Çok değişkenli istatistikler karmaşık veri setlerini analiz etmede kullanım yaygınlığı gittikçe artan tekniklerdir.
Bu ders kapsamında kullanılacak paketlerin yüklenmesi
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ lubridate 1.9.3 ✔ tibble 3.2.1
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::group_rows() masks kableExtra::group_rows()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
library(stevemisc)
##
## Attaching package: 'stevemisc'
##
## The following object is masked from 'package:lubridate':
##
## dst
##
## The following object is masked from 'package:dplyr':
##
## tbl_df
library(knitr)
library(haven)
library(summarytools)
##
## Attaching package: 'summarytools'
##
## The following object is masked from 'package:tibble':
##
## view
library(outliers)
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
##
## The following object is masked from 'package:ggplot2':
##
## last_plot
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following object is masked from 'package:graphics':
##
## layout
library(ggpmisc)
## Loading required package: ggpp
## Registered S3 methods overwritten by 'ggpp':
## method from
## heightDetails.titleGrob ggplot2
## widthDetails.titleGrob ggplot2
##
## Attaching package: 'ggpp'
##
## The following object is masked from 'package:ggplot2':
##
## annotate
library(psych)
##
## Attaching package: 'psych'
##
## The following object is masked from 'package:outliers':
##
## outlier
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(sur)
##
## Attaching package: 'sur'
##
## The following object is masked from 'package:psych':
##
## skew
library(moments)
library(corrplot)
## corrplot 0.95 loaded
library(olsrr)
##
## Attaching package: 'olsrr'
##
## The following object is masked from 'package:datasets':
##
## rivers
library(readr)
scr_canada <- read_csv("D:/OLC_733/scr_canada.csv")
## Rows: 13879 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): idbid
## dbl (28): IDCNTRY, IDPOP, IDGRADER, IDGRADE, IDSCHOOL, IDCLASS, IDSTUD, ITSE...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(scr_canada) # ilk satırların gözlemlenmesi
#Kullanılacak verinin seçilmesi
#scr <-select(scr_canada, starts_with("ASBR08"))
# Geçerli olmayan yanıtların çıkarılması, 9 'u kayıp veri olarak atanması
#scr %>% filter_all(all_vars(!is.na(.))) %>%
#mutate_all(~na_if(., 9)) %>%
#as.data.frame()
scr_canada <- scr_canada %>%
mutate(IDGRADE = ifelse(is.na(IDGRADE), mean(IDGRADE, na.rm = TRUE),IDGRADE)) %>% na.omit()
summary(scr_canada)
## IDCNTRY IDPOP IDGRADER IDGRADE IDSCHOOL
## Min. :9130 Min. :1 Min. :2 Min. :4.000 Min. :5001
## 1st Qu.:9133 1st Qu.:1 1st Qu.:2 1st Qu.:4.000 1st Qu.:5163
## Median :9134 Median :1 Median :2 Median :4.000 Median :5331
## Mean :9133 Mean :1 Mean :2 Mean :4.272 Mean :5328
## 3rd Qu.:9135 3rd Qu.:1 3rd Qu.:2 3rd Qu.:5.000 3rd Qu.:5493
## Max. :9135 Max. :1 Max. :2 Max. :5.000 Max. :5661
## IDCLASS IDSTUD ITSEX ITADMINI
## Min. :500101 Min. :50010101 Min. :1.000 Min. :2.000
## 1st Qu.:516303 1st Qu.:51630302 1st Qu.:1.000 1st Qu.:2.000
## Median :533101 Median :53310112 Median :2.000 Median :3.000
## Mean :532834 Mean :53283439 Mean :1.501 Mean :3.208
## 3rd Qu.:549302 3rd Qu.:54930208 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :566101 Max. :56610107 Max. :2.000 Max. :9.000
## ITLANG_SA ITLANG_SQ IDBOOK ASBR08A ASBR08B
## Min. :1.00 Min. :1.00 Min. : 1.00 Min. :1.000 Min. :1.000
## 1st Qu.:1.00 1st Qu.:1.00 1st Qu.: 7.00 1st Qu.:1.000 1st Qu.:1.000
## Median :1.00 Median :1.00 Median :14.00 Median :1.000 Median :1.000
## Mean :1.59 Mean :1.59 Mean :19.15 Mean :1.661 Mean :1.779
## 3rd Qu.:3.00 3rd Qu.:3.00 3rd Qu.:26.00 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :3.00 Max. :3.00 Max. :83.00 Max. :9.000 Max. :9.000
## ASBR08C ASBR08D ASBR08E ASBR08F
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:3.00
## Median :3.000 Median :4.000 Median :4.000 Median :4.00
## Mean :2.807 Mean :3.352 Mean :3.554 Mean :3.67
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.00
## Max. :9.000 Max. :9.000 Max. :9.000 Max. :9.00
## HOUWGT TOTWGT SENWGT JKREP
## Min. :0.1141 Min. : 1.052 Min. :0.01220 Min. :0.0000
## 1st Qu.:0.6444 1st Qu.: 5.420 1st Qu.:0.08509 1st Qu.:0.0000
## Median :0.8461 Median : 10.040 Median :0.12338 Median :1.0000
## Mean :0.9992 Mean : 12.576 Mean :0.14390 Mean :0.5041
## 3rd Qu.:1.2028 3rd Qu.: 17.635 3rd Qu.:0.17512 3rd Qu.:1.0000
## Max. :5.9587 Max. :129.220 Max. :0.79683 Max. :1.0000
## JKZONE ASRREA01 ASRREA02 ASRREA03
## Min. : 1.00 Min. :181.7 Min. :238.8 Min. :222.6
## 1st Qu.: 31.00 1st Qu.:494.3 1st Qu.:493.0 1st Qu.:491.9
## Median : 62.00 Median :546.2 Median :544.4 Median :544.9
## Mean : 62.61 Mean :540.1 Mean :539.2 Mean :538.0
## 3rd Qu.: 93.00 3rd Qu.:591.2 3rd Qu.:591.5 3rd Qu.:589.1
## Max. :125.00 Max. :784.4 Max. :809.1 Max. :794.9
## ASRREA04 ASRREA05 idbid
## Min. :221.2 Min. :223.1 Length:13685
## 1st Qu.:492.8 1st Qu.:492.9 Class :character
## Median :545.2 Median :544.9 Mode :character
## Mean :538.8 Mean :539.0
## 3rd Qu.:590.6 3rd Qu.:590.5
## Max. :795.4 Max. :787.3
library(skimr)
skim(scr_canada)
| Name | scr_canada |
| Number of rows | 13685 |
| Number of columns | 29 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| numeric | 28 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| idbid | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| IDCNTRY | 0 | 1 | 9133.36 | 1.74 | 9130.00 | 9133.00 | 9134.00 | 9135.00 | 9135.00 | ▅▁▆▅▇ |
| IDPOP | 0 | 1 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▇▁▁ |
| IDGRADER | 0 | 1 | 2.00 | 0.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ▁▁▇▁▁ |
| IDGRADE | 0 | 1 | 4.27 | 0.45 | 4.00 | 4.00 | 4.00 | 5.00 | 5.00 | ▇▁▁▁▃ |
| IDSCHOOL | 0 | 1 | 5328.32 | 192.91 | 5001.00 | 5163.00 | 5331.00 | 5493.00 | 5661.00 | ▇▇▇▇▇ |
| IDCLASS | 0 | 1 | 532834.28 | 19290.59 | 500101.00 | 516303.00 | 533101.00 | 549302.00 | 566101.00 | ▇▇▇▇▇ |
| IDSTUD | 0 | 1 | 53283438.61 | 1929059.15 | 50010101.00 | 51630302.00 | 53310112.00 | 54930208.00 | 56610107.00 | ▇▇▇▇▇ |
| ITSEX | 0 | 1 | 1.50 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | ▇▁▁▁▇ |
| ITADMINI | 0 | 1 | 3.21 | 1.81 | 2.00 | 2.00 | 3.00 | 3.00 | 9.00 | ▇▁▁▁▁ |
| ITLANG_SA | 0 | 1 | 1.59 | 0.91 | 1.00 | 1.00 | 1.00 | 3.00 | 3.00 | ▇▁▁▁▃ |
| ITLANG_SQ | 0 | 1 | 1.59 | 0.91 | 1.00 | 1.00 | 1.00 | 3.00 | 3.00 | ▇▁▁▁▃ |
| IDBOOK | 0 | 1 | 19.15 | 17.44 | 1.00 | 7.00 | 14.00 | 26.00 | 83.00 | ▇▂▁▁▁ |
| ASBR08A | 0 | 1 | 1.66 | 1.31 | 1.00 | 1.00 | 1.00 | 2.00 | 9.00 | ▇▁▁▁▁ |
| ASBR08B | 0 | 1 | 1.78 | 1.51 | 1.00 | 1.00 | 1.00 | 2.00 | 9.00 | ▇▁▁▁▁ |
| ASBR08C | 0 | 1 | 2.81 | 1.58 | 1.00 | 2.00 | 3.00 | 4.00 | 9.00 | ▇▇▁▁▁ |
| ASBR08D | 0 | 1 | 3.35 | 1.50 | 1.00 | 2.00 | 4.00 | 4.00 | 9.00 | ▃▇▁▁▁ |
| ASBR08E | 0 | 1 | 3.55 | 1.51 | 1.00 | 3.00 | 4.00 | 4.00 | 9.00 | ▂▇▁▁▁ |
| ASBR08F | 0 | 1 | 3.67 | 1.52 | 1.00 | 3.00 | 4.00 | 4.00 | 9.00 | ▂▇▁▁▁ |
| HOUWGT | 0 | 1 | 1.00 | 0.62 | 0.11 | 0.64 | 0.85 | 1.20 | 5.96 | ▇▂▁▁▁ |
| TOTWGT | 0 | 1 | 12.58 | 11.22 | 1.05 | 5.42 | 10.04 | 17.64 | 129.22 | ▇▁▁▁▁ |
| SENWGT | 0 | 1 | 0.14 | 0.09 | 0.01 | 0.09 | 0.12 | 0.18 | 0.80 | ▇▂▁▁▁ |
| JKREP | 0 | 1 | 0.50 | 0.50 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | ▇▁▁▁▇ |
| JKZONE | 0 | 1 | 62.61 | 36.16 | 1.00 | 31.00 | 62.00 | 93.00 | 125.00 | ▇▇▇▆▇ |
| ASRREA01 | 0 | 1 | 540.12 | 74.34 | 181.71 | 494.28 | 546.24 | 591.19 | 784.44 | ▁▁▇▇▁ |
| ASRREA02 | 0 | 1 | 539.19 | 75.18 | 238.85 | 493.03 | 544.40 | 591.46 | 809.14 | ▁▂▇▅▁ |
| ASRREA03 | 0 | 1 | 537.96 | 74.47 | 222.57 | 491.90 | 544.89 | 589.13 | 794.87 | ▁▂▇▆▁ |
| ASRREA04 | 0 | 1 | 538.82 | 74.59 | 221.16 | 492.81 | 545.23 | 590.58 | 795.42 | ▁▂▇▆▁ |
| ASRREA05 | 0 | 1 | 539.04 | 74.59 | 223.06 | 492.92 | 544.85 | 590.52 | 787.30 | ▁▂▇▆▁ |
#Aletrnatif paketlerle betimsel istatistik özetleri elde edilebilir.
