Consider the following vectors representing the number of
field goals made and attempted by a basketball player in five
games:
Field Goals Made: c(18, 7, 6, 9, 10,13) Field Goals
Attempted: c(36, 23, 12, 18, 24,22)
Calculate the field goal percentage for each game and select
the correct average field goal percentage for the five
games.
Field_Goals_Made<-c(18, 7, 6, 9, 10,13)
Field_Goals_Attempted<-c(36, 23, 12, 18, 24,22)
Field_Goals_Made
[1] 18 7 6 9 10 13
Field_Goals_Attempted
[1] 36 23 12 18 24 22
Field_Goal_Percentage = Field_Goals_Made/Field_Goals_Attempted
Field_Goal_Percentage
[1] 0.5000000 0.3043478 0.5000000 0.5000000 0.4166667 0.5909091
—————————
Consider the following vectors representing the number of
three-pointers made and attempted by a basketball player in five
games:
Three-Pointers Made: c(3, 5,0, 6, 3, 7) Three-Pointers
Attempted: c(9, 10, 8,12, 11, 12)
Calculate the three-point shooting percentage for each game
and select the correct average three-point shooting percentage for the
five games.
Three_Pionts_Made<-c(3,5,0,6,3,7)
Three_Pionts_Attempted<-c(9,10,8,12,11,12)
Three_Pionts_Made
[1] 3 5 0 6 3 7
Three_Pionts_Attempted
[1] 9 10 8 12 11 12
Three_Piont_Percentage = Three_Pionts_Made/Three_Pionts_Attempted*100
Three_Piont_Percentage
[1] 33.33333 50.00000 0.00000 50.00000 27.27273 58.33333
————————–
Consider the following dataset representing the performance
of baseball players in a season. It includes the following variables:
PlayerID, Hits, At-Bats, Home Runs (HR), Walks (BB), and Strikeouts
(SO).
PlayerID Hits At-Bats HR BB SO
1 112 400 25 50 60
2 124 450 22 60 65
3 121 380 8 19 67
4 106 500 20 150 92
5 140 402 11 55 70
Compute the on-base percentage (OBP) for each player and
select the player with the highest OBP.
a) Player 1 b) Player 2 c) Player 3 d) Player 4 e) Player
5
To calculate OBP, you can use the following
formula:
OBP = (Hits + Walks) / (At-Bats + Walks)
dataset <- data.frame(
PlayerID = c(1,2,3,4,5),
Hits = c(112,124,121,106,140),
At_Bats = c(400,450,380,500,402),
HR = c(25,22,8,20,11),
BB = c(50,60,19,150,55),
SO = c(60,65,67,92,70)
)
dataset
OBP = (dataset$Hits + dataset$BB)/(dataset$At_Bats + dataset$BB)
OBP
[1] 0.3600000 0.3607843 0.3508772 0.3938462 0.4266958
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgoqKkNvbnNpZGVyIHRoZSBmb2xsb3dpbmcgdmVjdG9ycyByZXByZXNlbnRpbmcgdGhlIG51bWJlciBvZiBmaWVsZCBnb2FscyBtYWRlIGFuZCBhdHRlbXB0ZWQgYnkgYSBiYXNrZXRiYWxsIHBsYXllciBpbiBmaXZlIGdhbWVzOioqCgoqKkZpZWxkIEdvYWxzIE1hZGU6IGMoMTgsIDcsIDYsIDksIDEwLDEzKSBGaWVsZCBHb2FscyBBdHRlbXB0ZWQ6IGMoMzYsIDIzLCAxMiwgMTgsIDI0LDIyKSoqCgoKKipDYWxjdWxhdGUgdGhlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBmb3IgZWFjaCBnYW1lIGFuZCBzZWxlY3QgdGhlIGNvcnJlY3QgYXZlcmFnZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIHRoZSBmaXZlIGdhbWVzLioqCgoKYGBge3J9CkZpZWxkX0dvYWxzX01hZGU8LWMoMTgsIDcsIDYsIDksIDEwLDEzKQpGaWVsZF9Hb2Fsc19BdHRlbXB0ZWQ8LWMoMzYsIDIzLCAxMiwgMTgsIDI0LDIyKQpGaWVsZF9Hb2Fsc19NYWRlCkZpZWxkX0dvYWxzX0F0dGVtcHRlZApgYGAKCmBgYHtyfQpGaWVsZF9Hb2FsX1BlcmNlbnRhZ2UgPSBGaWVsZF9Hb2Fsc19NYWRlL0ZpZWxkX0dvYWxzX0F0dGVtcHRlZApGaWVsZF9Hb2FsX1BlcmNlbnRhZ2UKCgoKCgoKI1RoZSBjb3JyZWN0IGF2ZXJhZ2UgZmllbGQgZ29hbCBwZXJjZW50YWdlIGZvciB0aGUgZml2ZSBnYW1lcyBhcmUKIyowLjUsIDAuMywgMC41LCAwLjUsIDAuNCwgYW5kIDAuNgoKI05vdGU6IEkgcm91bmRlZCB0aGUgZGVjaW1hbHMgYnkgMTB0aCdzIApgYGAKCioqLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKioKCgoKKipDb25zaWRlciB0aGUgZm9sbG93aW5nIHZlY3RvcnMgcmVwcmVzZW50aW5nIHRoZSBudW1iZXIgb2YgdGhyZWUtcG9pbnRlcnMgbWFkZSBhbmQgYXR0ZW1wdGVkIGJ5IGEgYmFza2V0YmFsbCBwbGF5ZXIgaW4gZml2ZSBnYW1lczoqKgoKKipUaHJlZS1Qb2ludGVycyBNYWRlOiBjKDMsIDUsMCwgNiwgMywgNykgVGhyZWUtUG9pbnRlcnMgQXR0ZW1wdGVkOiBjKDksIDEwLCA4LDEyLCAxMSwgMTIpKioKCioqQ2FsY3VsYXRlIHRoZSB0aHJlZS1wb2ludCBzaG9vdGluZyBwZXJjZW50YWdlIGZvciBlYWNoIGdhbWUgYW5kIHNlbGVjdCB0aGUgY29ycmVjdCBhdmVyYWdlIHRocmVlLXBvaW50IHNob290aW5nIHBlcmNlbnRhZ2UgZm9yIHRoZSBmaXZlIGdhbWVzLioqCgoKYGBge3J9ClRocmVlX1Bpb250c19NYWRlPC1jKDMsNSwwLDYsMyw3KQpUaHJlZV9QaW9udHNfQXR0ZW1wdGVkPC1jKDksMTAsOCwxMiwxMSwxMikKVGhyZWVfUGlvbnRzX01hZGUKVGhyZWVfUGlvbnRzX0F0dGVtcHRlZApgYGAKCgpgYGB7cn0KVGhyZWVfUGlvbnRfUGVyY2VudGFnZSA9IFRocmVlX1Bpb250c19NYWRlL1RocmVlX1Bpb250c19BdHRlbXB0ZWQqMTAwClRocmVlX1Bpb250X1BlcmNlbnRhZ2UKCgoKCgojVGhlIENvcnJlY3QgYXZlcmFnZSB0aHJlZS1waW9udCBzaG9vdGluZyBwZXJjZW50YWdlIGZvciB0aGUgZml2ZSBnYW1lcyBhcmUKIyAzMy4zLCA1MC4wLCAwLjAsIDUwLjAsIDI3LjMsIDU4LjMKYGBgCgoKCgoqKi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKioKCgoqKkNvbnNpZGVyIHRoZSBmb2xsb3dpbmcgZGF0YXNldCByZXByZXNlbnRpbmcgdGhlIHBlcmZvcm1hbmNlIG9mIGJhc2ViYWxsIHBsYXllcnMgaW4gYSBzZWFzb24uIEl0IGluY2x1ZGVzIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOiBQbGF5ZXJJRCwgSGl0cywgQXQtQmF0cywgSG9tZSBSdW5zIChIUiksIFdhbGtzIChCQiksIGFuZCBTdHJpa2VvdXRzIChTTykuKioKCioqUGxheWVySUQgICAgIEhpdHMgICAgQXQtQmF0cyAgICAgICAgSFIgICAgICAgIEJCICAgICBTTyoqCgogICoqMSAgICAgICAgICAgICAxMTIgICAgICAgNDAwICAgICAgICAgICAyNSAgICAgICAgICA1MCAgICAgNjAqKgoKICAqKjIgICAgICAgICAgICAgMTI0ICAgICAgIDQ1MCAgICAgICAgICAgMjIgICAgICAgICAgNjAgICAgIDY1KioKCiAgKiozICAgICAgICAgICAgIDEyMSAgICAgICAzODAgICAgICAgICAgIDggICAgICAgICAgICAxOSAgICAgNjcqKgoKICAqKjQgICAgICAgICAgICAgMTA2ICAgICAgIDUwMCAgICAgICAgICAgMjAgICAgICAgICAxNTAgICAgIDkyKioKCiAgKio1ICAgICAgICAgICAgIDE0MCAgICAgICA0MDIgICAgICAgICAgIDExICAgICAgICAgIDU1ICAgICA3MCoqCgoqKkNvbXB1dGUgdGhlIG9uLWJhc2UgcGVyY2VudGFnZSAoT0JQKSBmb3IgZWFjaCBwbGF5ZXIgYW5kIHNlbGVjdCB0aGUgcGxheWVyIHdpdGggdGhlIGhpZ2hlc3QgT0JQLioqCgoqKmEpIFBsYXllciAxIGIpIFBsYXllciAyIGMpIFBsYXllciAzIGQpIFBsYXllciA0IGUpIFBsYXllciA1KioKCioqVG8gY2FsY3VsYXRlIE9CUCwgeW91IGNhbiB1c2UgdGhlIGZvbGxvd2luZyBmb3JtdWxhOioqCgoqKk9CUCA9IChIaXRzICsgV2Fsa3MpIC8gKEF0LUJhdHMgKyBXYWxrcykqKgoKCmBgYHtyfQojQ3JlYXRpbmcgdGhlIGRhdGFzZXQgZnJvbSB0aGUgcXVlc3Rpb24KZGF0YXNldCA8LSBkYXRhLmZyYW1lKAogIFBsYXllcklEID0gYygxLDIsMyw0LDUpLAogIEhpdHMgPSBjKDExMiwxMjQsMTIxLDEwNiwxNDApLAogIEF0X0JhdHMgPSBjKDQwMCw0NTAsMzgwLDUwMCw0MDIpLAogIEhSID0gYygyNSwyMiw4LDIwLDExKSwKICBCQiA9IGMoNTAsNjAsMTksMTUwLDU1KSwKICBTTyA9IGMoNjAsNjUsNjcsOTIsNzApCikKZGF0YXNldApgYGAKCmBgYHtyfQpPQlAgPSAoZGF0YXNldCRIaXRzICsgZGF0YXNldCRCQikvKGRhdGFzZXQkQXRfQmF0cyArIGRhdGFzZXQkQkIpCk9CUAoKIyBUaGUgcGxheWVyIHdpdGggdGhlIGhpZ2hlc3QgT24tQmFzZS1QZXJjZW50YWdlIGlzOgojIFBsYXllciA1IHdpdGggMC40MwpgYGAKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoK