LIBRARY

library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
library(GGally)
## Warning: package 'GGally' was built under R version 4.4.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.4.2
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.4.3
## corrplot 0.95 loaded
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(car)
## Warning: package 'car' was built under R version 4.4.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.4.2
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(GGally)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.4.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.4.3
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(olsrr)
## Warning: package 'olsrr' was built under R version 4.4.3
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:olsrr':
## 
##     cement
## The following object is masked from 'package:dplyr':
## 
##     select
library(glmnet)
## Warning: package 'glmnet' was built under R version 4.4.3
## Loading required package: Matrix
## Loaded glmnet 4.1-8

DATA

data <- read_xlsx("C:\\Users\\Hafizh Fadhlah\\OneDrive\\Documents\\Indikator Utama Pendidikan Provinsi Jawa Tengah Tahun 2024 - Copy.xlsx")
head(data)
## # A tibble: 6 × 7
##     AMH   HLS APM_SLTA APK_SLTA APS_7_12 APS_13_15 APS_16_18
##   <dbl> <dbl>    <dbl>    <dbl>    <dbl>     <dbl>     <dbl>
## 1  95.3  12.7     61.2     83.8     99.9      95.4      74.5
## 2  95.9  13.3     68.7     97.4    100.       99.6      78.3
## 3  93.9  12.0     57.1     77.4    100.       94.8      75.9
## 4  92.9  11.8     54       70.6     99.7      94.6      65.4
## 5  94.9  13.4     73.2     98.6     99.9      99.5      77.3
## 6  95.8  13.6     72.9     92.1     99.6      99.1      83.6
str(data)
## tibble [36 × 7] (S3: tbl_df/tbl/data.frame)
##  $ AMH      : num [1:36] 95.3 95.9 93.9 92.9 94.9 ...
##  $ HLS      : num [1:36] 12.7 13.3 12 11.8 13.4 ...
##  $ APM_SLTA : num [1:36] 61.1 68.7 57.1 54 73.2 ...
##  $ APK_SLTA : num [1:36] 83.8 97.4 77.4 70.7 98.6 ...
##  $ APS_7_12 : num [1:36] 99.9 100 100 99.7 99.9 ...
##  $ APS_13_15: num [1:36] 95.4 99.6 94.8 94.6 99.5 ...
##  $ APS_16_18: num [1:36] 74.5 78.3 75.9 65.4 77.3 ...
summary(data)
##       AMH             HLS           APM_SLTA        APK_SLTA     
##  Min.   :88.56   Min.   :11.81   Min.   :47.45   Min.   : 66.74  
##  1st Qu.:93.36   1st Qu.:12.57   1st Qu.:59.38   1st Qu.: 83.73  
##  Median :94.57   Median :12.91   Median :64.13   Median : 90.19  
##  Mean   :94.70   Mean   :13.08   Mean   :63.59   Mean   : 88.82  
##  3rd Qu.:95.91   3rd Qu.:13.37   3rd Qu.:68.02   3rd Qu.: 96.17  
##  Max.   :99.15   Max.   :15.57   Max.   :76.93   Max.   :102.71  
##     APS_7_12       APS_13_15       APS_16_18    
##  Min.   :97.99   Min.   :88.85   Min.   :55.32  
##  1st Qu.:99.25   1st Qu.:96.14   1st Qu.:67.52  
##  Median :99.64   Median :97.28   Median :73.95  
##  Mean   :99.54   Mean   :97.14   Mean   :72.45  
##  3rd Qu.:99.94   3rd Qu.:99.25   3rd Qu.:77.20  
##  Max.   :99.99   Max.   :99.99   Max.   :85.94

EKSPLORASI DATA

hist(data$AMH, main = "ANGKA MELEK HURUF")

boxplot(data$AMH, main = "ANGKA MELEK HURUF")

ggpairs(data,
        upper = list(continuous = wrap('cor', size = 3)),
        title = "Matriks Scatterplot Data")

cor_matrix <- cor(data, use = "complete.obs")

corrplot(cor_matrix, method = "color", type = "lower",
         col = colorRampPalette(c("red", "white", "blue"))(200),
         addCoef.col = "black", tl.col = "black", tl.srt = 35)

PEMODELAN

TANPA FUNGSI

n <- nrow(data)
x0 <- rep(1,n)
x <- data.frame(x0, data$HLS, data$APM_SLTA, data$APK_SLTA,
                data$APS_7_12, data$APS_13_15, data$APS_16_18)
x <- as.matrix(x)
y <- data$AMH

beta_duga <- solve(t(x)%*%x)%*%t(x)%*%y
beta_duga
##                       [,1]
## x0             41.60032808
## data.HLS        2.46838302
## data.APM_SLTA   0.05739631
## data.APK_SLTA  -0.21609860
## data.APS_7_12  -0.04961141
## data.APS_13_15  0.47142596
## data.APS_16_18 -0.06202815

DENGAN FUNGSI

model1 = lm(formula = AMH ~ ., data = data)
summary(model1)
## 
## Call:
## lm(formula = AMH ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8973 -0.9734  0.2477  0.9393  2.3396 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 41.60033   56.60544   0.735  0.46829    
## HLS          2.46838    0.44210   5.583 5.02e-06 ***
## APM_SLTA     0.05740    0.08784   0.653  0.51864    
## APK_SLTA    -0.21610    0.06578  -3.285  0.00267 ** 
## APS_7_12    -0.04961    0.56333  -0.088  0.93043    
## APS_13_15    0.47143    0.16117   2.925  0.00662 ** 
## APS_16_18   -0.06203    0.06985  -0.888  0.38185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.508 on 29 degrees of freedom
## Multiple R-squared:  0.6662, Adjusted R-squared:  0.5971 
## F-statistic: 9.646 on 6 and 29 DF,  p-value: 7.462e-06

PEMERIKSAAN MULTIKOLINEARITAS

vif(model1)
##       HLS  APM_SLTA  APK_SLTA  APS_7_12 APS_13_15 APS_16_18 
##  2.520416  5.411143  5.410893  1.095676  2.967597  4.013443

PENGUJIAN ASUMSI

plot(model1,1)

plot(x = 1:dim(data)[1],
     y = model1$residuals,
     type = 'b', 
     ylab = "Residuals",
     xlab = "Observation")

plot(model1,2)

UJI FORMAL

Nilai harapan sisaan sama dengan nol

t.test(model1$residuals,mu = 0,conf.level = 0.95)
## 
##  One Sample t-test
## 
## data:  model1$residuals
## t = -3.4039e-16, df = 35, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  -0.4645647  0.4645647
## sample estimates:
##    mean of x 
## -7.78939e-17

Ragam sisaan homogen

bptest(model1)
## 
##  studentized Breusch-Pagan test
## 
## data:  model1
## BP = 4.5707, df = 6, p-value = 0.5999

Sisaan saling bebas

dwtest(model1)
## 
##  Durbin-Watson test
## 
## data:  model1
## DW = 1.8052, p-value = 0.2339
## alternative hypothesis: true autocorrelation is greater than 0

Normalitas Sisaan

shapiro.test(model1$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  model1$residuals
## W = 0.96009, p-value = 0.2163

PEMERIKSAAN AMATAN TIDAK BIASA

ri_stud <- rstudent(model1)
ri_stan <- rstandard(model1)
hii_fungsi <- hatvalues(model1)

nilai <- data.frame(ri_stud, ri_stan, hii_fungsi)
nilai
##        ri_stud     ri_stan hii_fungsi
## 1   1.11519990  1.11054402 0.10677209
## 2   0.94290652  0.94471505 0.10323361
## 3   0.78942162  0.79460085 0.28571659
## 4  -0.97089102 -0.97185280 0.17911519
## 5   0.12972873  0.13198534 0.14948871
## 6  -0.07126202 -0.07251682 0.14939608
## 7  -0.28255656 -0.28714886 0.32670759
## 8   0.35974013  0.36526457 0.13637986
## 9   0.40158678  0.40752314 0.18441096
## 10 -0.29915857 -0.30396843 0.45796399
## 11  0.04302874  0.04378892 0.10297839
## 12  0.73360257  0.73951461 0.27280171
## 13 -1.77422600 -1.71196037 0.12693421
## 14 -1.39952653 -1.37695211 0.32397004
## 15 -0.11776285 -0.11981764 0.30574717
## 16 -3.24227817 -2.81351452 0.15665874
## 17  0.42340580  0.42952744 0.32011304
## 18 -0.09223574 -0.09385410 0.19700324
## 19  0.59699960  0.60373649 0.18481150
## 20  0.66327971  0.66977876 0.10717949
## 21  0.21792134  0.22159082 0.12989928
## 22  0.30133719  0.30617495 0.07613060
## 23  1.22798962  1.21737426 0.06134822
## 24  0.63860462  0.64522641 0.07643499
## 25 -0.15370325 -0.15635793 0.17800840
## 26 -1.02296441 -1.02214603 0.09413390
## 27  0.68471044  0.69106858 0.43310918
## 28 -0.89764318 -0.90066449 0.10598712
## 29 -1.69436554 -1.64222116 0.18915295
## 30  1.06474921  1.06230340 0.27216443
## 31  0.65263765  0.65919475 0.23924686
## 32 -0.72934168 -0.73529969 0.34956823
## 33 -1.06181758 -1.05949187 0.42682062
## 34  1.65794826  1.61011146 0.07201544
## 35  1.45827629  1.43075071 0.08613932
## 36 -1.14864425 -1.14237088 0.03245829

