Histograms

Column

“Meta-Analysis Proportional”

Column

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  1.0000 [0.9465; 1.0000]       1.0        3.8
Jarquin et al 2012                0.9348 [0.8250; 0.9776]       0.7        3.8
Villalpando-Guzmán et al 2013     0.2824 [0.2534; 0.3133]      12.8        4.0
Molina et al 2019                 0.5846 [0.4634; 0.6964]       1.0        3.8
Castellanos et al 2018            0.6462 [0.5863; 0.7018]       3.8        3.9
Monte et al 2019                  0.5455 [0.4852; 0.6044]       3.9        3.9
Rau et al 2021                    0.9088 [0.8735; 0.9350]       5.0        3.9
Mogollón et al 2016               0.0293 [0.0160; 0.0531]       5.0        3.9
Khan et al 2022                   0.4178 [0.3409; 0.4989]       2.2        3.9
Mascitti et al 2021               0.3077 [0.1991; 0.4427]       0.8        3.8
Puig-Peña et al 2020              0.1667 [0.1334; 0.2062]       5.9        3.9
Cunha-Neto et al 2018             0.0365 [0.0258; 0.0513]      12.6        4.0
Yamatogi et al 2016               0.7206 [0.6645; 0.7706]       4.0        3.9
Alikhan et al 2022                0.8145 [0.7681; 0.8533]       4.7        3.9
Santos et al 2023                 0.4609 [0.3725; 0.5518]       1.7        3.9
Castellanos et al 2020            1.0000 [0.8668; 1.0000]       0.4        3.7
Castellanos et al 2020            0.8000 [0.3755; 0.9638]       0.1        2.9
Dos Santos et al 2021             0.6667 [0.6018; 0.7258]       3.2        3.9
Castro et al 2021                 1.0000 [0.7961; 1.0000]       0.2        3.5
Perin et al 2020                  0.3167 [0.2666; 0.3713]       4.4        3.9
Vaz et al 2010                    0.5521 [0.4525; 0.6476]       1.4        3.9
Khan et al 2021                   0.2702 [0.2288; 0.3160]       5.9        3.9
Kipper et al 2021                 1.0000 [0.9465; 1.0000]       1.0        3.8
Piña-Iturbe et al 2021            0.2205 [0.1842; 0.2615]       6.5        3.9
Saidenberg et al 2022             0.1150 [0.0873; 0.1500]       5.9        3.9
Vinueza-Burgos et al 2016         0.1598 [0.1267; 0.1996]       5.7        3.9

Number of studies: k = 26
Number of observations: o = 6755
Number of events: e = 2425

                     proportion           95%-CI
Fixed effect model       0.3379 [0.3264; 0.3494]
Random effects model     0.5495 [0.4099; 0.6853]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1246 [0.0837; 0.2928]; tau = 0.3530 [0.2892; 0.5411]
 I^2 = 99.2% [99.1%; 99.3%]; H = 11.27 [10.56; 12.03]

Test of heterogeneity:
       Q d.f. p-value
 3174.58   25       0

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Wilson Score confidence interval for individual studies

“Prevalence of Salmonella spp. Forest Plot”

Column

Forest Plot

“Sample size and Prevalence Estimate”

Column

Column

“Meta-Analysis Proportional_Subgroup Region”

