(load("~/Desktop/megan/IPVandCognitionDataSet2.rda"))
[1] "IPVandCognitionDataSet2"
IPV = IPVandCognitionDataSet2
IPV$Age = ifelse(IPV$Time == 1, IPV$Age1, IPV$Age3) - 50

library(lme4)
library(lmerTest)

(mm1 = lmer(TrailsBtestSec ~ Age * IPVstatus * Sex * Race + (Age | HNDid), data = IPV))
Linear mixed model fit by REML ['merModLmerTest']
Formula: TrailsBtestSec ~ Age * IPVstatus * Sex * Race + (Age | HNDid) 
   Data: IPV 
REML criterion at convergence: 1661 
Random effects:
 Groups   Name        Std.Dev. Corr
 HNDid    (Intercept) 122.63       
          Age           8.21   0.54
 Residual              88.41       
Number of obs: 144, groups: HNDid, 65
Fixed Effects:
                   (Intercept)                             Age                       IPVstatus                          SexMen                       RaceAfrAm                   Age:IPVstatus  
                       101.114                           2.869                         -34.595                         -74.314                          65.033                          -2.539  
                    Age:SexMen                IPVstatus:SexMen                   Age:RaceAfrAm             IPVstatus:RaceAfrAm                SexMen:RaceAfrAm            Age:IPVstatus:SexMen  
                        -5.669                         387.595                           0.348                         -42.048                          27.395                          25.474  
       Age:IPVstatus:RaceAfrAm            Age:SexMen:RaceAfrAm      IPVstatus:SexMen:RaceAfrAm  Age:IPVstatus:SexMen:RaceAfrAm  
                         1.890                          -0.491                        -173.571                         -24.519  

summary(mm1)
Linear mixed model fit by REML ['merModLmerTest']
Formula: TrailsBtestSec ~ Age * IPVstatus * Sex * Race + (Age | HNDid) 
   Data: IPV 

REML criterion at convergence: 1661 

Random effects:
 Groups   Name        Variance Std.Dev. Corr
 HNDid    (Intercept) 15037.6  122.63       
          Age            67.5    8.21   0.54
 Residual              7816.0   88.41       
Number of obs: 144, groups: HNDid, 65

Fixed effects:
                               Estimate Std. Error       df t value Pr(>|t|)
(Intercept)                     101.114     88.586   22.400    1.14     0.27
Age                               2.869      9.717   58.700    0.30     0.77
IPVstatus                       -34.595    134.283   42.800   -0.26     0.80
SexMen                          -74.314    230.676   73.600   -0.32     0.75
RaceAfrAm                        65.033     98.711   24.900    0.66     0.52
Age:IPVstatus                    -2.539     13.870   80.900   -0.18     0.86
Age:SexMen                       -5.669     28.057   84.400   -0.20     0.84
IPVstatus:SexMen                387.595    272.442   61.000    1.42     0.16
Age:RaceAfrAm                     0.348     10.524   58.700    0.03     0.97
IPVstatus:RaceAfrAm             -42.048    159.417   42.000   -0.26     0.79
SexMen:RaceAfrAm                 27.395    238.287   71.200    0.11     0.91
Age:IPVstatus:SexMen             25.474     31.164   86.700    0.82     0.42
Age:IPVstatus:RaceAfrAm           1.890     16.442   76.100    0.11     0.91
Age:SexMen:RaceAfrAm             -0.491     28.653   85.500   -0.02     0.99
IPVstatus:SexMen:RaceAfrAm     -173.571    296.839   56.600   -0.58     0.56
Age:IPVstatus:SexMen:RaceAfrAm  -24.519     33.401   87.000   -0.73     0.46

Correlation of Fixed Effects:
            (Intr) Age    IPVstt SexMen RcAfrA Ag:IPV Ag:SxM IPVs:SM Ag:RAA IPV:RA SM:RAA Ag:IPV:SM A:IPV:R A:SM:R IPV:SM:
Age          0.440                                                                                                        
IPVstatus   -0.660 -0.291                                                                                                 
SexMen      -0.384 -0.169  0.253                                                                                          
RaceAfrAm   -0.897 -0.395  0.592  0.345                                                                                   
Age:IPVstts -0.309 -0.701  0.653  0.118  0.277                                                                            
Age:SexMen  -0.153 -0.346  0.101  0.770  0.137  0.243                                                                     
IPVstts:SxM  0.325  0.143 -0.493 -0.847 -0.292 -0.322 -0.652                                                              
Age:RcAfrAm -0.407 -0.923  0.268  0.156  0.495  0.647  0.320 -0.132                                                       
IPVstts:RAA  0.556  0.245 -0.842 -0.213 -0.619 -0.550 -0.085  0.415  -0.307                                               
SxMn:RcAfrA  0.372  0.164 -0.245 -0.968 -0.414 -0.115 -0.746  0.820  -0.205  0.257                                        
Ag:IPVst:SM  0.137  0.312 -0.291 -0.693 -0.123 -0.445 -0.900  0.764  -0.288  0.245  0.671                                 
Ag:IPVs:RAA  0.260  0.591 -0.551 -0.100 -0.317 -0.844 -0.205  0.272  -0.640  0.685  0.131  0.375                          
Ag:SxMn:RAA  0.149  0.339 -0.099 -0.754 -0.182 -0.238 -0.979  0.639  -0.367  0.113  0.767  0.882     0.235                
IPVs:SM:RAA -0.298 -0.131  0.452  0.777  0.333  0.296  0.599 -0.918   0.165 -0.537 -0.803 -0.701    -0.368  -0.616        
A:IPV:SM:RA -0.128 -0.291  0.271  0.647  0.156  0.415  0.840 -0.713   0.315 -0.337 -0.658 -0.933    -0.492  -0.858  0.756 