library(psych)
describe(scr_canada)
library(summarytools)
freq(scr_canada$ITSEX,
round.digits = 2,report.nas = FALSE,
style = "rmarkdown")
## setting plain.ascii to FALSE
## ### Frequencies
## #### scr_canada$ITSEX
## **Type:** Numeric
##
## | | Freq | % | % Cum. |
## |----------:|------:|-------:|-------:|
## | **1** | 6829 | 49.90 | 49.90 |
## | **2** | 6856 | 50.10 | 100.00 |
## | **Total** | 13685 | 100.00 | 100.00 |
#Farklı bir şekilde de özet frekans tablosu alınabilir.
library(knitr)
freq(scr_canada$ITSEX,report.nas = FALSE) %>%
kable(format='markdown',
caption="Frekans Tablosu",digits = 2)
| Freq | % Valid | % Valid Cum. | % Total | % Total Cum. | |
|---|---|---|---|---|---|
| 1 | 6829 | 49.9 | 49.9 | 49.9 | 49.9 |
| 2 | 6856 | 50.1 | 100.0 | 50.1 | 100.0 |
| 0 | NA | NA | 0.0 | 100.0 | |
| Total | 13685 | 100.0 | 100.0 | 100.0 | 100.0 |
library(janitor)
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
scr_canada %>%
tabyl(ITSEX) %>%
adorn_percentages("row") %>%
adorn_pct_formatting(digits = 2) %>%
adorn_ns()
## Warning in adorn_ns(.): adorn_ns() is meant to be called on a two_way tabyl;
## consider combining columns of a one_way tabyl with tidyr::unite()
library(outliers)
z.scores <- scr_canada %>%
select(ASBR08A:ASBR08F) %>%
scores(type = "z") %>%
round(2)
head(z.scores)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:janitor':
##
## make_clean_names
## The following object is masked from 'package:stats':
##
## filter
library(tidyr)
scr_canada %>%
select(ASBR08A:ASBR08F) %>%
pivot_longer(cols = everything(), names_to = "Degisken", values_to = "Deger") %>%
group_by(Degisken) %>%
identify_outliers(Deger)
library(DT)
DT::datatable(z.scores)
## Warning in instance$preRenderHook(instance): It seems your data is too big for
## client-side DataTables. You may consider server-side processing:
## https://rstudio.github.io/DT/server.html
library(ggplot2)
scr_canada %>%
mutate(ITSEX = factor(ITSEX, levels = c(1,2), labels = c("Erkek", "Kadın"))) %>%
ggplot(aes(x = ITSEX, fill = ITSEX)) +
geom_bar() +
scale_fill_manual(values = c("Erkek" = "blue", "Kadın" = "red")) +
labs(x = "Cinsiyet", y = "Frekans", title = "Cinsiyete Göre Dağılım") +
theme_minimal()
* Cinsiyete göre dağılım, grafiktede incelenmiş olup, dağılımın dengeli olduğu grafiktede görülmektedir.
library(plotly)
cinsiyet_oran <- scr_canada %>%
count(ITSEX) %>%
mutate(oran = n / sum(n) * 100)
# Şimdi yüzdelik grafiği çizelim
plot_ly(
data = cinsiyet_oran,
x = ~ITSEX,
y = ~oran,
type = "bar",
color = ~ITSEX,
colors = c("purple", "yellow"),
text = ~paste0(round(oran, 1), "%"), # Çubuk üstüne % yazalım
textposition = 'outside' # Yazı çubuğun üstünde gözüksün
) %>%
layout(
title = "Cinsiyete Göre Yüzdelik Dağılım",
xaxis = list(title = "Cinsiyet"),
yaxis = list(title = "Yüzde (%)"),
yaxis = list(range = c(0, 100)), # Y ekseni 0-100 arası ayarla
showlegend = FALSE
)
## Warning: textfont.color doesn't (yet) support data arrays
## Warning: textfont.color doesn't (yet) support data arrays
scr_canada %>%
select(ASBR08A:ASBR08F) %>%
pivot_longer(cols = everything(), names_to = "Degisken", values_to = "Deger") %>%
ggplot(aes(x = Degisken, y = Deger)) +
geom_boxplot(fill = "#0c4c8a", color = "black") +
labs(title = "ASBR08A-F Değişkenlerinin Boxplot Grafiği",
x = "Değişkenler", y = "Değerler") +
theme_minimal()
* Box plot grafiği incelendiğinde ASBR08A, ASBR08B, ASBR08E ve ASBR08F değişkenlerinde ikişer tane uç değer olduğu görülmektedir.
* ASBR08C ve ASBR08D değişkenlerinde ise bir tane uç değerin olduğu söylenebilir.