Column

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  1.0000 [0.9465; 1.0000]       1.0        3.8
Jarquin et al 2012                0.9348 [0.8250; 0.9776]       0.7        3.8
Villalpando-Guzmán et al 2013     0.2824 [0.2534; 0.3133]      12.8        4.0
Molina et al 2019                 0.5846 [0.4634; 0.6964]       1.0        3.8
Castellanos et al 2018            0.6462 [0.5863; 0.7018]       3.8        3.9
Monte et al 2019                  0.5455 [0.4852; 0.6044]       3.9        3.9
Rau et al 2021                    0.9088 [0.8735; 0.9350]       5.0        3.9
Mogollón et al 2016               0.0293 [0.0160; 0.0531]       5.0        3.9
Khan et al 2022                   0.4178 [0.3409; 0.4989]       2.2        3.9
Mascitti et al 2021               0.3077 [0.1991; 0.4427]       0.8        3.8
Puig-Peña et al 2020              0.1667 [0.1334; 0.2062]       5.9        3.9
Cunha-Neto et al 2018             0.0365 [0.0258; 0.0513]      12.6        4.0
Yamatogi et al 2016               0.7206 [0.6645; 0.7706]       4.0        3.9
Alikhan et al 2022                0.8145 [0.7681; 0.8533]       4.7        3.9
Santos et al 2023                 0.4609 [0.3725; 0.5518]       1.7        3.9
Castellanos et al 2020            1.0000 [0.8668; 1.0000]       0.4        3.7
Castellanos et al 2020            0.8000 [0.3755; 0.9638]       0.1        2.9
Dos Santos et al 2021             0.6667 [0.6018; 0.7258]       3.2        3.9
Castro et al 2021                 1.0000 [0.7961; 1.0000]       0.2        3.5
Perin et al 2020                  0.3167 [0.2666; 0.3713]       4.4        3.9
Vaz et al 2010                    0.5521 [0.4525; 0.6476]       1.4        3.9
Khan et al 2021                   0.2702 [0.2288; 0.3160]       5.9        3.9
Kipper et al 2021                 1.0000 [0.9465; 1.0000]       1.0        3.8
Piña-Iturbe et al 2021            0.2205 [0.1842; 0.2615]       6.5        3.9
Saidenberg et al 2022             0.1150 [0.0873; 0.1500]       5.9        3.9
Vinueza-Burgos et al 2016         0.1598 [0.1267; 0.1996]       5.7        3.9
                                                  Region
Kumar et al 2019              México, C.America & Caribe
Jarquin et al 2012            México, C.America & Caribe
Villalpando-Guzmán et al 2013 México, C.America & Caribe
Molina et al 2019             México, C.America & Caribe
Castellanos et al 2018                     South America
Monte et al 2019                           South America
Rau et al 2021                             South America
Mogollón et al 2016                        South America
Khan et al 2022               México, C.America & Caribe
Mascitti et al 2021                        South America
Puig-Peña et al 2020          México, C.America & Caribe
Cunha-Neto et al 2018                      South America
Yamatogi et al 2016                        South America
Alikhan et al 2022                         South America
Santos et al 2023                          South America
Castellanos et al 2020                     South America
Castellanos et al 2020        México, C.America & Caribe
Dos Santos et al 2021                      South America
Castro et al 2021                          South America
Perin et al 2020                           South America
Vaz et al 2010                             South America
Khan et al 2021               México, C.America & Caribe
Kipper et al 2021                          South America
Piña-Iturbe et al 2021                     South America
Saidenberg et al 2022                      South America
Vinueza-Burgos et al 2016                  South America

Number of studies: k = 26
Number of observations: o = 6755
Number of events: e = 2425

                     proportion           95%-CI
Fixed effect model       0.3379 [0.3264; 0.3494]
Random effects model     0.5495 [0.4099; 0.6853]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1246 [0.0837; 0.2928]; tau = 0.3530 [0.2892; 0.5411]
 I^2 = 99.2% [99.1%; 99.3%]; H = 11.27 [10.56; 12.03]

Test of heterogeneity:
       Q d.f. p-value
 3174.58   25       0

Results for subgroups (fixed effect model):
                                      k proportion           95%-CI       Q
Region = México, C.America & Caribe   8     0.3145 [0.2935; 0.3358]  407.73
Region = South America               18     0.3476 [0.3340; 0.3614] 2761.55
                                      I^2
Region = México, C.America & Caribe 98.3%
Region = South America              99.4%

Test for subgroup differences (fixed effect model):
                     Q d.f. p-value
Between groups    5.30    1  0.0213
Within groups  3169.28   24       0

Results for subgroups (random effects model):
                                      k proportion           95%-CI  tau^2
Region = México, C.America & Caribe   8     0.5700 [0.3754; 0.7546] 0.0693
Region = South America               18     0.5393 [0.3547; 0.7186] 0.1572
                                       tau
Region = México, C.America & Caribe 0.2633
Region = South America              0.3965

Test for subgroup differences (random effects model):
                  Q d.f. p-value
Between groups 0.05    1  0.8296

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Wilson Score confidence interval for individual studies

“Prevalence of Salmonella spp. Forest Plot Subgroup Region”

Column

Forest Plot

“Regions_Subgroups”