PENCILAN

for (i in 1:dim(nilai)[1]){
  absri <- abs(nilai[,2])
  pencilan <- which(absri > 2)
}
pencilan
## [1] 16
n <- dim(data)[1]
p <- length(model1$coefficients)

for (i in 1:dim(nilai)[1]){
  cutoff <- 2*p/n
  titik_leverage <- which(hii_fungsi > cutoff)
}
titik_leverage
## 10 27 33 
## 10 27 33
ols_plot_resid_lev(model1)

AMATAN BERPENGARUH

Jarak Cook

di <- cooks.distance(model1)
f <- qf(0.05,p,n-p, lower.tail = F)
data.frame(di, di>f)
##              di di...f
## 1  2.106051e-02  FALSE
## 2  1.467728e-02  FALSE
## 3  3.607986e-02  FALSE
## 4  2.944104e-02  FALSE
## 5  4.374029e-04  FALSE
## 6  1.319445e-04  FALSE
## 7  5.715729e-03  FALSE
## 8  3.009848e-03  FALSE
## 9  5.364408e-03  FALSE
## 10 1.115224e-02  FALSE
## 11 3.144659e-05  FALSE
## 12 2.930824e-02  FALSE
## 13 6.087249e-02  FALSE
## 14 1.298012e-01  FALSE
## 15 9.032090e-04  FALSE
## 16 2.100640e-01  FALSE
## 17 1.240939e-02  FALSE
## 18 3.087223e-04  FALSE
## 19 1.180505e-02  FALSE
## 20 7.693292e-03  FALSE
## 21 1.047231e-03  FALSE
## 22 1.103545e-03  FALSE
## 23 1.383718e-02  FALSE
## 24 4.922106e-03  FALSE
## 25 7.563362e-04  FALSE
## 26 1.550993e-02  FALSE
## 27 5.212454e-02  FALSE
## 28 1.373844e-02  FALSE
## 29 8.987511e-02  FALSE
## 30 6.028333e-02  FALSE
## 31 1.952234e-02  FALSE
## 32 4.151078e-02  FALSE
## 33 1.194131e-01  FALSE
## 34 2.874079e-02  FALSE
## 35 2.756458e-02  FALSE
## 36 6.254205e-03  FALSE
cooks_crit = f
model_cooks <- cooks.distance(model1)
df <- data.frame(obs = names(model_cooks),
                 cooks = model_cooks)
ggplot(df, aes(y = cooks, x = obs)) +
  geom_point() +
  geom_hline(yintercept = cooks_crit, linetype="dashed") +
  labs(title = "Cook's Distance",
       subtitle = "Influential Observation ",
       x = "Observation Number",
       y = "Cook's")

DFBETAS

ols_plot_dfbetas(model1)

DFFITS

ols_plot_dffits(model1)

DFFITSi <- dffits(model1)

amatan_berpengaruh <- vector("list", dim(nilai)[1])
for (i in 1:dim(nilai)[1]) {
  cutoff <- 2 * sqrt((p / n))
  amatan_berpengaruh[[i]] <- which(abs(DFFITSi) > cutoff)
}
berpengaruh <- unlist(amatan_berpengaruh)
amatan_berpengaruh <- sort(unique(berpengaruh))
amatan_berpengaruh
## [1] 14 16 33

PEMODELAN PENYISIHAN AMATAN

dt1 <- data %>% slice(-12)
model3 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt1)

dt2 <- data %>% slice(-21)
model4 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt2)

dt3 <- data %>% slice(-22)
model5 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt3)

dt4 <- data %>% slice(-c(12, 21))
model6 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt4)

dt5 <- data %>% slice(-c(12, 22))
model7 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt5)

dt6 <- data%>% slice(-c(21, 22))
model8 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt6)

dt7 <- data %>% slice(-c(12, 21, 22))
model9 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, dt7)

get_metrics <- function(model) {
  adj_r2 <- summary(model)$adj.r.squared
  sse <- sum(model$residuals^2)
  return(c(adj_r2, sse))
}

