yes
##        No  874  50
##        Yes  67   9
augment(knn3_fit, new_data = Caravan_test) %>%
  conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
##           Truth
## Prediction  No Yes
##        No  875  50
##        Yes  66   9
augment(knn5_fit, new_data = Caravan_test) %>%
  conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
##           Truth
## Prediction  No Yes
##        No  874  50
##        Yes  67   9
library(tidyverse)
library(parsnip)
library(recipes)
library(workflows)
library(poissonreg)
library(broom)
library(ISLR2)
## 
## Attaching package: 'ISLR2'
## The following objects are masked from 'package:ISLR':
## 
##     Auto, Credit
pois_spec <- poisson_reg() %>%
  set_mode("regression") %>%
  set_engine("glm")

pois_rec_spec <- recipe(
  bikers ~ mnth + hr + workingday + temp + weathersit,
  data = Bikeshare
) %>%
  step_dummy(all_nominal_predictors())

pois_wf <- workflow() %>%
  add_recipe(pois_rec_spec) %>%
  add_model(pois_spec)

pois_fit <- pois_wf %>% fit(data = Bikeshare)
augment(pois_fit, new_data = Bikeshare, type.predict = "response") %>%
  ggplot(aes(bikers, .pred)) +
  geom_point(alpha = 0.1) +
  geom_abline(slope = 1, color = "grey40", linewidth = 1) +
  labs(title = "Predicting the number of bikers per hour using Poisson Regression",
       x = "Actual", y = "Predicted")

pois_fit_coef_mnths <- tidy(pois_fit) %>%
  filter(str_detect(term, "^mnth")) %>%
  mutate(
    term = str_replace(term, "mnth_", ""),
    term = fct_inorder(term)
  )

pois_fit_coef_mnths %>%
  ggplot(aes(term, estimate)) +
  geom_line(group = 1) +
  geom_point(shape = 21, size = 3, stroke = 1.5,
             fill = "black", color = "white") +
  labs(title = "Coefficient value from Poisson Regression",
       x = "Month", y = "Coefficient")

pois_fit_coef_hr <- tidy(pois_fit) %>%
  filter(str_detect(term, "^hr")) %>%
  mutate(
    term = str_replace(term, "hr_", ""),
    term = fct_inorder(term)
  )
pois_fit_coef_hr %>%
  ggplot(aes(term, estimate)) +
  geom_line(group = 1) +
  geom_point(shape = 21, size = 3, stroke = 1.5,
             fill = "black", color = "white") +
  labs(title = "Coefficient value from Poisson Regression",
       x = "Hour", y = "Coefficient")

library(tidymodels)

models <- list(
  "logistic regression" = lr_fit3,
  "LDA" = lda_fit,
  "QDA" = qda_fit,
  "KNN" = knn_fit
)

preds <- imap_dfr(models, augment,
                  new_data = Smarket_test, .id = "model")
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
multi_metric <- metric_set(accuracy, sensitivity, specificity)

preds %>%
  group_by(model) %>%
  multi_metric(truth = Direction, estimate = .pred_class)
## # A tibble: 12 × 4
##    model               .metric     .estimator .estimate
##    <chr>               <chr>       <chr>          <dbl>
##  1 KNN                 accuracy    binary         0.5  
##  2 LDA                 accuracy    binary         0.560
##  3 QDA                 accuracy    binary         0.599
##  4 logistic regression accuracy    binary         0.560
##  5 KNN                 sensitivity binary         0.387
##  6 LDA                 sensitivity binary         0.315
##  7 QDA                 sensitivity binary         0.270
##  8 logistic regression sensitivity binary         0.315
##  9 KNN                 specificity binary         0.589
## 10 LDA                 specificity binary         0.752
## 11 QDA                 specificity binary         0.858
## 12 logistic regression specificity binary         0.752
preds %>%
  group_by(model) %>%
  roc_curve(Direction, .pred_Down) %>%
  autoplot()