Column

AB Resistance

Column

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  0.7222 [0.4913; 0.8750]       1.1        3.9
Jarquin et al 2012                0.6667 [0.4782; 0.8136]       1.6        4.1
Villalpando-Guzmán et al 2013     1.0000 [0.8318; 1.0000]       1.1        3.9
Molina et al 2019                 0.9211 [0.7920; 0.9728]       2.2        4.1
Castellanos et al 2018            0.9038 [0.8619; 0.9340]      15.0        4.4
Monte et al 2019                  0.2986 [0.2299; 0.3778]       8.3        4.3
Rau et al 2021                    0.6472 [0.5925; 0.6984]      17.9        4.4
Mogollón et al 2016                   NA                        0.0        0.0
Khan et al 2022                   1.0000 [0.7009; 1.0000]       0.5        3.5
Mascitti et al 2021               0.1250 [0.0350; 0.3602]       1.0        3.9
Puig-Peña et al 2020              0.5522 [0.4336; 0.6652]       3.9        4.3
Cunha-Neto et al 2018             1.0000 [0.8897; 1.0000]       1.8        4.1
Yamatogi et al 2016               0.3107 [0.2472; 0.3823]      10.2        4.3
Alikhan et al 2022                0.7778 [0.4526; 0.9368]       0.5        3.5
Santos et al 2023                 0.8333 [0.7354; 0.8999]       4.5        4.3
Castellanos et al 2020            0.7600 [0.5657; 0.8850]       1.5        4.0
Castellanos et al 2020            1.0000 [0.5101; 1.0000]       0.3        2.9
Dos Santos et al 2021             0.9760 [0.9318; 0.9918]       7.2        4.3
Castro et al 2021                 1.0000 [0.7961; 1.0000]       0.9        3.8
Perin et al 2020                  0.8571 [0.7744; 0.9130]       5.7        4.3
Vaz et al 2010                    0.4340 [0.3095; 0.5673]       3.1        4.2
Khan et al 2021                   0.6000 [0.3575; 0.8018]       0.9        3.8
Kipper et al 2021                 1.0000 [0.9465; 1.0000]       4.0        4.3
Piña-Iturbe et al 2021            1.0000 [0.9619; 1.0000]       5.6        4.3
Saidenberg et al 2022             0.5000 [0.2366; 0.7634]       0.6        3.6
Vinueza-Burgos et al 2016         0.2222 [0.0632; 0.5474]       0.5        3.5

Number of studies: k = 25
Number of observations: o = 1730
Number of events: e = 1217

                     proportion           95%-CI
Fixed effect model       0.7616 [0.7399; 0.7827]
Random effects model     0.7812 [0.6538; 0.8881]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1062 [0.0590; 0.2291]; tau = 0.3259 [0.2428; 0.4787]
 I^2 = 96.5% [95.7%; 97.2%]; H = 5.37 [4.82; 5.99]

Test of heterogeneity:
      Q d.f.  p-value
 692.87   24 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Wilson Score confidence interval for individual studies

“Proportion of AB Resistance (Forest Plot)”

Column

Forest Plot

“Sample size and Prevalence of AB.Resistance Estimate”

Column

Column

S.enteritidis

Column

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  0.0000 [0.0000; 0.1103]       2.6        5.6
Villalpando-Guzmán et al 2013     0.0000 [0.0000; 0.0583]       5.2        5.7
Molina et al 2019                 0.0000 [0.0000; 0.0941]       3.1        5.6
Castellanos et al 2018            0.0294 [0.0052; 0.1492]       2.9        5.6
Monte et al 2019                  0.0000 [0.0000; 0.1103]       2.6        5.6
Mogollón et al 2016               0.8000 [0.4902; 0.9433]       0.9        5.1
Khan et al 2022                   0.2083 [0.1305; 0.3157]       6.0        5.7
Cunha-Neto et al 2018             0.0000 [0.0000; 0.1103]       2.6        5.6
Yamatogi et al 2016               0.1412 [0.0975; 0.2002]      14.7        5.8
Alikhan et al 2022                0.0219 [0.0085; 0.0548]      15.2        5.8
Duarte et al 2024                 0.0000 [0.0000; 0.4899]       0.4        4.4
Castellanos et al 2020            0.0278 [0.0049; 0.1417]       3.0        5.6
Dos Santos et al 2021             0.0000 [0.0000; 0.0256]      12.2        5.8
Perin et al 2020                  0.0000 [0.0000; 0.0377]       8.2        5.8
Vaz et al 2010                    1.0000 [0.9615; 1.0000]       8.0        5.7
Khan et al 2021                   0.2083 [0.1305; 0.3157]       6.0        5.7
Saidenberg et al 2022             0.0000 [0.0000; 0.2153]       1.2        5.3
Vinueza-Burgos et al 2016         0.1452 [0.0783; 0.2534]       5.2        5.7

Number of studies: k = 18
Number of observations: o = 1196
Number of events: e = 174

                     proportion           95%-CI
Fixed effect model       0.0883 [0.0713; 0.1067]
Random effects model     0.0838 [0.0027; 0.2304]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1658 [0.0829; 0.3791]; tau = 0.4072 [0.2879; 0.6157]
 I^2 = 97.7% [97.1%; 98.2%]; H = 6.62 [5.91; 7.41]

Test of heterogeneity:
      Q d.f.  p-value
 744.12   17 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Wilson Score confidence interval for individual studies

Proportion of Senteritidis (Forest Plot)

Column

Forest Plot

“Sample size and Prevalence of S. enteritidis

Column

Column

AB Resistance (Q,C,A)

Hoja electrónica de Google Link

Tabla ( )