degiskenler <- c("ASBR08A", "ASBR08B", "ASBR08C", "ASBR08D", "ASBR08E", "ASBR08F")
outlier_listesi <- lapply(degiskenler, function(var) {
which(scr_canada[[var]] %in% boxplot.stats(scr_canada[[var]])$out)
})
names(outlier_listesi) <- degiskenler
outlier_listesi
## $ASBR08A
## [1] 29 36 38 180 208 265 285 292 304 315 352 365
## [13] 368 374 391 433 434 435 532 569 594 599 632 637
## [25] 665 684 695 696 728 750 778 781 783 795 808 809
## [37] 835 869 895 914 917 918 925 952 985 996 1010 1023
## [49] 1028 1029 1042 1053 1070 1135 1160 1188 1380 1432 1490 1581
## [61] 1587 1589 1593 1595 1636 1652 1731 1757 1773 1796 1841 1877
## [73] 1915 1939 2058 2067 2098 2100 2107 2112 2117 2123 2199 2224
## [85] 2246 2254 2255 2256 2258 2284 2290 2335 2350 2365 2393 2394
## [97] 2400 2451 2454 2456 2480 2513 2514 2544 2582 2590 2607 2617
## [109] 2631 2688 2695 2735 2769 2789 2816 2836 2872 2905 2912 2974
## [121] 2989 3006 3018 3058 3060 3153 3157 3170 3177 3228 3336 3341
## [133] 3359 3361 3366 3395 3396 3397 3401 3421 3447 3510 3513 3516
## [145] 3522 3567 3608 3615 3617 3645 3654 3664 3666 3697 3720 3721
## [157] 3730 3737 3743 3844 3879 3895 3944 3978 4000 4017 4064 4065
## [169] 4103 4119 4128 4137 4189 4202 4231 4299 4300 4303 4312 4349
## [181] 4355 4357 4358 4363 4375 4410 4413 4419 4432 4440 4449 4475
## [193] 4482 4490 4514 4526 4543 4553 4562 4584 4587 4589 4595 4596
## [205] 4599 4605 4638 4667 4692 4747 4785 4789 4845 4849 4928 4965
## [217] 4980 4989 4990 5066 5079 5093 5148 5219 5226 5240 5256 5301
## [229] 5320 5343 5383 5425 5442 5445 5450 5468 5479 5525 5534 5587
## [241] 5589 5638 5644 5651 5669 5673 5719 5723 5726 5737 5739 5773
## [253] 5836 5837 5846 5851 5858 5860 5871 5900 6003 6006 6011 6019
## [265] 6071 6116 6132 6142 6148 6160 6196 6212 6253 6267 6279 6292
## [277] 6320 6363 6389 6398 6424 6431 6469 6507 6509 6526 6551 6559
## [289] 6570 6673 6690 6699 6784 6791 6799 6826 6869 6875 6881 6888
## [301] 6953 6962 6965 6972 6975 6982 7020 7064 7069 7070 7078 7094
## [313] 7129 7159 7185 7220 7226 7230 7232 7238 7280 7284 7320 7338
## [325] 7349 7357 7375 7397 7447 7493 7517 7537 7542 7551 7597 7617
## [337] 7627 7628 7631 7690 7764 7770 7772 7778 7843 7845 7846 7848
## [349] 7851 7852 7857 7871 7880 7920 7937 7988 7995 8042 8066 8068
## [361] 8161 8191 8195 8205 8232 8234 8270 8276 8293 8309 8348 8356
## [373] 8364 8373 8384 8390 8473 8512 8522 8524 8577 8603 8616 8622
## [385] 8630 8632 8692 8698 8699 8716 8723 8725 8759 8777 8784 8787
## [397] 8790 8794 8795 8839 8888 8909 8930 8939 8940 8941 8954 8975
## [409] 9023 9041 9043 9045 9095 9118 9123 9126 9145 9156 9170 9172
## [421] 9233 9237 9252 9262 9324 9338 9343 9409 9425 9506 9509 9511
## [433] 9528 9561 9578 9641 9643 9690 9711 9764 9811 9853 9887 9916
## [445] 9921 9922 10027 10030 10040 10046 10067 10124 10167 10178 10291 10306
## [457] 10311 10326 10352 10357 10400 10483 10553 10556 10580 10584 10598 10642
## [469] 10648 10662 10716 10757 10759 10789 10812 10844 10846 10880 10920 10928
## [481] 10972 10983 10986 11056 11099 11187 11244 11288 11290 11304 11307 11309
## [493] 11409 11420 11432 11433 11434 11441 11443 11527 11541 11556 11636 11667
## [505] 11673 11675 11681 11735 11745 11787 11790 11791 11800 11806 11818 11823
## [517] 11859 11885 11963 12014 12062 12072 12091 12092 12125 12128 12155 12180
## [529] 12300 12345 12393 12431 12432 12449 12471 12482 12495 12546 12613 12620
## [541] 12667 12753 12794 12811 12822 12879 12903 12908 12909 13001 13068 13074
## [553] 13086 13128 13198 13208 13218 13219 13295 13303 13350 13354 13374 13391
## [565] 13412 13414 13456 13577 13578 13605 13633 13648 13658 13663
##
## $ASBR08B
## [1] 19 29 36 38 54 60 63 111 142 155 170 171
## [13] 180 192 252 262 269 285 292 304 336 344 347 352
## [25] 365 368 374 375 391 433 496 511 512 514 532 555
## [37] 569 594 599 615 637 656 684 691 696 750 781 783
## [49] 785 809 819 823 840 893 894 898 904 911 917 925
## [61] 952 980 982 985 996 1023 1027 1029 1045 1053 1068 1160
## [73] 1188 1218 1249 1318 1342 1351 1359 1432 1446 1453 1469 1476
## [85] 1490 1579 1581 1587 1589 1593 1595 1626 1629 1673 1677 1731
## [97] 1767 1773 1789 1795 1796 1812 1841 1866 1876 1915 1927 1933
## [109] 1937 1998 2067 2095 2098 2100 2107 2112 2116 2117 2123 2124
## [121] 2186 2195 2199 2224 2246 2250 2254 2284 2290 2329 2335 2350
## [133] 2351 2353 2365 2392 2451 2454 2459 2460 2480 2517 2544 2565
## [145] 2569 2582 2607 2615 2636 2674 2688 2695 2725 2769 2789 2816
## [157] 2835 2836 2854 2856 2865 2872 2905 2912 2974 2995 3006 3018
## [169] 3031 3058 3060 3089 3115 3153 3157 3158 3170 3177 3186 3195
## [181] 3228 3249 3290 3336 3362 3380 3395 3396 3397 3398 3401 3430
## [193] 3495 3516 3522 3540 3541 3542 3567 3588 3608 3614 3615 3617
## [205] 3645 3654 3664 3666 3678 3683 3697 3711 3720 3721 3730 3737
## [217] 3769 3869 3879 3895 3908 3970 3978 4017 4065 4079 4103 4119
## [229] 4120 4135 4137 4181 4194 4201 4202 4255 4261 4277 4295 4299
## [241] 4303 4345 4349 4355 4357 4358 4363 4368 4410 4413 4432 4438
## [253] 4440 4449 4462 4475 4482 4490 4496 4514 4526 4543 4553 4562
## [265] 4567 4584 4588 4589 4595 4599 4605 4629 4635 4638 4667 4673
## [277] 4692 4723 4739 4747 4767 4785 4789 4806 4813 4829 4845 4849
## [289] 4850 4905 4928 4970 4989 4990 4997 5000 5037 5071 5072 5075
## [301] 5079 5219 5224 5228 5240 5253 5256 5277 5305 5331 5343 5364
## [313] 5379 5383 5399 5425 5445 5450 5453 5478 5479 5490 5525 5534
## [325] 5550 5556 5575 5587 5632 5638 5639 5658 5673 5719 5737 5739
## [337] 5773 5779 5836 5837 5846 5871 5895 5900 5945 6003 6006 6011
## [349] 6019 6071 6094 6116 6145 6148 6154 6160 6179 6198 6212 6253
## [361] 6267 6279 6285 6292 6304 6320 6325 6363 6389 6398 6415 6420
## [373] 6426 6456 6469 6481 6526 6551 6559 6567 6570 6625 6655 6663
## [385] 6686 6699 6701 6702 6708 6728 6774 6784 6789 6791 6799 6826
## [397] 6854 6865 6869 6875 6881 6888 6895 6953 6959 6962 6965 6975
## [409] 6982 6993 7020 7040 7069 7070 7078 7085 7086 7094 7123 7128
## [421] 7159 7161 7184 7185 7194 7195 7207 7220 7226 7238 7246 7261
## [433] 7284 7348 7375 7397 7481 7493 7517 7532 7536 7537 7542 7551
## [445] 7589 7603 7617 7627 7639 7764 7770 7772 7778 7780 7788 7789
## [457] 7825 7836 7842 7843 7845 7846 7851 7852 7857 7871 7877 7878
## [469] 7880 7899 7920 7937 7995 7996 7998 8012 8020 8026 8034 8035
## [481] 8042 8056 8064 8075 8129 8154 8156 8161 8200 8205 8234 8236
## [493] 8263 8268 8270 8276 8323 8348 8356 8364 8373 8384 8390 8431
## [505] 8442 8473 8509 8512 8522 8524 8548 8565 8573 8577 8615 8616
## [517] 8622 8630 8632 8667 8692 8698 8699 8702 8723 8749 8759 8777
## [529] 8794 8858 8888 8909 8917 8922 8924 8930 8939 8940 8941 8944
## [541] 8954 8955 8981 8990 9007 9023 9036 9041 9043 9045 9100 9118
## [553] 9123 9145 9149 9155 9156 9158 9168 9170 9172 9237 9242 9243
## [565] 9252 9262 9264 9277 9281 9285 9299 9324 9328 9338 9343 9409
## [577] 9496 9507 9511 9528 9554 9561 9578 9605 9641 9643 9651 9678
## [589] 9682 9690 9699 9711 9764 9767 9779 9805 9808 9811 9814 9817
## [601] 9853 9859 9870 9887 9907 9916 9921 10009 10019 10098 10124 10129
## [613] 10172 10178 10191 10214 10236 10311 10325 10337 10352 10357 10413 10442
## [625] 10456 10460 10466 10469 10471 10483 10520 10553 10566 10584 10642 10648
## [637] 10656 10657 10677 10693 10702 10715 10722 10736 10757 10783 10789 10812
## [649] 10880 10901 10910 10920 10928 10976 10983 10986 11013 11017 11045 11056
## [661] 11058 11099 11151 11153 11187 11207 11288 11302 11304 11307 11311 11352
## [673] 11379 11409 11420 11432 11433 11434 11443 11490 11527 11541 11550 11556
## [685] 11563 11566 11598 11608 11624 11634 11667 11670 11673 11680 11735 11748
## [697] 11778 11787 11790 11791 11800 11806 11818 11823 11856 11859 11885 11886
## [709] 12014 12024 12043 12062 12072 12091 12092 12098 12130 12149 12155 12180
## [721] 12201 12247 12294 12300 12321 12393 12415 12432 12442 12449 12468 12471
## [733] 12490 12495 12497 12613 12624 12667 12677 12678 12681 12720 12753 12794
## [745] 12822 12879 12889 12908 12909 12929 13016 13049 13057 13062 13074 13111
## [757] 13128 13131 13160 13198 13208 13218 13225 13268 13272 13295 13303 13350
## [769] 13354 13356 13377 13386 13391 13404 13456 13557 13578 13605 13614 13648
## [781] 13679
##
## $ASBR08C
## [1] 19 26 29 38 52 63 155 192 202 263 278 292
## [13] 315 344 352 360 365 375 433 496 500 505 511 512
## [25] 532 538 555 569 599 637 695 696 703 750 809 835
## [37] 893 904 911 914 917 1015 1019 1023 1026 1027 1029 1042
## [49] 1053 1068 1127 1128 1142 1144 1160 1188 1242 1249 1380 1432
## [61] 1476 1581 1587 1589 1593 1595 1652 1812 1902 1917 1937 1963
## [73] 2063 2079 2098 2107 2112 2116 2123 2199 2224 2246 2254 2258
## [85] 2284 2290 2335 2350 2351 2353 2365 2392 2393 2400 2404 2451
## [97] 2454 2456 2480 2507 2544 2615 2688 2695 2721 2733 2769 2789
## [109] 2836 2856 2905 2924 2974 2989 3018 3023 3061 3153 3177 3228
## [121] 3336 3351 3361 3396 3421 3516 3522 3553 3588 3616 3631 3637
## [133] 3654 3657 3664 3666 3720 3721 3730 3737 3819 3879 3912 3945
## [145] 4002 4017 4064 4103 4106 4119 4120 4137 4171 4181 4189 4194
## [157] 4201 4202 4209 4255 4277 4295 4299 4300 4303 4349 4355 4357
## [169] 4358 4363 4413 4438 4440 4462 4475 4482 4490 4513 4514 4521
## [181] 4526 4543 4553 4556 4560 4562 4587 4589 4595 4596 4599 4659
## [193] 4667 4680 4723 4785 4789 4806 4813 4845 4849 4850 4912 4928
## [205] 4955 4970 5066 5072 5079 5084 5145 5219 5224 5226 5240 5253
## [217] 5280 5301 5305 5332 5425 5445 5449 5450 5479 5525 5527 5534
## [229] 5550 5651 5658 5673 5719 5737 5740 5773 5779 5836 5837 5860
## [241] 5871 5976 5989 6003 6006 6116 6148 6154 6174 6212 6253 6279
## [253] 6285 6292 6363 6389 6398 6431 6456 6467 6469 6481 6488 6503
## [265] 6509 6559 6617 6630 6693 6708 6711 6728 6731 6826 6869 6875
## [277] 6881 6882 6888 6953 6965 6972 6982 7020 7064 7069 7070 7078
## [289] 7086 7094 7123 7128 7129 7139 7185 7207 7220 7246 7284 7303
## [301] 7308 7375 7397 7493 7517 7537 7551 7565 7589 7597 7603 7639
## [313] 7690 7764 7770 7772 7778 7788 7825 7836 7842 7843 7846 7852
## [325] 7857 7920 7937 7995 8020 8026 8034 8035 8064 8129 8148 8154
## [337] 8161 8205 8270 8276 8287 8323 8348 8353 8356 8364 8384 8390
## [349] 8431 8442 8473 8488 8570 8573 8615 8630 8667 8712 8748 8759
## [361] 8777 8794 8839 8909 8922 8924 8955 8989 9007 9023 9036 9045
## [373] 9093 9095 9100 9123 9158 9168 9174 9252 9253 9262 9264 9277
## [385] 9285 9324 9326 9331 9336 9347 9409 9436 9547 9578 9580 9682
## [397] 9699 9711 9764 9769 9781 9808 9811 9814 9824 9853 9870 9916
## [409] 9921 9922 9976 10014 10015 10027 10126 10483 10556 10563 10591 10745
## [421] 10757 10789 10812 10903 11011 11056 11064 11107 11230 11290 11311 11384
## [433] 11409 11420 11433 11442 11443 11591 11616 11629 11667 11680 11699 11729
## [445] 11735 11787 11791 11800 11806 11859 11882 12009 12014 12062 12092 12109
## [457] 12134 12155 12300 12393 12449 12471 12667 12669 12716 12794 12808 12822
## [469] 12909 12931 12971 13000 13001 13057 13062 13102 13128 13208 13218 13295
## [481] 13350 13354 13391 13522 13557 13578 13587 13610 13648 13679
##
## $ASBR08D
## [1] 3 16 19 29 38 52 63 155 188 189 192 292
## [13] 316 344 352 365 375 380 428 433 453 496 503 511
## [25] 512 532 538 555 599 637 657 696 750 784 809 822
## [37] 835 893 898 904 911 914 930 996 1019 1023 1027 1029
## [49] 1042 1046 1053 1068 1089 1096 1160 1188 1249 1258 1270 1358
## [61] 1381 1432 1447 1476 1490 1581 1587 1589 1593 1595 1626 1652
## [73] 1761 1812 1877 1937 1939 2050 2098 2107 2112 2116 2123 2199
## [85] 2224 2246 2254 2258 2276 2284 2290 2292 2335 2350 2351 2353
## [97] 2365 2392 2393 2394 2400 2448 2451 2453 2454 2456 2480 2517
## [109] 2544 2615 2688 2695 2733 2769 2789 2795 2836 2854 2856 2874
## [121] 2905 2912 2954 2974 2989 3018 3075 3079 3153 3177 3185 3186
## [133] 3228 3336 3351 3355 3361 3371 3396 3421 3442 3464 3516 3522
## [145] 3528 3541 3565 3629 3654 3664 3666 3693 3697 3720 3721 3727
## [157] 3730 3737 3879 3965 3990 4017 4052 4064 4103 4119 4120 4137
## [169] 4181 4189 4194 4201 4202 4255 4277 4295 4299 4300 4303 4339
## [181] 4349 4355 4357 4358 4363 4377 4413 4419 4438 4440 4462 4475
## [193] 4490 4519 4526 4543 4553 4562 4587 4589 4595 4596 4599 4605
## [205] 4667 4680 4687 4723 4785 4789 4806 4813 4845 4849 4850 4928
## [217] 4970 5005 5037 5066 5079 5219 5224 5226 5240 5253 5301 5305
## [229] 5332 5366 5373 5403 5425 5445 5450 5473 5479 5515 5525 5534
## [241] 5550 5651 5658 5668 5673 5688 5719 5737 5773 5779 5836 5837
## [253] 5871 5874 5884 5885 6006 6116 6148 6154 6160 6196 6212 6227
## [265] 6253 6266 6279 6285 6292 6320 6325 6330 6363 6376 6389 6398
## [277] 6431 6456 6469 6481 6509 6554 6559 6570 6594 6679 6708 6711
## [289] 6728 6814 6826 6869 6875 6881 6888 6953 6962 6965 6972 6975
## [301] 6982 7020 7035 7038 7064 7069 7070 7071 7078 7086 7094 7123
## [313] 7128 7129 7139 7181 7185 7197 7207 7220 7246 7257 7274 7284
## [325] 7375 7397 7493 7517 7537 7551 7589 7597 7603 7607 7633 7639
## [337] 7690 7703 7714 7764 7770 7772 7778 7788 7825 7836 7842 7843
## [349] 7846 7852 7857 7899 7920 7937 7995 8020 8026 8034 8035 8053
## [361] 8056 8064 8129 8154 8161 8202 8205 8256 8270 8276 8323 8348
## [373] 8356 8364 8373 8384 8390 8397 8415 8431 8442 8465 8473 8506
## [385] 8573 8577 8615 8616 8622 8630 8667 8686 8759 8777 8794 8839
## [397] 8885 8909 8954 8955 9007 9023 9036 9040 9045 9093 9095 9100
## [409] 9123 9158 9168 9252 9262 9264 9277 9285 9324 9347 9409 9411
## [421] 9578 9682 9699 9711 9749 9764 9779 9808 9811 9853 9865 9870
## [433] 9916 9921 9922 10014 10027 10195 10483 10556 10606 10702 10757 10789
## [445] 10812 10979 11056 11191 11290 11311 11345 11351 11359 11384 11409 11420
## [457] 11433 11503 11600 11667 11680 11699 11735 11737 11787 11791 11800 11806
## [469] 11859 11991 12014 12062 12092 12112 12120 12140 12155 12201 12210 12289
## [481] 12300 12365 12393 12432 12449 12471 12667 12690 12750 12794 12822 12860
## [493] 12867 12882 12909 13057 13062 13128 13198 13208 13218 13295 13350 13354
## [505] 13369 13391 13410 13449 13557 13578 13648 13679 13681
##
## $ASBR08E
## [1] 