# Load necessary libraries
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
## ✔ broom 1.0.8 ✔ rsample 1.3.0
## ✔ dials 1.4.0 ✔ tune 1.3.0
## ✔ infer 1.0.8 ✔ workflows 1.2.0
## ✔ modeldata 1.4.0 ✔ workflowsets 1.1.0
## ✔ parsnip 1.3.1 ✔ yardstick 1.3.2
## ✔ recipes 1.3.0
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ recipes::fixed() masks stringr::fixed()
## ✖ dplyr::lag() masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step() masks stats::step()
library(ISLR)
library(ISLR2)
##
## Attaching package: 'ISLR2'
##
## The following objects are masked from 'package:ISLR':
##
## Auto, Credit
library(kknn)
library(stringr)
library(forcats)
library(discrim)
##
## Attaching package: 'discrim'
##
## The following object is masked from 'package:dials':
##
## smoothness
library(parsnip)
library(recipes)
library(workflows)
library(poissonreg)
library(broom)
# Split the data
Smarket_train <- Smarket %>% filter(Year < 2005)
Smarket_test <- Smarket %>% filter(Year == 2005)
# Logistic Regression (Lag1 + Lag2)
lr_spec <- logistic_reg() %>%
set_mode("classification") %>%
set_engine("glm")
lr_fit <- lr_spec %>%
fit(Direction ~ Lag1 + Lag2, data = Smarket_train)
# Model summary
summary(lr_fit$fit)
##
## Call:
## stats::glm(formula = Direction ~ Lag1 + Lag2, family = stats::binomial,
## data = data)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.03222 0.06338 0.508 0.611
## Lag1 -0.05562 0.05171 -1.076 0.282
## Lag2 -0.04449 0.05166 -0.861 0.389
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1383.3 on 997 degrees of freedom
## Residual deviance: 1381.4 on 995 degrees of freedom
## AIC: 1387.4
##
## Number of Fisher Scoring iterations: 3
# Predictions + Confusion Matrix + Accuracy
augment(lr_fit, new_data = Smarket_test) %>% conf_mat(truth = Direction, estimate = .pred_class)
## Truth
## Prediction Down Up
## Down 35 35
## Up 76 106
augment(lr_fit, new_data = Smarket_test) %>% accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.560
# Logistic Regression (all Lags + Volume)
lr_fit2 <- lr_spec %>%
fit(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Smarket_train)
augment(lr_fit2, new_data = Smarket_test) %>% conf_mat(truth = Direction, estimate = .pred_class)
## Truth
## Prediction Down Up
## Down 77 97
## Up 34 44
augment(lr_fit2, new_data = Smarket_test) %>% accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.480
# Linear Discriminant Analysis
lda_spec <- discrim_linear() %>%
set_mode("classification") %>%
set_engine("MASS")
lda_fit <- lda_spec %>%
fit(Direction ~ Lag1 + Lag2, data = Smarket_train)
augment(lda_fit, new_data = Smarket_test) %>% conf_mat(truth = Direction, estimate = .pred_class)
## Truth
## Prediction Down Up
## Down 35 35
## Up 76 106
augment(lda_fit, new_data = Smarket_test) %>% accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.560
# Quadratic Discriminant Analysis
qda_spec <- discrim_quad() %>%
set_mode("classification") %>%
set_engine("MASS")
qda_fit <- qda_spec %>%
fit(Direction ~ Lag1 + Lag2, data = Smarket_train)
augment(qda_fit, new_data = Smarket_test) %>% conf_mat(truth = Direction, estimate = .pred_class)
## Truth
## Prediction Down Up
## Down 30 20
## Up 81 121
augment(qda_fit, new_data = Smarket_test) %>% accuracy(truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.599
# K-Nearest Neighbors (K=3)
knn_spec <- nearest_neighbor(neighbors = 3) %>%
set_mode("classification") %>%
set_engine("kknn")
knn_fit <- knn_spec %>%
fit(Direction ~ Lag1 + Lag2, data = Smarket_train)
augment(knn_fit, new_data = Smarket_test) %>% conf_mat(truth = Direction, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Truth
## Prediction Down Up
## Down 43 58
## Up 68 83
augment(knn_fit, new_data = Smarket_test) %>% accuracy(truth = Direction, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.5
# Caravan Insurance data - KNN (K=1,3,5)
Caravan_test <- Caravan[1:1000, ]
Caravan_train <- Caravan[-(1:1000), ]
rec_spec <- recipe(Purchase ~ ., data = Caravan_train) %>%
step_normalize(all_numeric_predictors())
Caravan_wf <- workflow() %>%
add_recipe(rec_spec)
knn1_wf <- Caravan_wf %>% add_model(knn_spec %>% set_args(neighbors = 1))
knn3_wf <- Caravan_wf %>% add_model(knn_spec %>% set_args(neighbors = 3))
knn5_wf <- Caravan_wf %>% add_model(knn_spec %>% set_args(neighbors = 5))
knn1_fit <- fit(knn1_wf, data = Caravan_train)
knn3_fit <- fit(knn3_wf, data = Caravan_train)
knn5_fit <- fit(knn5_wf, data = Caravan_train)
augment(knn1_fit, new_data = Caravan_test) %>% conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Truth
## Prediction No Yes
## No 874 50
## Yes 67 9
augment(knn3_fit, new_data = Caravan_test) %>% conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Truth
## Prediction No Yes
## No 875 50
## Yes 66 9
augment(knn5_fit, new_data = Caravan_test) %>% conf_mat(truth = Purchase, estimate = .pred_class)
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable '..y' is absent, its contrast will be ignored
## Truth
## Prediction No Yes
## No 874 50
## Yes 67 9
# Poisson Regression on Bikeshare
pois_spec <- poisson_reg() %>%
set_mode("regression") %>%
set_engine("glm")
pois_rec_spec <- recipe(bikers ~ mnth + hr + workingday + temp + weathersit, data = Bikeshare) %>%
step_dummy(all_nominal_predictors())
pois_wf <- workflow() %>%
add_recipe(pois_rec_spec) %>%
add_model(pois_spec)
pois_fit <- pois_wf %>% fit(data = Bikeshare)
# Scatter plot
augment(pois_fit, new_data = Bikeshare, type.predict = "response") %>%
ggplot(aes(bikers, .pred)) +
geom_point(alpha = 0.1) +
geom_abline(slope = 1, color = "grey40", linewidth = 1) +
labs(title = "Predicting the number of bikers per hour using Poisson Regression",
x = "Actual", y = "Predicted")