Column

Quinolonas

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.7407 [0.5566; 0.8914]       2.3        6.3
Molina et al 2019             0.9155 [0.8377; 0.9709]       6.0        6.4
Castellanos et al 2018        0.0000 [0.0000; 0.0073]      19.6        6.4
Monte et al 2019              1.0000 [0.9469; 1.0000]       2.7        6.3
Khan et al 2022               0.0000 [0.0000; 0.0767]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.4
Alikhan et al 2022            0.0000 [0.0000; 0.0267]       5.4        6.4
Duarte et al 2024             0.0000 [0.0000; 0.5003]       0.3        5.3
Santos et al 2023             0.0000 [0.0000; 0.0219]       6.5        6.4
Castellanos et al 2020        0.9011 [0.8302; 0.9552]       7.6        6.4
Castro et al 2021             0.0000 [0.0000; 0.1116]       1.3        6.1
Perin et al 2020              0.0000 [0.0000; 0.1282]       1.1        6.1
Kipper et al 2021             0.0364 [0.0079; 0.0812]       9.2        6.4
Piña-Iturbe et al 2021        0.7337 [0.6840; 0.7806]      26.9        6.4
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        6.1
Vinueza-Burgos et al 2016     0.0000 [0.0000; 0.0387]       3.7        6.3

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 453.25

                     proportion           95%-CI
Fixed effect model       0.2822 [0.2556; 0.3094]
Random effects model     0.2540 [0.0448; 0.5426]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.3285 [0.1642; 0.8592]; tau = 0.5732 [0.4052; 0.9269]
 I^2 = 98.9% [98.7%; 99.1%]; H = 9.56 [8.70; 10.50]

Test of heterogeneity:
       Q d.f.  p-value
 1371.00   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Column

Cefalosporinas

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.1111 [0.0151; 0.2626]       2.3        6.3
Molina et al 2019             0.6197 [0.5033; 0.7297]       6.0        6.5
Castellanos et al 2018        1.0000 [0.9927; 1.0000]      19.6        6.6
Monte et al 2019              0.8125 [0.6562; 0.9319]       2.7        6.3
Khan et al 2022               0.4545 [0.2495; 0.6673]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.5
Alikhan et al 2022            0.8125 [0.7066; 0.8999]       5.4        6.5
Duarte et al 2024             1.0000 [0.4997; 1.0000]       0.3        4.4
Santos et al 2023             0.5000 [0.3889; 0.6111]       6.5        6.5
Castellanos et al 2020        0.9670 [0.9181; 0.9959]       7.6        6.6
Castro et al 2021             1.0000 [0.8884; 1.0000]       1.3        6.0
Perin et al 2020              0.6154 [0.3327; 0.8653]       1.1        5.9
Kipper et al 2021             0.7455 [0.6595; 0.8229]       9.2        6.6
Piña-Iturbe et al 2021        0.6755 [0.6232; 0.7256]      26.9        6.7
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        5.9
Vinueza-Burgos et al 2016     0.7500 [0.6102; 0.8683]       3.7        6.4

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 869.5

                     proportion           95%-CI
Fixed effect model       0.7819 [0.7565; 0.8063]
Random effects model     0.7192 [0.5289; 0.8783]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1379 [0.0718; 0.3852]; tau = 0.3714 [0.2680; 0.6206]
 I^2 = 97.4% [96.7%; 98.0%]; H = 6.24 [5.51; 7.07]

Test of heterogeneity:
      Q d.f.  p-value
 584.28   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

COlumn

Aminoglucosidos

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.1111 [0.0151; 0.2626]       2.3        6.3
Molina et al 2019             0.6197 [0.5033; 0.7297]       6.0        6.5
Castellanos et al 2018        1.0000 [0.9927; 1.0000]      19.6        6.6
Monte et al 2019              0.8125 [0.6562; 0.9319]       2.7        6.3
Khan et al 2022               0.4545 [0.2495; 0.6673]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.5
Alikhan et al 2022            0.8125 [0.7066; 0.8999]       5.4        6.5
Duarte et al 2024             1.0000 [0.4997; 1.0000]       0.3        4.4
Santos et al 2023             0.5000 [0.3889; 0.6111]       6.5        6.5
Castellanos et al 2020        0.9670 [0.9181; 0.9959]       7.6        6.6
Castro et al 2021             1.0000 [0.8884; 1.0000]       1.3        6.0
Perin et al 2020              0.6154 [0.3327; 0.8653]       1.1        5.9
Kipper et al 2021             0.7455 [0.6595; 0.8229]       9.2        6.6
Piña-Iturbe et al 2021        0.6755 [0.6232; 0.7256]      26.9        6.7
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        5.9
Vinueza-Burgos et al 2016     0.7500 [0.6102; 0.8683]       3.7        6.4

