###
# Project: QMSS 201 Final Project
# Purpose: Final Project
# Author: Leah Adams
# Date: April 6 2025
# Data: W25 50 State Data Set
###
states_data25 <- read.csv("Copy of W25 50 State Data Set.csv", header=TRUE)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
renamed_states_data25 <- states_data25 %>%
rename("Religiosity" = X..who.attend.religious.services.at.least.once.a.week)%>%
rename("PoliticalIdeology" = Percent.Trump.2024)%>%
rename("HealthcareAccess" = X..without.health.insurance.2023)%>%
rename("RestrictivenessScore" = guttmacher.abortion.restrictiveness.score..Feb.2025)%>%
rename("Education" = X..25.and.older.w.4.year.college.degree.or.higher.2021)
class(renamed_states_data25$Religiosity)
## [1] "integer"
class(renamed_states_data25$PoliticalIdeology)
## [1] "numeric"
class(renamed_states_data25$HealthcareAccess)
## [1] "numeric"
class(renamed_states_data25$Education)
## [1] "numeric"
class(renamed_states_data25$RestrictivenessScore)
## [1] "integer"
lm1 <- lm(RestrictivenessScore ~ Religiosity + PoliticalIdeology + HealthcareAccess + Education, data=renamed_states_data25)
summary(lm1)
##
## Call:
## lm(formula = RestrictivenessScore ~ Religiosity + PoliticalIdeology +
## HealthcareAccess + Education, data = renamed_states_data25)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.20004 -0.72779 0.04308 0.77295 2.11383
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.74951 2.83353 -1.323 0.192433
## Religiosity 0.06296 0.03024 2.082 0.043025 *
## PoliticalIdeology 0.12221 0.02959 4.130 0.000155 ***
## HealthcareAccess 0.05076 0.07934 0.640 0.525591
## Education -0.02327 0.04505 -0.517 0.607982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.159 on 45 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.7207, Adjusted R-squared: 0.6959
## F-statistic: 29.03 on 4 and 45 DF, p-value: 5.907e-12