19 22 27 28 29 36 37 38 41 42 52 53
## [13] 63 71 77 79 103 108 112 128 139 141 143 155
## [25] 173 183 189 192 199 216 217 260 262 279 292 303
## [37] 305 317 328 336 344 345 347 352 354 365 370 374
## [49] 375 378 382 394 413 415 424 433 434 441 448 449
## [61] 476 478 491 493 496 503 507 510 511 512 513 515
## [73] 522 532 538 542 547 548 555 562 569 570 571 573
## [85] 599 617 632 637 638 647 653 655 660 662 674 675
## [97] 678 681 695 696 699 702 704 709 714 721 741 750
## [109] 770 785 809 813 835 848 861 879 882 893 894 898
## [121] 900 903 904 911 913 914 917 918 920 934 957 958
## [133] 969 970 972 979 982 985 996 1003 1018 1019 1023 1027
## [145] 1029 1032 1042 1053 1062 1068 1078 1085 1108 1118 1120 1121
## [157] 1144 1158 1160 1164 1188 1233 1249 1272 1273 1277 1279 1285
## [169] 1292 1302 1306 1333 1346 1366 1383 1389 1401 1406 1417 1420
## [181] 1423 1429 1430 1432 1453 1462 1471 1476 1479 1485 1490 1495
## [193] 1510 1523 1557 1581 1587 1589 1591 1593 1595 1609 1621 1623
## [205] 1647 1652 1677 1688 1715 1742 1743 1761 1769 1773 1785 1787
## [217] 1796 1806 1809 1812 1830 1834 1836 1841 1850 1851 1855 1879
## [229] 1887 1889 1915 1927 1928 1929 1930 1934 1937 1940 1978 1986
## [241] 1993 1995 2004 2005 2011 2029 2039 2044 2050 2052 2067 2094
## [253] 2098 2101 2106 2107 2112 2113 2116 2122 2123 2168 2172 2188
## [265] 2195 2199 2224 2227 2233 2238 2246 2251 2254 2258 2261 2262
## [277] 2263 2268 2284 2290 2314 2326 2335 2336 2339 2347 2350 2351
## [289] 2353 2360 2363 2365 2380 2384 2392 2393 2394 2397 2400 2432
## [301] 2438 2450 2451 2454 2456 2480 2504 2513 2514 2530 2543 2544
## [313] 2561 2569 2573 2575 2586 2598 2601 2613 2615 2626 2636 2661
## [325] 2675 2688 2689 2690 2693 2695 2696 2704 2717 2722 2725 2729
## [337] 2733 2742 2769 2776 2780 2789 2795 2803 2804 2818 2836 2838
## [349] 2839 2852 2855 2856 2863 2900 2905 2912 2920 2932 2948 2952
## [361] 2968 2974 2979 2982 2986 2989 2997 3000 3018 3031 3046 3054
## [373] 3058 3060 3085 3090 3091 3093 3094 3116 3141 3144 3145 3153
## [385] 3160 3170 3177 3192 3194 3228 3276 3278 3284 3299 3329 3332
## [397] 3334 3336 3337 3342 3351 3353 3357 3361 3362 3365 3368 3380
## [409] 3389 3396 3398 3403 3407 3421 3427 3430 3432 3433 3435 3440
## [421] 3451 3501 3516 3522 3523 3533 3536 3537 3541 3542 3559 3561
## [433] 3568 3570 3571 3573 3574 3575 3580 3587 3605 3614 3637 3654
## [445] 3664 3666 3669 3693 3697 3706 3708 3711 3720 3721 3730 3731
## [457] 3734 3737 3740 3743 3749 3756 3757 3776 3796 3810 3819 3838
## [469] 3879 3893 3908 3931 3953 3960 3965 3968 3971 3990 3993 3999
## [481] 4015 4017 4019 4021 4029 4041 4053 4056 4057 4064 4066 4078
## [493] 4079 4080 4103 4119 4120 4123 4133 4137 4140 4147 4154 4181
## [505] 4189 4193 4194 4201 4202 4208 4218 4222 4227 4241 4244 4255
## [517] 4268 4272 4277 4283 4291 4295 4297 4299 4300 4303 4308 4326
## [529] 4346 4349 4355 4357 4358 4363 4364 4368 4375 4382 4391 4403
## [541] 4407 4408 4413 4418 4430 4432 4437 4438 4440 4444 4455 4462
## [553] 4463 4468 4469 4475 4479 4481 4482 4486 4490 4511 4514 4521
## [565] 4526 4530 4537 4543 4553 4562 4575 4584 4585 4587 4588 4589
## [577] 4595 4596 4597 4599 4605 4616 4624 4627 4629 4635 4638 4667
## [589] 4674 4680 4686 4692 4709 4716 4719 4723 4740 4756 4760 4767
## [601] 4770 4775 4785 4786 4789 4795 4799 4805 4806 4813 4816 4826
## [613] 4836 4837 4849 4850 4863 4868 4877 4894 4907 4911 4928 4934
## [625] 4947 4949 4954 4967 4970 4989 4997 5002 5024 5031 5032 5037
## [637] 5047 5066 5067 5069 5072 5075 5077 5079 5084 5093 5138 5141
## [649] 5162 5168 5187 5195 5211 5212 5213 5219 5224 5226 5227 5232
## [661] 5236 5240 5253 5274 5278 5288 5290 5301 5305 5306 5324 5330
## [673] 5331 5332 5344 5348 5365 5366 5379 5383 5385 5390 5402 5419
## [685] 5425 5431 5432 5433 5434 5445 5447 5450 5461 5468 5474 5479
## [697] 5484 5490 5525 5528 5534 5537 5550 5564 5575 5582 5587 5638
## [709] 5639 5650 5651 5652 5658 5673 5692 5719 5737 5739 5740 5760
## [721] 5762 5766 5773 5779 5780 5803 5827 5832 5836 5837 5840 5842
## [733] 5858 5861 5871 5873 5875 5884 5888 5900 5909 5932 5945 5952
## [745] 5962 5969 5976 5980 5989 6001 6003 6006 6019 6021 6036 6044
## [757] 6059 6116 6117 6118 6142 6145 6148 6154 6160 6183 6196 6198
## [769] 6212 6214 6227 6253 6267 6273 6278 6279 6281 6283 6285 6289
## [781] 6291 6292 6295 6299 6302 6304 6320 6325 6363 6389 6398 6419
## [793] 6422 6424 6428 6430 6431 6443 6456 6469 6481 6495 6509 6517
## [805] 6520 6526 6559 6565 6570 6573 6576 6588 6596 6599 6604 6620
## [817] 6625 6631 6657 6680 6686 6690 6699 6708 6711 6716 6719 6722
## [829] 6724 6728 6739 6775 6781 6799 6808 6812 6817 6822 6826 6866
## [841] 6868 6869 6881 6888 6922 6953 6962 6965 6972 6975 6982 6983
## [853] 6989 6998 7003 7017 7020 7028 7042 7046 7063 7064 7069 7070
## [865] 7078 7086 7088 7094 7106 7107 7116 7123 7128 7129 7136 7159
## [877] 7161 7176 7184 7185 7191 7194 7195 7207 7220 7226 7230 7232
## [889] 7235 7246 7253 7284 7285 7311 7375 7380 7393 7397 7464 7469
## [901] 7471 7481 7484 7493 7495 7496 7502 7517 7534 7536 7537 7549
## [913] 7551 7569 7589 7597 7603 7607 7610 7624 7629 7638 7639 7662
## [925] 7676 7689 7690 7705 7730 7737 7738 7739 7754 7764 7770 7772
## [937] 7776 7778 7780 7788 7799 7808 7811 7825 7836 7839 7842 7843
## [949] 7846 7848 7852 7857 7868 7878 7881 7893 7904 7920 7928 7937
## [961] 7967 7979 7995 8001 8005 8006 8011 8012 8018 8020 8026 8033
## [973] 8034 8035 8038 8042 8043 8047 8056 8064 8065 8075 8095 8097
## [985] 8098 8100 8106 8114 8116 8129 8138 8147 8148 8152 8154 8157
## [997] 8161 8193 8205 8214 8225 8244 8263 8266 8268 8270 8272 8276
## [1009] 8279 8283 8291 8323 8324 8326 8327 8336 8348 8351 8356 8364
## [1021] 8368 8373 8384 8390 8397 8399 8405 8431 8439 8442 8453 8466
## [1033] 8470 8473 8494 8498 8512 8522 8524 8525 8547 8563 8569 8573
## [1045] 8577 8583 8588 8590 8598 8605 8610 8612 8615 8616 8622 8630
## [1057] 8637 8640 8642 8659 8667 8686 8689 8692 8695 8696 8698 8702
## [1069] 8705 8719 8724 8731 8741 8759 8766 8777 8781 8782 8790 8794
## [1081] 8795 8801 8802 8823 8832 8839 8850 8865 8878 8909 8912 8913
## [1093] 8919 8922 8925 8929 8930 8935 8939 8940 8950 8952 8954 8955
## [1105] 8967 8969 8970 8974 8980 8981 9007 9010 9018 9023 9028 9029
## [1117] 9036 9043 9045 9064 9077 9093 9095 9100 9120 9121 9123 9135
## [1129] 9141 9145 9155 9156 9158 9168 9176 9191 9195 9205 9208 9209
## [1141] 9220 9235 9237 9252 9262 9264 9273 9277 9281 9282 9285 9303
## [1153] 9324 9335 9343 9347 9359 9364 9373 9374 9379 9391 9408 9409
## [1165] 9411 9422 9424 9436 9482 9486 9490 9500 9508 9511 9519 9520
## [1177] 9540 9554 9576 9578 9582 9583 9598 9636 9641 9643 9650 9654
## [1189] 9659 9670 9678 9682 9690 9699 9711 9712 9723 9738 9750 9762
## [1201] 9763 9764 9765 9767 9770 9771 9779 9785 9789 9792 9805 9808
## [1213] 9811 9812 9814 9816 9817 9818 9839 9852 9853 9868 9870 9873
## [1225] 9879 9882 9884 9888 9905 9907 9913 9915 9916 9921 9922 9925
## [1237] 9946 9955 9959 9964 9972 9981 10007 10009 10014 10025 10027 10036
## [1249] 10040 10060 