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 869.5

                     proportion           95%-CI
Fixed effect model       0.7819 [0.7565; 0.8063]
Random effects model     0.7192 [0.5289; 0.8783]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1379 [0.0718; 0.3852]; tau = 0.3714 [0.2680; 0.6206]
 I^2 = 97.4% [96.7%; 98.0%]; H = 6.24 [5.51; 7.07]

Test of heterogeneity:
      Q d.f.  p-value
 584.28   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Proportion of samples with AB resistance (Q,C,A) (Forest Plot)

Column

Forest Plot Quinolonas

Forest Plot Cefalosporines

Forest Plot Aminoglucosidos

“Sample size and Pr. of AB resistance (Q,C,A)”

Column

Quinolonas

Cefalosporinas

Column

# WORKING

AB Resistance - Subgroup Method (Q,C,A)

Tabla ( )

Column

Quinolonas

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.7407 [0.5566; 0.8914]       2.3        6.3
Molina et al 2019             0.9155 [0.8377; 0.9709]       6.0        6.4
Castellanos et al 2018        0.0000 [0.0000; 0.0073]      19.6        6.4
Monte et al 2019              1.0000 [0.9469; 1.0000]       2.7        6.3
Khan et al 2022               0.0000 [0.0000; 0.0767]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.4
Alikhan et al 2022            0.0000 [0.0000; 0.0267]       5.4        6.4
Duarte et al 2024             0.0000 [0.0000; 0.5003]       0.3        5.3
Santos et al 2023             0.0000 [0.0000; 0.0219]       6.5        6.4
Castellanos et al 2020        0.9011 [0.8302; 0.9552]       7.6        6.4
Castro et al 2021             0.0000 [0.0000; 0.1116]       1.3        6.1
Perin et al 2020              0.0000 [0.0000; 0.1282]       1.1        6.1
Kipper et al 2021             0.0364 [0.0079; 0.0812]       9.2        6.4
Piña-Iturbe et al 2021        0.7337 [0.6840; 0.7806]      26.9        6.4
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        6.1
Vinueza-Burgos et al 2016     0.0000 [0.0000; 0.0387]       3.7        6.3
                                   Método
Kumar et al 2020                      PCR
Molina et al 2019               EgenCompl
Castellanos et al 2018          EgenCompl
Monte et al 2019                EgenCompl
Khan et al 2022                 EgenCompl
Mascitti et al 2021             EgenCompl
Alikhan et al 2022              EgenCompl
Duarte et al 2024               EgenCompl
Santos et al 2023                     PCR
Castellanos et al 2020    PCR y Egencompl
Castro et al 2021                     PCR
Perin et al 2020          PCR y Egencompl
Kipper et al 2021         PCR y Egencompl
Piña-Iturbe et al 2021          EgenCompl
Saidenberg et al 2022           EgenCompl
Vinueza-Burgos et al 2016             PCR

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 453.25

                     proportion           95%-CI
Fixed effect model       0.2822 [0.2556; 0.3094]
Random effects model     0.2540 [0.0448; 0.5426]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.3285 [0.1642; 0.8592]; tau = 0.5732 [0.4052; 0.9269]
 I^2 = 98.9% [98.7%; 99.1%]; H = 9.56 [8.70; 10.50]

Test of heterogeneity:
       Q d.f.  p-value
 1371.00   15 < 0.0001

Results for subgroups (fixed effect model):
                           k proportion           95%-CI      Q   I^2
Método = EgenCompl         9     0.3301 [0.2962; 0.3647] 964.45 99.2%
Método = PCR               4     0.0371 [0.0096; 0.0765]  84.30 96.4%
Método = PCR y Egencompl   3     0.3524 [0.2880; 0.4196] 231.80 99.1%

Test for subgroup differences (fixed effect model):
                     Q d.f.  p-value
Between groups   90.45    2 < 0.0001
Within groups  1280.54   13 < 0.0001

Results for subgroups (random effects model):
                           k proportion           95%-CI  tau^2    tau
Método = EgenCompl         9     0.3505 [0.0273; 0.7744] 0.3932 0.6271
Método = PCR               4     0.0854 [0.0000; 0.4619] 0.1832 0.4280
Método = PCR y Egencompl   3     0.2489 [0.0000; 0.9532] 0.4822 0.6944

Test for subgroup differences (random effects model):
                  Q d.f. p-value
Between groups 1.13    2  0.5685

