Name: Oscar Alexander Tobar

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

Exam 2

Question 5 Reads

Consider the following vectors representing the number of field goals made and attempted by a basketball player in five games:

Field Goals Made: c(18, 7, 6, 9, 10,13) Field Goals Attempted: c(36, 23, 12, 18, 24,22)

Calculate the field goal percentage for each game and select the correct average field goal percentage for the five games.

# Vectors
fg_made <- c(18, 7, 6, 9, 10, 13)
fg_made
[1] 18  7  6  9 10 13
fg_attempted <- c(36, 23, 12, 18, 24, 22)
fg_attempted
[1] 36 23 12 18 24 22
# Field goal percentage per game
fg_percentages <- (fg_made / fg_attempted) * 100

# Average field goal percentage across the six games
average_fg_percentage <- mean(fg_percentages)

# Output the result
fg_percentages
[1] 50.00000 30.43478 50.00000 50.00000 41.66667 59.09091
average_fg_percentage
[1] 46.86539

Question 6 reads:

Consider the following vectors representing the number of three-pointers made and attempted by a basketball player in five games:

Three-Pointers Made: c(3, 5,0, 6, 3, 7) Three-Pointers Attempted: c(9, 10, 8,12, 11, 12)

Calculate the three-point shooting percentage for each game and select the correct average three-point shooting percentage for the five games.

# Vectors
three_made <- c(3, 5, 0, 6, 3, 7)
three_attempted <- c(9, 10, 8, 12, 11, 12)
# Three-point percentage per game
three_point_percentages <- (three_made / three_attempted) * 100

# Average three-point percentage across the six games
average_three_point_percentage <- mean(three_point_percentages)

# Output the results
three_point_percentages
[1] 33.33333 50.00000  0.00000 50.00000 27.27273 58.33333
average_three_point_percentage
[1] 36.4899

Question 7:

Consider the following dataset representing the performance of baseball players in a season. It includes the following variables: PlayerID, Hits, At-Bats, Home Runs (HR), Walks (BB), and Strikeouts (SO).

PlayerID Hits At-Bats HR BB SO

1             112       400           25          50     60

2             124       450           22          60     65

3             121       380           8            19     67

4             106       500           20         150     92

5             140       402           11          55     70

Compute the on-base percentage (OBP) for each player and select the player with the highest OBP.

  1. Player 1 b) Player 2 c) Player 3 d) Player 4 e) Player 5

To calculate OBP, you can use the following formula:

OBP = (Hits + Walks) / (At-Bats + Walks)

# Create the dataset
player_data <- data.frame(
  PlayerID = c(1, 2, 3, 4, 5),
  Hits = c(112, 124, 121, 106, 140),
  At_Bats = c(400, 450, 380, 500, 402),
  Walks = c(50, 60, 19, 150, 55)
)
# Calculate OBP
player_data$OBP <- (player_data$Hits + player_data$Walks) / 
                   (player_data$At_Bats + player_data$Walks)
# View the dataset with OBP
print(player_data)

# Identify the player with the highest OBP
max_obp_player <- player_data[which.max(player_data$OBP), ]
print(max_obp_player)
LS0tDQp0aXRsZTogIkV4YW0gMiBSIE5vdGVib29rIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBOYW1lOiBPc2NhciBBbGV4YW5kZXIgVG9iYXINCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gDQoNCmBgYHtyfQ0KcGxvdChjYXJzKQ0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4NCg0KV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuDQoNClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4NCg0KIyBFeGFtICAyDQoNCioqUXVlc3Rpb24gNSBSZWFkcyoqDQoNCg0KQ29uc2lkZXIgdGhlIGZvbGxvd2luZyB2ZWN0b3JzIHJlcHJlc2VudGluZyB0aGUgbnVtYmVyIG9mIGZpZWxkIGdvYWxzIG1hZGUgYW5kIGF0dGVtcHRlZCBieSBhIGJhc2tldGJhbGwgcGxheWVyIGluIGZpdmUgZ2FtZXM6DQoNCkZpZWxkIEdvYWxzIE1hZGU6IGMoMTgsIDcsIDYsIDksIDEwLDEzKSBGaWVsZCBHb2FscyBBdHRlbXB0ZWQ6IGMoMzYsIDIzLCAxMiwgMTgsIDI0LDIyKQ0KDQpDYWxjdWxhdGUgdGhlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBmb3IgZWFjaCBnYW1lIGFuZCBzZWxlY3QgdGhlIGNvcnJlY3QgYXZlcmFnZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIHRoZSBmaXZlIGdhbWVzLg0KDQpgYGB7cn0NCiMgVmVjdG9ycw0KZmdfbWFkZSA8LSBjKDE4LCA3LCA2LCA5LCAxMCwgMTMpDQpmZ19tYWRlDQpgYGANCmBgYHtyfQ0KZmdfYXR0ZW1wdGVkIDwtIGMoMzYsIDIzLCAxMiwgMTgsIDI0LCAyMikNCmZnX2F0dGVtcHRlZA0KYGBgDQpgYGB7cn0NCiMgRmllbGQgZ29hbCBwZXJjZW50YWdlIHBlciBnYW1lDQpmZ19wZXJjZW50YWdlcyA8LSAoZmdfbWFkZSAvIGZnX2F0dGVtcHRlZCkgKiAxMDANCg0KIyBBdmVyYWdlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBhY3Jvc3MgdGhlIHNpeCBnYW1lcw0KYXZlcmFnZV9mZ19wZXJjZW50YWdlIDwtIG1lYW4oZmdfcGVyY2VudGFnZXMpDQoNCiMgT3V0cHV0IHRoZSByZXN1bHQNCmZnX3BlcmNlbnRhZ2VzDQphdmVyYWdlX2ZnX3BlcmNlbnRhZ2UNCmBgYA0KDQoqKlF1ZXN0aW9uIDYgcmVhZHM6KioNCg0KDQpDb25zaWRlciB0aGUgZm9sbG93aW5nIHZlY3RvcnMgcmVwcmVzZW50aW5nIHRoZSBudW1iZXIgb2YgdGhyZWUtcG9pbnRlcnMgbWFkZSBhbmQgYXR0ZW1wdGVkIGJ5IGEgYmFza2V0YmFsbCBwbGF5ZXIgaW4gZml2ZSBnYW1lczoNCg0KVGhyZWUtUG9pbnRlcnMgTWFkZTogYygzLCA1LDAsIDYsIDMsIDcpIFRocmVlLVBvaW50ZXJzIEF0dGVtcHRlZDogYyg5LCAxMCwgOCwxMiwgMTEsIDEyKQ0KDQpDYWxjdWxhdGUgdGhlIHRocmVlLXBvaW50IHNob290aW5nIHBlcmNlbnRhZ2UgZm9yIGVhY2ggZ2FtZSBhbmQgc2VsZWN0IHRoZSBjb3JyZWN0IGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBmb3IgdGhlIGZpdmUgZ2FtZXMuDQpgYGB7cn0NCiMgVmVjdG9ycw0KdGhyZWVfbWFkZSA8LSBjKDMsIDUsIDAsIDYsIDMsIDcpDQp0aHJlZV9hdHRlbXB0ZWQgPC0gYyg5LCAxMCwgOCwgMTIsIDExLCAxMikNCmBgYA0KDQpgYGB7cn0NCiMgVGhyZWUtcG9pbnQgcGVyY2VudGFnZSBwZXIgZ2FtZQ0KdGhyZWVfcG9pbnRfcGVyY2VudGFnZXMgPC0gKHRocmVlX21hZGUgLyB0aHJlZV9hdHRlbXB0ZWQpICogMTAwDQoNCiMgQXZlcmFnZSB0aHJlZS1wb2ludCBwZXJjZW50YWdlIGFjcm9zcyB0aGUgc2l4IGdhbWVzDQphdmVyYWdlX3RocmVlX3BvaW50X3BlcmNlbnRhZ2UgPC0gbWVhbih0aHJlZV9wb2ludF9wZXJjZW50YWdlcykNCg0KIyBPdXRwdXQgdGhlIHJlc3VsdHMNCnRocmVlX3BvaW50X3BlcmNlbnRhZ2VzDQphdmVyYWdlX3RocmVlX3BvaW50X3BlcmNlbnRhZ2UNCmBgYA0KKipRdWVzdGlvbiA3OioqDQoNCg0KQ29uc2lkZXIgdGhlIGZvbGxvd2luZyBkYXRhc2V0IHJlcHJlc2VudGluZyB0aGUgcGVyZm9ybWFuY2Ugb2YgYmFzZWJhbGwgcGxheWVycyBpbiBhIHNlYXNvbi4gSXQgaW5jbHVkZXMgdGhlIGZvbGxvd2luZyB2YXJpYWJsZXM6IFBsYXllcklELCBIaXRzLCBBdC1CYXRzLCBIb21lIFJ1bnMgKEhSKSwgV2Fsa3MgKEJCKSwgYW5kIFN0cmlrZW91dHMgKFNPKS4NCg0KUGxheWVySUQgICAgIEhpdHMgICAgQXQtQmF0cyAgICAgICAgSFIgICAgICAgIEJCICAgICBTTw0KDQogICAgMSAgICAgICAgICAgICAxMTIgICAgICAgNDAwICAgICAgICAgICAyNSAgICAgICAgICA1MCAgICAgNjANCg0KICAgIDIgICAgICAgICAgICAgMTI0ICAgICAgIDQ1MCAgICAgICAgICAgMjIgICAgICAgICAgNjAgICAgIDY1DQoNCiAgICAzICAgICAgICAgICAgIDEyMSAgICAgICAzODAgICAgICAgICAgIDggICAgICAgICAgICAxOSAgICAgNjcNCg0KICAgIDQgICAgICAgICAgICAgMTA2ICAgICAgIDUwMCAgICAgICAgICAgMjAgICAgICAgICAxNTAgICAgIDkyDQoNCiAgICA1ICAgICAgICAgICAgIDE0MCAgICAgICA0MDIgICAgICAgICAgIDExICAgICAgICAgIDU1ICAgICA3MA0KDQpDb21wdXRlIHRoZSBvbi1iYXNlIHBlcmNlbnRhZ2UgKE9CUCkgZm9yIGVhY2ggcGxheWVyIGFuZCBzZWxlY3QgdGhlIHBsYXllciB3aXRoIHRoZSBoaWdoZXN0IE9CUC4NCg0KYSkgUGxheWVyIDEgYikgUGxheWVyIDIgYykgUGxheWVyIDMgZCkgUGxheWVyIDQgZSkgUGxheWVyIDUNCg0KVG8gY2FsY3VsYXRlIE9CUCwgeW91IGNhbiB1c2UgdGhlIGZvbGxvd2luZyBmb3JtdWxhOg0KDQpPQlAgPSAoSGl0cyArIFdhbGtzKSAvIChBdC1CYXRzICsgV2Fsa3MpDQpgYGB7cn0NCiMgQ3JlYXRlIHRoZSBkYXRhc2V0DQpwbGF5ZXJfZGF0YSA8LSBkYXRhLmZyYW1lKA0KICBQbGF5ZXJJRCA9IGMoMSwgMiwgMywgNCwgNSksDQogIEhpdHMgPSBjKDExMiwgMTI0LCAxMjEsIDEwNiwgMTQwKSwNCiAgQXRfQmF0cyA9IGMoNDAwLCA0NTAsIDM4MCwgNTAwLCA0MDIpLA0KICBXYWxrcyA9IGMoNTAsIDYwLCAxOSwgMTUwLCA1NSkNCikNCmBgYA0KDQpgYGB7cn0NCiMgQ2FsY3VsYXRlIE9CUA0KcGxheWVyX2RhdGEkT0JQIDwtIChwbGF5ZXJfZGF0YSRIaXRzICsgcGxheWVyX2RhdGEkV2Fsa3MpIC8gDQogICAgICAgICAgICAgICAgICAgKHBsYXllcl9kYXRhJEF0X0JhdHMgKyBwbGF5ZXJfZGF0YSRXYWxrcykNCmBgYA0KDQpgYGB7cn0NCiMgVmlldyB0aGUgZGF0YXNldCB3aXRoIE9CUA0KcHJpbnQocGxheWVyX2RhdGEpDQpgYGANCg0KYGBge3J9DQoNCiMgSWRlbnRpZnkgdGhlIHBsYXllciB3aXRoIHRoZSBoaWdoZXN0IE9CUA0KbWF4X29icF9wbGF5ZXIgPC0gcGxheWVyX2RhdGFbd2hpY2gubWF4KHBsYXllcl9kYXRhJE9CUCksIF0NCnByaW50KG1heF9vYnBfcGxheWVyKQ0KYGBgDQoNCg==