10065 10078 10089 10090 10092 10095 10097 10099 10102 10115
## [1261] 10124 10154 10156 10167 10172 10185 10191 10205 10206 10209 10213 10218
## [1273] 10219 10221 10223 10236 10245 10249 10251 10269 10271 10272 10292 10302
## [1285] 10303 10311 10319 10326 10333 10337 10365 10385 10387 10396 10400 10408
## [1297] 10412 10418 10436 10439 10441 10454 10456 10462 10467 10468 10471 10473
## [1309] 10483 10492 10498 10507 10545 10554 10556 10569 10576 10584 10587 10602
## [1321] 10615 10621 10626 10627 10631 10636 10638 10643 10651 10653 10656 10674
## [1333] 10693 10700 10702 10704 10708 10716 10721 10726 10743 10744 10748 10757
## [1345] 10776 10789 10812 10828 10832 10837 10862 10865 10867 10874 10875 10882
## [1357] 10886 10887 10890 10891 10910 10916 10920 10921 10923 10928 10948 10972
## [1369] 10983 10985 10986 10987 10991 10997 11002 11009 11017 11032 11038 11046
## [1381] 11050 11054 11056 11061 11081 11099 11100 11108 11117 11124 11135 11138
## [1393] 11149 11151 11153 11155 11189 11191 11194 11198 11200 11207 11221 11248
## [1405] 11252 11273 11282 11284 11288 11289 11290 11298 11301 11302 11304 11307
## [1417] 11309 11311 11312 11315 11330 11336 11338 11343 11345 11362 11384 11385
## [1429] 11389 11391 11393 11409 11414 11426 11427 11433 11438 11439 11443 11445
## [1441] 11447 11462 11465 11472 11487 11492 11497 11498 11510 11520 11527 11541
## [1453] 11542 11552 11555 11566 11568 11571 11575 11594 11599 11600 11608 11609
## [1465] 11610 11621 11624 11629 11634 11636 11656 11667 11669 11670 11673 11676
## [1477] 11678 11680 11681 11696 11699 11707 11712 11718 11728 11735 11736 11738
## [1489] 11740 11741 11742 11748 11754 11767 11778 11783 11784 11787 11791 11800
## [1501] 11806 11823 11824 11826 11834 11844 11859 11872 11874 11877 11885 11886
## [1513] 11893 11903 11906 11911 11925 11931 11932 11946 11947 11950 11957 11962
## [1525] 11976 11984 11993 11997 12005 12014 12030 12033 12034 12042 12044 12046
## [1537] 12049 12061 12062 12076 12078 12088 12090 12091 12092 12093 12097 12102
## [1549] 12114 12116 12120 12130 12153 12159 12178 12180 12188 12193 12207 12210
## [1561] 12218 12221 12231 12236 12244 12250 12256 12259 12264 12273 12283 12284
## [1573] 12297 12300 12308 12312 12322 12340 12355 12362 12391 12393 12396 12399
## [1585] 12413 12415 12421 12422 12424 12428 12431 12432 12444 12445 12449 12453
## [1597] 12456 12459 12471 12472 12474 12480 12481 12482 12490 12495 12504 12505
## [1609] 12514 12519 12528 12533 12544 12551 12578 12584 12598 12599 12602 12603
## [1621] 12609 12620 12624 12630 12667 12678 12686 12695 12699 12706 12709 12722
## [1633] 12727 12731 12750 12753 12763 12767 12780 12794 12798 12814 12822 12835
## [1645] 12858 12862 12870 12876 12882 12888 12900 12908 12909 12933 12936 12937
## [1657] 12962 12967 12971 12993 13003 13013 13015 13031 13057 13062 13064 13070
## [1669] 13076 13079 13086 13089 13091 13105 13109 13127 13128 13130 13145 13146
## [1681] 13167 13168 13180 13188 13192 13198 13199 13208 13209 13212 13214 13215
## [1693] 13218 13225 13226 13235 13236 13243 13253 13255 13269 13282 13295 13297
## [1705] 13303 13306 13308 13312 13318 13319 13330 13331 13339 13341 13350 13354
## [1717] 13360 13366 13374 13381 13391 13396 13400 13404 13406 13423 13430 13442
## [1729] 13456 13492 13536 13537 13553 13557 13564 13578 13582 13589 13605 13606
## [1741] 13607 13621 13622 13636 13648 13663 13677 13679 13680 13682 13685
##
## $ASBR08F
## [1] 3 19 22 27 28 29 30 36 38 42 52 54
## [13] 55 60 63 71 77 81 90 94 97 103 108 112
## [25] 126 130 141 148 155 163 178 183 189 192 199 232
## [37] 241 249 260 270 292 300 304 310 312 315 317 330
## [49] 336 339 343 344 351 352 353 365 375 378 380 382
## [61] 385 389 394 433 434 449 451 474 478 491 496 510
## [73] 511 512 515 517 522 529 530 532 535 538 547 548
## [85] 555 561 569 570 573 599 610 612 615 617 621 629
## [97] 632 637 644 649 655 657 660 661 673 674 680 684
## [109] 686 695 696 704 714 721 750 758 770 782 783 789
## [121] 808 809 820 824 835 836 843 861 888 893 894 898
## [133] 903 904 905 911 913 914 917 918 920 925 933 934
## [145] 940 958 970 974 979 980 982 985 994 996 1000 1003
## [157] 1010 1019 1023 1027 1029 1032 1036 1042 1045 1053 1068 1078
## [169] 1087 1104 1125 1127 1158 1160 1164 1188 1208 1228 1232 1249
## [181] 1256 1277 1284 1294 1302 1303 1306 1318 1320 1334 1344 1346
## [193] 1362 1380 1395 1419 1423 1430 1432 1448 1451 1453 1454 1459
## [205] 1476 1477 1490 1510 1564 1565 1581 1587 1589 1591 1593 1595
## [217] 1602 1629 1635 1636 1645 1647 1648 1652 1678 1687 1690 1731
## [229] 1737 1742 1755 1761 1762 1773 1787 1796 1800 1809 1812 1831
## [241] 1841 1851 1879 1891 1913 1915 1928 1930 1934 1937 1950 1960
## [253] 1993 1995 2002 2004 2005 2011 2029 2062 2067 2098 2100 2106
## [265] 2107 2112 2113 2116 2123 2130 2159 2168 2195 2199 2219 2224
## [277] 2227 2238 2246 2250 2251 2254 2258 2261 2262 2268 2284 2290
## [289] 2302 2326 2335 2336 2339 2350 2351 2353 2360 2365 2374 2384
## [301] 2392 2393 2394 2400 2424 2427 2451 2454 2456 2459 2466 2480
## [313] 2482 2496 2513 2530 2536 2540 2543 2544 2569 2573 2575 2582
## [325] 2584 2586 2591 2604 2607 2615 2631 2636 2641 2675 2688 2690
## [337] 2693 2695 2696 2704 2717 2733 2769 2776 2789 2818 2820 2824
## [349] 2825 2835 2836 2843 2850 2852 2854 2855 2856 2861 2900 2905
## [361] 2912 2914 2928 2932 2940 2948 2952 2968 2970 2973 2974 2979
## [373] 2980 2982 2986 2989 2996 3006 3018 3037 3040 3051 3058 3060
## [385] 3068 3075 3090 3091 3094 3138 3141 3144 3153 3157 3158 3170
## [397] 3177 3186 3188 3190 3192 3196 3228 3243 3252 3276 3278 3296
## [409] 3304 3305 3307 3329 3334 3336 3337 3342 3351 3353 3357 3360
## [421] 3361 3365 3383 3392 3396 3402 3413 3419 3421 3430 3435 3440
## [433] 3445 3451 3469 3483 3495 3501 3516 3522 3523 3526 3541 3559
## [445] 3567 3568 3570 3574 3575 3579 3580 3601 3617 3622 3631 3639
## [457] 3654 3664 3666 3693 3697 3706 3711 3720 3721 3730 3731 3737
## [469] 3740 3776 3796 3832 3833 3834 3838 3840 3844 3848 3850 3879
## [481] 3880 3883 3886 3887 3893 3908 3926 3956 3958 3968 3971 3978
## [493] 3999 4000 4011 4014 4019 4021 4038 4050 4053 4056 4057 4064
## [505] 4067 4078 4079 4080 4095 4103 4119 4120 4123 4133 4137 4140
## [517] 4163 4166 4167 4170 4180 4181 4186 4189 4193 4194 4201 4202
## [529] 4206 4208 4218 4222 4227 4231 4239 4241 4249 4255 4272 4277
## [541] 4283 4291 4292 4295 4299 4300 4301 4303 4308 4349 4351 4355
## [553] 4357 4358 4363 4374 4375 4380 4382 4413 4430 4432 4437 4438
## [565] 4440 4462 4474 4475 4480 4482 4490 4498 4514 4526 4543 4547
## [577] 4553 4562 4566 4577 4584 4587 4588 4589 4593 4595 4596 4597
## [589] 4599 4605 4614 4616 4624 4632 4638 4643 4647 4653 4667 4671
## [601] 4674 4680 4692 4708 4716 4719 4723 4739 4756 4767 4770 4785
## [613] 4786 4789 4795 4796 4799 4806 4809 4813 4822 4826 4832 4835
## [625] 4840 4845 4849 4850 4894 4907 4928 4931 4947 4952 4953 4954
## [637] 4970 4989 5013 5022 5024 5037 5044 5055 5065 5066 5071 5075
## [649] 5079 5084 5142 5151 5155 5156 5175 5182 5184 5187 5212 5213
## [661] 5221 5224 