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Column

Cefalosporinas

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.1111 [0.0151; 0.2626]       2.3        6.3
Molina et al 2019             0.6197 [0.5033; 0.7297]       6.0        6.5
Castellanos et al 2018        1.0000 [0.9927; 1.0000]      19.6        6.6
Monte et al 2019              0.8125 [0.6562; 0.9319]       2.7        6.3
Khan et al 2022               0.4545 [0.2495; 0.6673]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.5
Alikhan et al 2022            0.8125 [0.7066; 0.8999]       5.4        6.5
Duarte et al 2024             1.0000 [0.4997; 1.0000]       0.3        4.4
Santos et al 2023             0.5000 [0.3889; 0.6111]       6.5        6.5
Castellanos et al 2020        0.9670 [0.9181; 0.9959]       7.6        6.6
Castro et al 2021             1.0000 [0.8884; 1.0000]       1.3        6.0
Perin et al 2020              0.6154 [0.3327; 0.8653]       1.1        5.9
Kipper et al 2021             0.7455 [0.6595; 0.8229]       9.2        6.6
Piña-Iturbe et al 2021        0.6755 [0.6232; 0.7256]      26.9        6.7
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        5.9
Vinueza-Burgos et al 2016     0.7500 [0.6102; 0.8683]       3.7        6.4
                                   Método
Kumar et al 2020                      PCR
Molina et al 2019               EgenCompl
Castellanos et al 2018          EgenCompl
Monte et al 2019                EgenCompl
Khan et al 2022                 EgenCompl
Mascitti et al 2021             EgenCompl
Alikhan et al 2022              EgenCompl
Duarte et al 2024               EgenCompl
Santos et al 2023                     PCR
Castellanos et al 2020    PCR y Egencompl
Castro et al 2021                     PCR
Perin et al 2020          PCR y Egencompl
Kipper et al 2021         PCR y Egencompl
Piña-Iturbe et al 2021          EgenCompl
Saidenberg et al 2022           EgenCompl
Vinueza-Burgos et al 2016             PCR

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 869.5

                     proportion           95%-CI
Fixed effect model       0.7819 [0.7565; 0.8063]
Random effects model     0.7192 [0.5289; 0.8783]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1379 [0.0718; 0.3852]; tau = 0.3714 [0.2680; 0.6206]
 I^2 = 97.4% [96.7%; 98.0%]; H = 6.24 [5.51; 7.07]

Test of heterogeneity:
      Q d.f.  p-value
 584.28   15 < 0.0001

Results for subgroups (fixed effect model):
                           k proportion           95%-CI      Q   I^2
Método = EgenCompl         9     0.8009 [0.7705; 0.8299] 457.42 98.3%
Método = PCR               4     0.5615 [0.4830; 0.6386]  56.04 94.6%
Método = PCR y Egencompl   3     0.8607 [0.8085; 0.9064]  27.03 92.6%

Test for subgroup differences (fixed effect model):
                    Q d.f.  p-value
Between groups  43.79    2 < 0.0001
Within groups  540.49   13 < 0.0001

Results for subgroups (random effects model):
                           k proportion           95%-CI  tau^2    tau
Método = EgenCompl         9     0.7315 [0.4335; 0.9521] 0.1848 0.4299
Método = PCR               4     0.6178 [0.2654; 0.9143] 0.1195 0.3457
Método = PCR y Egencompl   3     0.8193 [0.5595; 0.9826] 0.0525 0.2292

Test for subgroup differences (random effects model):
                  Q d.f. p-value
Between groups 0.94    2  0.6248

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Column

Aminoglucosidos

                          proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2020              0.1111 [0.0151; 0.2626]       2.3        6.3
Molina et al 2019             0.6197 [0.5033; 0.7297]       6.0        6.5
Castellanos et al 2018        1.0000 [0.9927; 1.0000]      19.6        6.6
Monte et al 2019              0.8125 [0.6562; 0.9319]       2.7        6.3
Khan et al 2022               0.4545 [0.2495; 0.6673]       1.9        6.2
Mascitti et al 2021           0.0000 [0.0000; 0.0328]       4.4        6.5
Alikhan et al 2022            0.8125 [0.7066; 0.8999]       5.4        6.5
Duarte et al 2024             1.0000 [0.4997; 1.0000]       0.3        4.4
Santos et al 2023             0.5000 [0.3889; 0.6111]       6.5        6.5
Castellanos et al 2020        0.9670 [0.9181; 0.9959]       7.6        6.6
Castro et al 2021             1.0000 [0.8884; 1.0000]       1.3        6.0
Perin et al 2020              0.6154 [0.3327; 0.8653]       1.1        5.9
Kipper et al 2021             0.7455 [0.6595; 0.8229]       9.2        6.6
Piña-Iturbe et al 2021        0.6755 [0.6232; 0.7256]      26.9        6.7
Saidenberg et al 2022         1.0000 [0.8807; 1.0000]       1.2        5.9
Vinueza-Burgos et al 2016     0.7500 [0.6102; 0.8683]       3.7        6.4
                                   Método
Kumar et al 2020                      PCR
Molina et al 2019               EgenCompl
Castellanos et al 2018          EgenCompl
Monte et al 2019                EgenCompl
Khan et al 2022                 EgenCompl
Mascitti et al 2021             EgenCompl
Alikhan et al 2022              EgenCompl
Duarte et al 2024               EgenCompl
Santos et al 2023                     PCR
Castellanos et al 2020    PCR y Egencompl
Castro et al 2021                     PCR
Perin et al 2020          PCR y Egencompl
Kipper et al 2021         PCR y Egencompl
Piña-Iturbe et al 2021          EgenCompl
Saidenberg et al 2022           EgenCompl
Vinueza-Burgos et al 2016             PCR

