Alexander Makeev
11/22/2015
Coursera Developing Data Products Course Project
Great application which make incredible fitting of GLM model
summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
model <- glm(Species ~ ., iris, family="binomial")
Call: glm(formula = Species ~ ., family = "binomial", data = iris)
Coefficients:
(Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
16.946 -11.759 -7.842 20.088 21.608
Degrees of Freedom: 149 Total (i.e. Null); 145 Residual
Null Deviance: 191
Residual Deviance: 3.294e-09 AIC: 10