# Coefficient plots for months
pois_fit_coef_mnths <- tidy(pois_fit) %>%
filter(str_detect(term, "^mnth")) %>%
mutate(term = str_replace(term, "mnth_", ""),
term = fct_inorder(term))
pois_fit_coef_mnths %>%
ggplot(aes(term, estimate)) +
geom_line(group = 1) +
geom_point(shape = 21, size = 3, stroke = 1.5,
fill = "black", color = "white") +
labs(title = "Coefficient value from Poisson Regression by Month",
x = "Month", y = "Coefficient")

# Coefficient plots for hours
pois_fit_coef_hr <- tidy(pois_fit) %>%
filter(str_detect(term, "^hr")) %>%
mutate(term = str_replace(term, "hr_", ""),
term = fct_inorder(term))
pois_fit_coef_hr %>%
ggplot(aes(term, estimate)) +
geom_line(group = 1) +
geom_point(shape = 21, size = 3, stroke = 1.5,
fill = "black", color = "white") +
labs(title = "Coefficient value from Poisson Regression by Hour",
x = "Hour", y = "Coefficient")

# Comparing multiple models
models <- list(
"Logistic Regression" = lr_fit,
"LDA" = lda_fit,
"QDA" = qda_fit,
"KNN" = knn_fit
)
# Collect predictions
preds <- imap_dfr(models, augment, new_data = Smarket_test, .id = "model")
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
## Warning in model.matrix.default(mt2, test, contrasts.arg = contrasts.arg):
## variable 'Direction' is absent, its contrast will be ignored
# Metrics
multi_metric <- metric_set(accuracy, sensitivity, specificity)
preds %>%
group_by(model) %>%
multi_metric(truth = Direction, estimate = .pred_class)
## # A tibble: 12 × 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 KNN accuracy binary 0.5
## 2 LDA accuracy binary 0.560
## 3 Logistic Regression accuracy binary 0.560
## 4 QDA accuracy binary 0.599
## 5 KNN sensitivity binary 0.387
## 6 LDA sensitivity binary 0.315
## 7 Logistic Regression sensitivity binary 0.315
## 8 QDA sensitivity binary 0.270
## 9 KNN specificity binary 0.589
## 10 LDA specificity binary 0.752
## 11 Logistic Regression specificity binary 0.752
## 12 QDA specificity binary 0.858
# ROC curves
preds %>%
group_by(model) %>%
roc_curve(Direction, .pred_Down) %>%
autoplot()