Number of studies: k = 16
Number of observations: o = 1193
Number of events: e = 869.5

                     proportion           95%-CI
Fixed effect model       0.7819 [0.7565; 0.8063]
Random effects model     0.7192 [0.5289; 0.8783]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.1379 [0.0718; 0.3852]; tau = 0.3714 [0.2680; 0.6206]
 I^2 = 97.4% [96.7%; 98.0%]; H = 6.24 [5.51; 7.07]

Test of heterogeneity:
      Q d.f.  p-value
 584.28   15 < 0.0001

Results for subgroups (fixed effect model):
                           k proportion           95%-CI      Q   I^2
Método = EgenCompl         9     0.8009 [0.7705; 0.8299] 457.42 98.3%
Método = PCR               4     0.5615 [0.4830; 0.6386]  56.04 94.6%
Método = PCR y Egencompl   3     0.8607 [0.8085; 0.9064]  27.03 92.6%

Test for subgroup differences (fixed effect model):
                    Q d.f.  p-value
Between groups  43.79    2 < 0.0001
Within groups  540.49   13 < 0.0001

Results for subgroups (random effects model):
                           k proportion           95%-CI  tau^2    tau
Método = EgenCompl         9     0.7315 [0.4335; 0.9521] 0.1848 0.4299
Método = PCR               4     0.6178 [0.2654; 0.9143] 0.1195 0.3457
Método = PCR y Egencompl   3     0.8193 [0.5595; 0.9826] 0.0525 0.2292

Test for subgroup differences (random effects model):
                  Q d.f. p-value
Between groups 0.94    2  0.6248

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Proportion of samples with AB resistance - Subgroup Method (Q,C,A) (Forest Plot)

Column

Forest Plot Quinolonas

Forest Plot Cefalosporines

Forest Plot Aminoglucosidos

“Funnels AB resistance - Subgroup Method (Q,C,A)”

Column

Column

Column

AB Resistencia Fenotípica (Q,C,A)

Hoja electrónica de Google Link

Tabla ( )

[1] 27  8

Column

Quinolonas

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  0.1176 [0.0608; 0.2153]       4.1        6.3
Jarquin et al 2012                0.5243 [0.4287; 0.6181]       6.2        6.4
Villalpando-Guzmán et al 2013     0.5891 [0.5029; 0.6703]       7.7        6.4
Molina et al 2024                 0.9296 [0.8455; 0.9695]       4.3        6.3
Rau et al 2021                    0.3657 [0.3139; 0.4207]      18.5        6.5
Puig-Peña et al 2020              0.3051 [0.2499; 0.3666]      14.1        6.5
Cunha-Neto et al 2018             0.0000 [0.0000; 0.1103]       1.9        6.0
Yamatogi et al 2016               0.3622 [0.2982; 0.4316]      11.7        6.5
Alikhan et al 2022                0.0000 [0.0000; 0.2775]       0.6        5.3
Santos et al 2023                 0.1667 [0.1001; 0.2646]       4.7        6.3
Castellanos et al 2020            0.9275 [0.8413; 0.9687]       4.1        6.3
Dos Santos et al 2021             0.5120 [0.4253; 0.5980]       7.5        6.4
Perin et al 2020                  0.9388 [0.8728; 0.9716]       5.9        6.4
Khan et al 2021                   0.0833 [0.0361; 0.1807]       3.6        6.3
Piña-Iturbe et al 2021            0.0870 [0.0242; 0.2680]       1.4        5.9
Vinueza-Burgos et al 2016         0.8689 [0.7620; 0.9320]       3.7        6.3

Number of studies: k = 16
Number of observations: o = 1667
Number of events: e = 753

                     proportion           95%-CI
Fixed effect model       0.4521 [0.4278; 0.4764]
Random effects model     0.4166 [0.2661; 0.5751]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.0971 [0.0662; 0.3257]; tau = 0.3115 [0.2574; 0.5707]
 I^2 = 97.5% [96.8%; 98.1%]; H = 6.33 [5.60; 7.17]

Test of heterogeneity:
      Q d.f.  p-value
 601.94   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Wilson Score confidence interval for individual studies