(st = step(mm1))

Random effects:
                        Chi.sq Chi.DF elim.num p.value
(Age | HNDid)             1.15      1        1  0.2839
      (Age + 0 | HNDid)   0.63      1        2  0.4271
      (1 | HNDid)        52.75      1     kept  <1e-07

Fixed effects:
                         Sum Sq  Mean Sq NumDF  DenDF F.value elim.num Pr(>F)
Age:IPVstatus:Sex:Race  4918.60  4918.60     1 110.39  0.5890        1 0.4444
IPVstatus:Sex:Race        59.21    59.21     1  59.42  0.0069        2 0.9341
Age:IPVstatus:Race     10828.17 10828.17     1 129.72  0.0896        3 0.7651
Age:IPVstatus:Sex      11345.57 11345.57     1 119.35  0.1404        4 0.7086
Age:IPVstatus           8647.36  8647.36     1 120.20  0.0070        5 0.9334
IPVstatus:Race          6848.53  6848.53     1  65.05  0.3598        6 0.5507
Age                     5880.34  5880.34     1 115.87  3.4313     kept 0.0665
IPVstatus               3374.53  3374.53     1  62.22  1.5173     kept 0.2227
Sex                    36403.79 36403.79     1  70.88  0.0694     kept 0.7930
Race                    4738.87  4738.87     1  74.35  0.2068     kept 0.6506
Age:Sex                 7183.55  7183.55     1 115.87  0.8634     kept 0.3547
IPVstatus:Sex          68964.90 68964.90     1  62.22  8.4142     kept 0.0051
Age:Race               15438.05 15438.05     1 116.42  3.7511     kept 0.0552
Sex:Race                 941.77   941.77     1  74.35  1.4194     kept 0.2373
Age:Sex:Race           17675.06 17675.06     1 116.42  5.5475     kept 0.0202

Least squares means:
                       Sex Race Estimate Standard Error   DF t-value Lower CI Upper CI p-value
Sex  Women             2.0   NA    108.9           26.4 61.6    4.12   56.097      162  0.0001
Sex  Men               1.0   NA    163.9           35.5 60.4    4.61   92.839      235  <2e-16
Race  White             NA  2.0    114.1           41.6 60.9    2.74   30.940      197  0.0080
Race  AfrAm             NA  1.0    158.7           18.0 61.3    8.82  122.746      195  <2e-16
Sex:Race  Women White  2.0  2.0     95.8           48.0 61.9    2.00   -0.124      192  0.0503
Sex:Race  Men White    1.0  2.0    132.3           67.9 60.4    1.95   -3.464      268  0.0559
Sex:Race  Women AfrAm  2.0  1.0    121.9           24.7 62.1    4.93   72.532      171  <2e-16
Sex:Race  Men AfrAm    1.0  1.0    195.5           26.2 60.6    7.47  143.203      248  <2e-16

 Differences of LSMEANS:
                                   Estimate Standard Error    DF t-value Lower CI Upper CI p-value
Sex Women-Men                         -55.1           44.3  60.8   -1.24     -144    33.46    0.22
Race White-AfrAm                      -44.6           46.3  61.1   -0.96     -137    47.96    0.34
Sex:Race  Women White- Men White      -36.5           83.2  60.9   -0.44     -203   129.73    0.66
Sex:Race  Women White- Women AfrAm    -26.1           55.1  62.4   -0.47     -136    84.10    0.64
Sex:Race  Women White- Men AfrAm      -99.7           54.7  61.6   -1.82     -209     9.56    0.07
Sex:Race  Men White- Women AfrAm       10.4           72.3  60.6    0.14     -134   154.96    0.89
Sex:Race  Men White- Men AfrAm        -63.2           74.4  60.4   -0.85     -212    85.66    0.40
Sex:Race  Women AfrAm- Men AfrAm      -73.6           36.0  61.3   -2.05     -146    -1.66    0.05

Final model:
lme4::lmer(formula = TrailsBtestSec ~ Age + IPVstatus + Sex + 
    Race + (1 | HNDid) + Age:Sex + IPVstatus:Sex + Age:Race + 
    Sex:Race + Age:Sex:Race, data = IPV, REML = reml, contrasts = l)

plot(st)

plot of chunk mer plot of chunk mer plot of chunk mer plot of chunk mer plot of chunk mer plot of chunk mer plot of chunk mer