5226 5227 5228 5240 5253 5256 5261 5274 5278 5284
## [673] 5288 5301 5305 5306 5318 5324 5329 5332 5365 5379 5383 5385
## [685] 5390 5414 5419 5425 5431 5434 5445 5447 5450 5453 5461 5468
## [697] 5474 5477 5479 5481 5490 5498 5500 5525 5528 5534 5537 5550
## [709] 5569 5570 5587 5592 5618 5622 5632 5638 5639 5642 5647 5651
## [721] 5656 5658 5667 5673 5676 5719 5720 5726 5737 5738 5739 5756
## [733] 5762 5765 5766 5773 5774 5779 5781 5791 5795 5804 5827 5836
## [745] 5837 5838 5840 5852 5858 5871 5900 5904 5931 5933 5945 5946
## [757] 5950 5952 5962 5988 5991 5994 6003 6006 6017 6019 6024 6029
## [769] 6035 6051 6075 6079 6116 6117 6118 6128 6133 6134 6137 6145
## [781] 6148 6149 6154 6159 6160 6161 6183 6196 6198 6203 6204 6212
## [793] 6214 6220 6253 6277 6279 6285 6286 6292 6295 6302 6304 6320
## [805] 6322 6323 6325 6330 6331 6353 6363 6389 6398 6400 6415 6419
## [817] 6422 6424 6428 6430 6431 6432 6437 6442 6449 6454 6456 6467
## [829] 6469 6470 6477 6481 6496 6507 6509 6516 6540 6544 6546 6548
## [841] 6559 6570 6591 6599 6601 6604 6620 6631 6642 6655 6662 6686
## [853] 6699 6708 6711 6722 6724 6728 6732 6739 6750 6775 6784 6791
## [865] 6799 6808 6812 6826 6842 6866 6868 6870 6881 6888 6949 6953
## [877] 6954 6962 6965 6972 6975 6977 6982 6998 7017 7019 7020 7028
## [889] 7033 7035 7038 7046 7064 7065 7069 7070 7078 7079 7086 7089
## [901] 7094 7102 7106 7111 7115 7123 7128 7129 7159 7161 7169 7176
## [913] 7185 7191 7194 7195 7203 7207 7208 7213 7220 7226 7230 7235
## [925] 7246 7284 7285 7292 7296 7319 7335 7341 7356 7375 7379 7380
## [937] 7393 7397 7450 7452 7469 7471 7475 7483 7485 7493 7495 7517
## [949] 7528 7537 7539 7540 7542 7546 7551 7561 7564 7589 7597 7603
## [961] 7631 7632 7639 7675 7690 7705 7709 7717 7724 7764 7770 7772
## [973] 7773 7776 7778 7780 7788 7799 7825 7836 7839 7840 7842 7843
## [985] 7845 7846 7847 7851 7852 7857 7862 7863 7876 7878 7893 7899
## [997] 7904 7906 7920 7930 7933 7937 7988 7995 8001 8011 8012 8013
## [1009] 8020 8026 8034 8035 8038 8042 8043 8047 8056 8064 8066 8069
## [1021] 8095 8106 8110 8124 8128 8129 8149 8152 8154 8161 8193 8195
## [1033] 8205 8217 8232 8234 8244 8265 8268 8270 8272 8276 8283 8287
## [1045] 8323 8327 8344 8348 8356 8359 8364 8370 8373 8384 8386 8390
## [1057] 8396 8397 8404 8427 8431 8434 8439 8442 8453 8455 8466 8469
## [1069] 8473 8498 8508 8512 8524 8525 8526 8527 8537 8540 8573 8577
## [1081] 8590 8599 8603 8615 8616 8621 8622 8630 8631 8667 8669 8673
## [1093] 8674 8679 8687 8689 8692 8698 8701 8702 8713 8719 8720 8723
## [1105] 8738 8741 8759 8763 8770 8771 8777 8782 8790 8794 8799 8802
## [1117] 8837 8839 8851 8853 8909 8925 8930 8939 8945 8947 8954 8955
## [1129] 8960 8967 8969 8974 9007 9010 9017 9018 9021 9023 9024 9028
## [1141] 9030 9036 9039 9043 9045 9077 9093 9095 9100 9111 9120 9123
## [1153] 9135 9141 9145 9155 9156 9158 9168 9174 9185 9191 9195 9204
## [1165] 9205 9231 9233 9237 9252 9262 9264 9273 9277 9279 9281 9285
## [1177] 9290 9298 9302 9309 9322 9323 9324 9326 9343 9347 9348 9359
## [1189] 9362 9373 9374 9376 9391 9408 9409 9424 9448 9462 9480 9482
## [1201] 9486 9502 9507 9511 9519 9520 9528 9537 9548 9550 9554 9561
## [1213] 9572 9578 9582 9588 9602 9641 9643 9644 9650 9654 9657 9659
## [1225] 9662 9682 9698 9699 9700 9711 9715 9720 9723 9730 9735 9762
## [1237] 9764 9767 9771 9773 9774 9779 9792 9808 9834 9853 9870 9879
## [1249] 9882 9883 9888 9907 9912 9913 9916 9921 9922 9971 9981 9989
## [1261] 10002 10004 10007 10009 10014 10019 10024 10027 10036 10060 10065 10067
## [1273] 10080 10089 10092 10097 10101 10102 10124 10130 10137 10149 10154 10156
## [1285] 10185 10212 10235 10236 10242 10245 10261 10265 10269 10272 10280 10293
## [1297] 10301 10311 10319 10326 10339 10346 10357 10360 10385 10387 10395 10408
## [1309] 10436 10439 10456 10466 10467 10470 10476 10482 10483 10503 10509 10524
## [1321] 10551 10556 10565 10569 10598 10609 10615 10621 10631 10635 10636 10638
## [1333] 10648 10651 10653 10656 10665 10669 10670 10693 10702 10704 10716 10721
## [1345] 10726 10728 10729 10748 10757 10789 10792 10812 10828 10869 10880 10887
## [1357] 10910 10920 10922 10928 10948 10972 10983 11017 11018 11026 11032 11046
## [1369] 11050 11054 11056 11073 11092 11099 11108 11109 11113 11121 11135 11149
## [1381] 11151 11153 11155 11160 11167 11184 11191 11194 11198 11205 11221 11231
## [1393] 11238 11272 11278 11285 11288 11289 11290 11296 11300 11302 11304 11307
## [1405] 11309 11311 11312 11343 11345 11354 11362 11384 11386 11387 11393 11409
## [1417] 11420 11430 11432 11433 11437 11443 11467 11478 11524 11527 11532 11541
## [1429] 11542 11552 11555 11556 11571 11600 11601 11610 11614 11621 11629 11640
## [1441] 11641 11667 11670 11673 11675 11676 11678 11685 11699 11709 11714 11728
## [1453] 11734 11735 11738 11748 11758 11764 11767 11775 11787 11791 11800 11806
## [1465] 11807 11823 11824 11834 11839 11844 11859 11884 11886 11889 11893 11911
## [1477] 11916 11931 11950 11957 11962 11969 11976 11984 11997 12014 12025 12030
## [1489] 12034 12044 12046 12049 12062 12078 12087 12091 12092 12098 12101 12108
## [1501] 12114 12123 12136 12153 12155 12157 12166 12178 12195 12201 12218 12221
## [1513] 12230 12243 12251 12256 12273 12279 12300 12322 12327 12355 12364 12393
## [1525] 12399 12413 12414 12415 12421 12422 12424 12428 12431 12449 12471 12472
## [1537] 12481 12495 12507 12508 12519 12528 12529 12539 12546 12548 12563 12578
## [1549] 12584 12587 12609 12614 12620 12639 12643 12667 12669 12687 12688 12695
## [1561] 12699 12706 12710 12731 12753 12768 12771 12775 12794 12798 12822 12846
## [1573] 12870 12876 12882 12888 12890 12900 12909 12911 12920 12933 12936 12980
## [1585] 12996 13042 13057 13062 13076 13079 13109 13128 13130 13141 13142 13145
## [1597] 13146 13157 13180 13188 13198 13199 13206 13208 13209 13212 13214 13218
## [1609] 13219 13222 13225 13226 13295 13302 13303 13308 13312 13318 13319 13322
## [1621] 13330 13331 13333 13340 13350 13354 13360 13361 13374 13381 13382 13391
## [1633] 13401 13404 13430 13456 13466 13472 13504 13514 13531 13536 13557 13563
## [1645] 13578 13605 13607 13610 13614 13631 13648 13653 13658 13663 13679
library(psych)
veri <- scr_canada[,13:18]
md <- mahalanobis(veri, center = colMeans(veri), cov = cov(veri))
head(md,20)
## [1] 1.2901572 1.1857361 51.9217371 0.9579200 1.3105692 2.8212676
## [7] 1.4731264 1.4731264 1.4281701 1.1733226 0.9056886 0.7783855
## [13] 1.4731264 3.6865307 1.4852135 34.5645940 1.0821552 1.8221609
## [19] 46.7636688 0.7783855
#Mahalonobis uzaklığı için Kritik değerin belirlenmesi
alpha <- .001
cutoff <- (qchisq(p = 1 - alpha, df = ncol(veri)))
cutoff
## [1] 22.45774
ucdegerler <- which(md > cutoff)
veri[ucdegerler, ]
data_temiz <- veri[-ucdegerler, ]
veri[ucdegerler, ]
library(rrcov)
## Loading required package: robustbase
## Scalable Robust Estimators with High Breakdown Point (version 1.7-7)
result <- CovMcd(veri)
## Warning in covMcd(x = x, raw.only = raw.only, alpha = alpha, nsamp = nsamp, : The 6846-th order statistic of the absolute deviation of variable 1 is