Cefalosporinas

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  0.1765 [0.0939; 0.2771]       4.1        6.3
Jarquin et al 2012                0.0194 [0.0003; 0.0576]       6.2        6.4
Villalpando-Guzmán et al 2013     0.4597 [0.3742; 0.5464]       7.7        6.4
Molina et al 2024                 0.6761 [0.5621; 0.7806]       4.3        6.3
Rau et al 2021                    0.3204 [0.2694; 0.3736]      18.5        6.5
Puig-Peña et al 2020              0.1568 [0.1130; 0.2061]      14.1        6.5
Cunha-Neto et al 2018             0.1613 [0.0492; 0.3147]       1.9        6.0
Yamatogi et al 2016               0.0969 [0.0591; 0.1427]      11.7        6.5
Alikhan et al 2022                0.5000 [0.1892; 0.8108]       0.6        5.1
Santos et al 2023                 0.5128 [0.4014; 0.6236]       4.7        6.3
Castellanos et al 2020            0.0000 [0.0000; 0.0248]       4.1        6.3
Dos Santos et al 2021             0.5680 [0.4800; 0.6539]       7.5        6.4
Perin et al 2020                  0.8571 [0.7801; 0.9202]       5.9        6.4
Khan et al 2021                   0.0833 [0.0243; 0.1689]       3.6        6.3
Piña-Iturbe et al 2021            0.1739 [0.0415; 0.3600]       1.4        5.8
Vinueza-Burgos et al 2016         0.3934 [0.2739; 0.5196]       3.7        6.3

Number of studies: k = 16
Number of observations: o = 1667
Number of events: e = 514.3

                     proportion           95%-CI
Fixed effect model       0.2790 [0.2573; 0.3012]
Random effects model     0.2886 [0.1656; 0.4292]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.0820 [0.0453; 0.2255]; tau = 0.2864 [0.2128; 0.4749]
 I^2 = 97.1% [96.2%; 97.7%]; H = 5.84 [5.12; 6.65]

Test of heterogeneity:
      Q d.f.  p-value
 510.94   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Aminoglucosidos

                              proportion           95%-CI %W(fixed) %W(random)
Kumar et al 2019                  0.1765 [0.0939; 0.2771]       4.1        6.3
Jarquin et al 2012                0.0194 [0.0003; 0.0576]       6.2        6.4
Villalpando-Guzmán et al 2013     0.4597 [0.3742; 0.5464]       7.7        6.4
Molina et al 2024                 0.6761 [0.5621; 0.7806]       4.3        6.3
Rau et al 2021                    0.3204 [0.2694; 0.3736]      18.5        6.5
Puig-Peña et al 2020              0.1568 [0.1130; 0.2061]      14.1        6.5
Cunha-Neto et al 2018             0.1613 [0.0492; 0.3147]       1.9        6.0
Yamatogi et al 2016               0.0969 [0.0591; 0.1427]      11.7        6.5
Alikhan et al 2022                0.5000 [0.1892; 0.8108]       0.6        5.1
Santos et al 2023                 0.5128 [0.4014; 0.6236]       4.7        6.3
Castellanos et al 2020            0.0000 [0.0000; 0.0248]       4.1        6.3
Dos Santos et al 2021             0.5680 [0.4800; 0.6539]       7.5        6.4
Perin et al 2020                  0.8571 [0.7801; 0.9202]       5.9        6.4
Khan et al 2021                   0.0833 [0.0243; 0.1689]       3.6        6.3
Piña-Iturbe et al 2021            0.1739 [0.0415; 0.3600]       1.4        5.8
Vinueza-Burgos et al 2016         0.3934 [0.2739; 0.5196]       3.7        6.3

Number of studies: k = 16
Number of observations: o = 1667
Number of events: e = 514.3

                     proportion           95%-CI
Fixed effect model       0.2790 [0.2573; 0.3012]
Random effects model     0.2886 [0.1656; 0.4292]

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.0820 [0.0453; 0.2255]; tau = 0.2864 [0.2128; 0.4749]
 I^2 = 97.1% [96.2%; 97.7%]; H = 5.84 [5.12; 6.65]

Test of heterogeneity:
      Q d.f.  p-value
 510.94   15 < 0.0001

Details of meta-analysis methods:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Jackson method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Freeman-Tukey double arcsine transformation
- Normal approximation confidence interval for individual studies

Proporciónn de muestras con resistencia fenotípica (Q,C,A) (Forest Plot)

Column

Forest Plot Quinolonas

Forest Plot Cefalosporines

Forest Plot Aminoglucosidos

“Tamaño de muestra y Pr. of resistencia AB Fenotípica (Q,C,A)”

Column

Quinolonas

Cefalosporinas

Column

Serovars & Country

Column

Serovars & Region

Column

Serovars Similitud

Column