Load assessment data
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: lattice
##
##
## Attaching package: 'caret'
##
##
## The following object is masked from 'package:purrr':
##
## lift
##
##
##
## Attaching package: 'janitor'
##
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
## # A tibble: 476 × 4
## district population_group subgroup proficiency
## <chr> <chr> <chr> <dbl>
## 1 Barbour Gender Female 20.6
## 2 Barbour Gender Male 22.9
## 3 Barbour Race/Ethnicity Multi-Racial 35.7
## 4 Barbour Race/Ethnicity White 21.7
## 5 Barbour Student Status Economically Disadvantaged 15.5
## 6 Barbour Student Status Foster Care 14.0
## 7 Barbour Student Status Special Education (Students with Disab… 5.59
## 8 Barbour Total Population Total 21.8
## 9 Berkeley Gender Female 24.7
## 10 Berkeley Gender Male 24.9
## # ℹ 466 more rows
Load spending data
## # A tibble: 55 × 10
## School_Name enroll Federal_Revenue State_Revenue Local_Revenue
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 BARBOUR CO SCH DIST 2144 7559 16584 5872
## 2 BERKELEY CO SCH DIST 19722 48407 140127 86699
## 3 BOONE CO SCH DIST 3177 8194 26858 14564
## 4 BRAXTON CO SCH DIST 1747 5479 12748 6404
## 5 BROOKE CO SCH DIST 2582 6791 17114 21352
## 6 CABELL CO SCH DIST 11667 42518 88337 66699
## 7 CALHOUN CO SCH DIST 861 3254 9953 3190
## 8 CLAY CO SCH DIST 1669 6157 17655 2791
## 9 DODDRIDGE CO SCH DIST 1082 3455 3999 31752
## 10 FAYETTE CO SCH DIST 5594 15293 51759 23477
## # ℹ 45 more rows
## # ℹ 5 more variables: Total_Expenditures <dbl>, Total_Current_Spending <dbl>,
## # Instruction_Spending <dbl>, Support_Services_Spending <dbl>, county <chr>
Load demographic data
## Warning: One or more parsing issues, call `problems()` on your data frame for details,
## e.g.:
## dat <- vroom(...)
## problems(dat)
## Rows: 62 Columns: 5
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): County, FIPS, Rank within US (of 3143 counties)
## dbl (2): Value (Percent), People (Unemployed)
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 55 × 2
## county percent_unemployed
## <chr> <dbl>
## 1 Mcdowell 15.1
## 2 Braxton 14.4
## 3 Logan 13.3
## 4 Calhoun 12.2
## 5 Roane 11.7
## 6 Clay 11.2
## 7 Mingo 11.2
## 8 Webster 11.1
## 9 Monroe 10.6
## 10 Barbour 10.1
## # ℹ 45 more rows
Joined data
Correlations


Linear Regression Model