## zero.
## There are 8150 observations (in the entire dataset of 13685 obs.) lying
## on the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip -
## m_p) = 0 with (m_1, ..., m_p) the mean of these observations and
## coefficients a_i from the vector a <- c(1, 0, 0, 0, 0, 0)
# Robust Mahalanobis
md_rrcov <- result@mah
head(md_rrcov, 20)
## NULL
# 1. Varyansı sıfır olan değişkenleri tespit et ve çıkar
veri <- scr_canada[, 13:18] # İlk seçim (ASBR08A - ASBR08F arası)
# Varyansları kontrol et
varyanslar <- apply(veri, 2, var)
# Varyansı sıfır olanları çıkar
veri_temiz <- veri[, varyanslar != 0]
# 2. CovMcd ile robust kovaryans ve ortalama hesapla
result <- CovMcd(veri_temiz)
## Warning in covMcd(x = x, raw.only = raw.only, alpha = alpha, nsamp = nsamp, : The 6846-th order statistic of the absolute deviation of variable 1 is
## zero.
## There are 8150 observations (in the entire dataset of 13685 obs.) lying
## on the hyperplane with equation a_1*(x_i1 - m_1) + ... + a_p*(x_ip -
## m_p) = 0 with (m_1, ..., m_p) the mean of these observations and
## coefficients a_i from the vector a <- c(1, 0, 0, 0, 0, 0)
# 3. Robust Mahalanobis mesafeleri doğrudan al
md_rrcov <- result@mah
# 4. Kritik değeri belirle (khi-kare tablosundan)
alpha <- 0.001
cutoff <- qchisq(p = 1 - alpha, df = ncol(veri_temiz))
# 5. Uç değerleri seçelim
uc_degerler <- which(md_rrcov > cutoff)
# 6. Uç değerli gözlemleri listele
veri_temiz[uc_degerler, ]
# 7. (İsteğe bağlı) Uç değerler temizlenmiş veri seti
veri_final <- veri_temiz[-uc_degerler, ]
# Sonuçları görelim
cat("Uç değer sayısı:", length(uc_degerler), "\n")
## Uç değer sayısı: 0
cat("Temiz kalan gözlem sayısı:", nrow(veri_final), "\n")
## Temiz kalan gözlem sayısı: 0
library(moments)
veri <- scr_canada[, 13:18]
sonuclar <- lapply(names(veri), function(degisken) {
degisken_veri <- veri[[degisken]]
jb_test <- jarque.test(degisken_veri)
data.frame(
Degisken = degisken,
JB_Statistic = jb_test$statistic,
p_value = jb_test$p.value
)
})
sonuclar_df <- do.call(rbind, sonuclar)
print(sonuclar_df)
## Degisken JB_Statistic p_value
## JB ASBR08A 250549.66 0
## JB1 ASBR08B 142184.60 0
## JB2 ASBR08C 28355.46 0
## JB3 ASBR08D 21523.92 0
## JB4 ASBR08E 19962.51 0
## JB5 ASBR08F 21311.35 0
#Değerlerin grafik olarak gösterilmesi
veri <- scr_canada[, 13:18]
veri_long <- veri %>%
pivot_longer(cols = everything(), names_to = "Degisken", values_to = "Deger")
ggplot(veri_long, aes(x = Deger)) +
geom_histogram(aes(y = ..density..), bins = 30, fill = "lightblue", color = "black") +
stat_function(fun = dnorm,
args = list(mean = mean(veri_long$Deger, na.rm = TRUE),
sd = sd(veri_long$Deger, na.rm = TRUE)),
color = "red", size = 1) +
facet_wrap(~Degisken, scales = "free") +
labs(title = "Değişkenlerin Dağılımı",
x = "Değerler", y = "Yoğunluk") +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
# Dönüştürülmüş veri çerçevesi oluşturulması
veri_donusmus <- veri %>%
mutate(
ASBR08A = 1 / (ASBR08A + 1), # Ters çevirme (+1 sıfır değerler varsa hata almamak için)
ASBR08B = 1 / (ASBR08B + 1), # Ters çevirme
ASBR08C = log(ASBR08C + 1), # Log dönüşümü (+1 negatif değerlerden kaçınmak için)
ASBR08D = log(ASBR08D + 1), # Log dönüşümü
ASBR08E = 1 / (ASBR08E + 1), # Ters çevirme
ASBR08F = 1 / (ASBR08F + 1) # Ters çevirme
)
# Sonuçları kontrol edilmesi
summary(veri_donusmus)
## ASBR08A ASBR08B ASBR08C ASBR08D
## Min. :0.1000 Min. :0.1000 Min. :0.6931 Min. :0.6931
## 1st Qu.:0.3333 1st Qu.:0.3333 1st Qu.:1.0986 1st Qu.:1.0986
## Median :0.5000 Median :0.5000 Median :1.3863 Median :1.6094
## Mean :0.4197 Mean :0.4115 Mean :1.2654 Mean :1.4152
## 3rd Qu.:0.5000 3rd Qu.:0.5000 3rd Qu.:1.6094 3rd Qu.:1.6094
## Max. :0.5000 Max. :0.5000 Max. :2.3026 Max. :2.3026
## ASBR08E ASBR08F
## Min. :0.1000 Min. :0.1000
## 1st Qu.:0.2000 1st Qu.:0.2000
## Median :0.2000 Median :0.2000
## Mean :0.2454 Mean :0.2378
## 3rd Qu.:0.2500 3rd Qu.:0.2500
## Max. :0.5000 Max. :0.5000
cor(scr_canada[, 13:18] ) %>% kable(digit=2)
| ASBR08A | ASBR08B | ASBR08C | ASBR08D | ASBR08E | ASBR08F | |
|---|---|---|---|---|---|---|
| ASBR08A | 1.00 | 0.62 | 0.35 | 0.29 | 0.27 | 0.25 |
| ASBR08B | 0.62 | 1.00 | 0.36 | 0.31 | 0.31 | 0.28 |
| ASBR08C | 0.35 | 0.36 | 1.00 | 0.60 | 0.54 | 0.50 |
| ASBR08D | 0.29 | 0.31 | 0.60 | 1.00 | 0.66 | 0.58 |
| ASBR08E | 0.27 | 0.31 | 0.54 | 0.66 | 1.00 | 0.60 |
| ASBR08F | 0.25 | 0.28 | 0.50 | 0.58 | 0.60 | 1.00 |
library(corrplot)
library(ggcorrplot)
##
## Attaching package: 'ggcorrplot'
## The following object is masked from 'package:rstatix':
##
## cor_pmat
# Korelasyon matrisi oluşturma
cor_mat <- cor(scr_canada[, 13:18])
# Korelasyon matrisini tablo şeklinde görüntüleme (kable ile)
cor_mat %>% kable(digits = 2)
| ASBR08A | ASBR08B | ASBR08C | ASBR08D | ASBR08E | ASBR08F | |
|---|---|---|---|---|---|---|
| ASBR08A | 1.00 | 0.62 | 0.35 | 0.29 | 0.27 | 0.25 |
| ASBR08B | 0.62 | 1.00 | 0.36 | 0.31 | 0.31 | 0.28 |
| ASBR08C | 0.35 | 0.36 | 1.00 | 0.60 | 0.54 | 0.50 |
| ASBR08D | 0.29 | 0.31 | 0.60 | 1.00 | 0.66 | 0.58 |
| ASBR08E | 0.27 | 0.31 | 0.54 | 0.66 | 1.00 | 0.60 |
| ASBR08F | 0.25 | 0.28 | 0.50 | 0.58 | 0.60 | 1.00 |
# corrplot ile korelasyon grafiği çizimi
corrplot(cor_mat, method = "circle")
# ggcorrplot için p-değer matrisinin hesaplanması
cor_pmat <- ggcorrplot::cor_pmat(scr_canada[, 13:18])
# ggcorrplot ile korelasyon grafiği (p-değerlerini de gösteren)
ggcorrplot(
cor_mat,
lab = TRUE,
lab_size = 6,
p.mat = cor_pmat,
insig = "blank" # anlamsız korelasyonları boş bırakır, istersen değiştirebilirsin
)
*Korelasyon matrisi incelendiğinde değişkenler arasında çok yüksek değerlerin olmadığı söylenebilir.
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:moments':
##
## kurtosis, skewness
## The following object is masked from 'package:graphics':
##
## legend
chart.Correlation(scr_canada[, 13:18], histogram=TRUE, pch=19)
#Bu çıktı biraz görüntü olarak karmaşık geldi.
library(pheatmap)
pheatmap(cor(scr_canada[, 13:18]))
#Bu da okunaklı geldi :)