model_metrics <- data.frame(
  Model = c("Model 3", "Model 4", "Model 5", "Model 6",
            "Model 7", "Model 8", "Model 9"),
  Adjusted_R2 = sapply(list(model3, model4, model5, 
                            model6, model7, model8, model9), 
                       function(m) get_metrics(m)[1]),
  SSE = sapply(list(model3, model4, model5, 
                    model6, model7, model8, model9), 
               function(m) get_metrics(m)[2])
)

print(model_metrics)
##     Model Adjusted_R2      SSE
## 1 Model 3   0.5912891 64.73760
## 2 Model 4   0.5922023 65.87016
## 3 Model 5   0.5939918 65.76859
## 4 Model 6   0.5865412 64.60361
## 5 Model 7   0.5877161 64.59805
## 6 Model 8   0.5887497 65.65012
## 7 Model 9   0.5826189 64.45872
stargazer(model4, model9, type = "text", font.size = "small",
          report = "vc*p")
## 
## ===============================================================
##                                 Dependent variable:            
##                     -------------------------------------------
##                                         AMH                    
##                              (1)                   (2)         
## ---------------------------------------------------------------
## HLS                       2.459***              2.560***       
##                          p = 0.00001           p = 0.00003     
##                                                                
## APM_SLTA                    0.057                 0.075        
##                           p = 0.529             p = 0.457      
##                                                                
## APK_SLTA                  -0.217***             -0.239***      
##                           p = 0.004             p = 0.006      
##                                                                
## APS_7_12                   -0.068                -0.105        
##                           p = 0.907             p = 0.863      
##                                                                
## APS_13_15                 0.470***              0.500***       
##                           p = 0.008             p = 0.009      
##                                                                
## APS_16_18                  -0.059                -0.071        
##                           p = 0.424             p = 0.375      
##                                                                
## Constant                   43.615                44.589        
##                           p = 0.461             p = 0.464      
##                                                                
## ---------------------------------------------------------------
## Observations                 35                    33          
## R2                          0.664                 0.661        
## Adjusted R2                 0.592                 0.583        
## Residual Std. Error    1.534 (df = 28)       1.575 (df = 26)   
## F Statistic         9.229*** (df = 6; 28) 8.445*** (df = 6; 26)
## ===============================================================
## Note:                               *p<0.1; **p<0.05; ***p<0.01

PENYELEKSIAN PEUBAH

BEST SUBSET

bs <- ols_step_best_subset(model1)
bs
##                      Best Subsets Regression                     
## -----------------------------------------------------------------
## Model Index    Predictors
## -----------------------------------------------------------------
##      1         HLS                                                
##      2         HLS APK_SLTA                                       
##      3         HLS APK_SLTA APS_13_15                             
##      4         HLS APK_SLTA APS_13_15 APS_16_18                   
##      5         HLS APM_SLTA APK_SLTA APS_13_15 APS_16_18          
##      6         HLS APM_SLTA APK_SLTA APS_7_12 APS_13_15 APS_16_18 
## -----------------------------------------------------------------
## 
##                                                    Subsets Regression Summary                                                    
## ---------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                           
## Model    R-Square    R-Square    R-Square     C(p)        AIC        SBIC        SBC         MSEP       FPE       HSP       APC  
## ---------------------------------------------------------------------------------------------------------------------------------
##   1        0.4751      0.4596      0.4337    13.6030    146.2710    43.1764    151.0215    109.8713    3.2212    0.0925    0.5867 
##   2        0.5646      0.5382      0.4778     7.8276    141.5414    39.0832    147.8754     93.9862    2.8254    0.0815    0.5146 
##   3        0.6570      0.6249      0.5701     1.7970    134.9506    34.3658    142.8682     76.4216    2.3540    0.0683    0.4287 
##   4        0.6610      0.6172      0.5487     3.4512    136.5303    36.4915    146.0314     78.0524    2.4618    0.0721    0.4484 
##   5        0.6661      0.6104      0.5312     5.0078    137.9842    38.5970    149.0688     79.5282    2.5666    0.0759    0.4675 
##   6        0.6662      0.5971      0.5121     7.0000    139.9746    41.0738    152.6427     82.3464    2.7176    0.0813    0.4950 
## ---------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria

Backward, Forward, Stepwise

null<-lm(AMH ~ 1, data=data) # 1 here means the intercept 
full<-lm(AMH ~ ., data=data)
 
step(full, scope=list(lower=null, upper=full),data=data, direction='backward', trace=0)
## 
## Call:
## lm(formula = AMH ~ HLS + APK_SLTA + APS_13_15, data = data)
## 
## Coefficients:
## (Intercept)          HLS     APK_SLTA    APS_13_15  
##     39.2276       2.3702      -0.1992       0.4341
step(null, scope=list(lower=null, upper=full),data=data, direction='forward', trace=0)
## 
## Call:
## lm(formula = AMH ~ HLS + APK_SLTA + APS_13_15, data = data)
## 
## Coefficients:
## (Intercept)          HLS     APK_SLTA    APS_13_15  
##     39.2276       2.3702      -0.1992       0.4341
step(null, scope=list(lower=null, upper=full),data=data, direction='both', trace=0)
## 
## Call:
## lm(formula = AMH ~ HLS + APK_SLTA + APS_13_15, data = data)
## 
## Coefficients:
## (Intercept)          HLS     APK_SLTA    APS_13_15  
##     39.2276       2.3702      -0.1992       0.4341
model1 <- lm(AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + APS_16_18, data=data)
summary(model1)
## 
## Call:
## lm(formula = AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + 
##     APS_16_18, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8973 -0.9734  0.2477  0.9393  2.3396 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 41.60033   56.60544   0.735  0.46829    
## HLS          2.46838    0.44210   5.583 5.02e-06 ***
## APM_SLTA     0.05740    0.08784   0.653  0.51864    
## APK_SLTA    -0.21610    0.06578  -3.285  0.00267 ** 
## APS_7_12    -0.04961    0.56333  -0.088  0.93043    
## APS_13_15    0.47143    0.16117   2.925  0.00662 ** 
## APS_16_18   -0.06203    0.06985  -0.888  0.38185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.508 on 29 degrees of freedom
## Multiple R-squared:  0.6662, Adjusted R-squared:  0.5971 
## F-statistic: 9.646 on 6 and 29 DF,  p-value: 7.462e-06
AIC(model1); BIC(model1)
## [1] 139.9746
## [1] 152.6427

SHRINKAGE METHODS

Ridge

x <- as.matrix(data[, -1])
y <- data$AMH

rid <- cv.glmnet(x, y, alpha = 0, nfolds = 5)
rid
## 
## Call:  cv.glmnet(x = x, y = y, nfolds = 5, alpha = 0) 
## 
## Measure: Mean-Squared Error 
## 
##     Lambda Index Measure     SE Nonzero
## min 0.2135    97   2.549 0.5271       6
## 1se 0.8619    82   3.020 0.6731       6
coef(rid, s = "lambda.min")
## 7 x 1 sparse Matrix of class "dgCMatrix"
##                      s1
## (Intercept) 57.95766167
## HLS          1.91283540
## APM_SLTA    -0.01454526
## APK_SLTA    -0.11433811
## APS_7_12    -0.08079900
## APS_13_15    0.32912194
## APS_16_18   -0.01546010

Lasso

lass <- cv.glmnet(x, y, alpha=1, nfolds = 5)
lass
## 
## Call:  cv.glmnet(x = x, y = y, nfolds = 5, alpha = 1) 
## 
## Measure: Mean-Squared Error 
## 
##      Lambda Index Measure     SE Nonzero
## min 0.02038    48   2.949 0.6391       6
## 1se 0.22893    22   3.568 1.2502       3
coef(lass,s="lambda.min")
## 7 x 1 sparse Matrix of class "dgCMatrix"
##                      s1
## (Intercept) 42.23790488
## HLS          2.35745416
## APM_SLTA     0.01574838
## APK_SLTA    -0.18475888
## APS_7_12    -0.01331516
## APS_13_15    0.41898899
## APS_16_18   -0.03222835
summary(model3)
## 
## Call:
## lm(formula = AMH ~ HLS + APM_SLTA + APK_SLTA + APS_7_12 + APS_13_15 + 
##     APS_16_18, data = dt1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7592 -1.0963  0.2280  0.9297  2.2871 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 42.74609   57.08299   0.749  0.46020    
## HLS          2.58348    0.47248   5.468 7.73e-06 ***
## APM_SLTA     0.08035    0.09391   0.856  0.39951    
## APK_SLTA    -0.24207    0.07517  -3.220  0.00323 ** 
## APS_7_12    -0.08973    0.57049  -0.157  0.87615    
## APS_13_15    0.50479    0.16871   2.992  0.00573 ** 
## APS_16_18   -0.07706    0.07333  -1.051  0.30236    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.521 on 28 degrees of freedom
## Multiple R-squared:  0.6634, Adjusted R-squared:  0.5913 
## F-statistic: 9.198 on 6 and 28 DF,  p-value: 1.353e-05