## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
##
## cor2cov
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats 1.0.0 ✔ readr 2.1.5
## ✔ ggplot2 3.5.1 ✔ stringr 1.5.1
## ✔ lubridate 1.9.4 ✔ tibble 3.2.1
## ✔ purrr 1.0.4 ✔ tidyr 1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%() masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 1.00 NA NA NA NA NA NA NA NA
## x2 0.30 1.00 NA NA NA NA NA NA NA
## x3 0.44 0.34 1.00 NA NA NA NA NA NA
## x4 0.37 0.15 0.16 1.00 NA NA NA NA NA
## x5 0.29 0.14 0.08 0.73 1.00 NA NA NA NA
## x6 0.36 0.19 0.20 0.70 0.72 1.00 NA NA NA
## x7 0.07 -0.08 0.07 0.17 0.10 0.12 1.00 NA NA
## x8 0.22 0.09 0.19 0.11 0.14 0.15 0.49 1.00 NA
## x9 0.39 0.21 0.33 0.21 0.23 0.21 0.34 0.45 1
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = afa)
## Overall MSA = 0.75
## MSA for each item =
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## 0.81 0.78 0.73 0.76 0.74 0.81 0.59 0.68 0.79
# 0,75 yeterli bir değer.
## R was not square, finding R from data
## $chisq
## [1] 904.0971
##
## $p.value
## [1] 1.912079e-166
##
## $df
## [1] 36
## [1] 3.2163442 1.6387132 1.3651593 0.6989185 0.5843475 0.4996872 0.4731021
## [8] 0.2860024 0.2377257
#1 den büyük olanlar çıkarılacak faktörlerdir. #1. faktördeki yüklerin karelerinin toplamı 3,21
## [1] 9
#özdeğerlerin toplamı değişken sayısına eşit.
## Factor Analysis using method = pa
## Call: fa(r = afa, nfactors = 3, rotate = "none", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 h2 u2 com
## x1 0.58 0.17 0.34 0.48 0.52 1.8
## x2 0.31 0.10 0.39 0.26 0.74 2.0
## x3 0.40 0.31 0.44 0.45 0.55 2.8
## x4 0.77 -0.36 -0.11 0.73 0.27 1.5
## x5 0.75 -0.40 -0.16 0.75 0.25 1.6
## x6 0.76 -0.33 -0.05 0.69 0.31 1.4
## x7 0.31 0.43 -0.48 0.51 0.49 2.7
## x8 0.39 0.54 -0.27 0.52 0.48 2.4
## x9 0.51 0.45 0.01 0.46 0.54 2.0
##
## PA1 PA2 PA3
## SS loadings 2.83 1.21 0.81
## Proportion Var 0.31 0.13 0.09
## Cumulative Var 0.31 0.45 0.54
## Proportion Explained 0.58 0.25 0.17
## Cumulative Proportion 0.58 0.83 1.00
##
## Mean item complexity = 2
## Test of the hypothesis that 3 factors are sufficient.
##
## df null model = 36 with the objective function = 3.05 with Chi Square = 904.1
## df of the model are 12 and the objective function was 0.08
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.03
##
## The harmonic n.obs is 301 with the empirical chi square 7.87 with prob < 0.8
## The total n.obs was 301 with Likelihood Chi Square = 22.54 with prob < 0.032
##
## Tucker Lewis Index of factoring reliability = 0.963
## RMSEA index = 0.054 and the 90 % confidence intervals are 0.016 0.088
## BIC = -45.95
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## PA1 PA2 PA3
## Correlation of (regression) scores with factors 0.94 0.86 0.78
## Multiple R square of scores with factors 0.89 0.74 0.61
## Minimum correlation of possible factor scores 0.77 0.48 0.21
# x1 değişkenini 3 faktör %47 oranında açıklamıştır (Ortak varyans)
#en büyük kırılma 4den itibaren başlamış. 3 faktörlü bir veri seti
olduğu için grafik bu bilgiyi doğruluyor.
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 0.52 -0.03 0.01 0.03 -0.01 -0.01 -0.02 0.00 0.02
## x2 -0.03 0.74 0.01 -0.01 0.01 0.01 -0.02 0.02 0.00
## x3 0.01 0.01 0.55 0.01 -0.03 0.02 0.03 -0.02 -0.02
## x4 0.03 -0.01 0.01 0.27 0.00 0.00 0.04 -0.03 -0.02
## x5 -0.01 0.01 -0.03 0.00 0.25 0.01 -0.03 0.02 0.03
## x6 -0.01 0.01 0.02 0.00 0.01 0.31 0.00 0.01 -0.02
## x7 -0.02 -0.02 0.03 0.04 -0.03 0.00 0.49 0.00 -0.01
## x8 0.00 0.02 -0.02 -0.03 0.02 0.01 0.00 0.48 0.01
## x9 0.02 0.00 -0.02 -0.02 0.03 -0.02 -0.01 0.01 0.54
## [1] 0
# Artık korelasyonlar köşegenler dışında oldukça düşük, 3 faktör dışında farklı bir faktör oluşturmaya gerek yok. En büyük açıklanmayan varyans 2. değişkende
## Parallel analysis suggests that the number of factors = 3 and the number of components = NA
#3. faktörden itibaren üretilen verideki öz değerler gerçek verideki öz değer lerden küçüktür. 3faktör yeterli.
## Zorunlu paket yükleniyor: lattice
##
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
##
## parallel
## noc naf nparallel nkaiser
## 1 3 1 3 3
#önerile faktör sayısı (3 n parallelll)
## PA1 PA2 PA3
## x1 0.5756248 0.16920594 0.341965206
## x2 0.3085407 0.09697577 0.388532245
## x3 0.4002783 0.30983802 0.443639294
## x4 0.7685885 -0.35543214 -0.105973472
## x5 0.7502797 -0.40427234 -0.163531747
## x6 0.7631025 -0.32689710 -0.048903558
## x7 0.3066785 0.42907861 -0.483440222
## x8 0.3944831 0.54239175 -0.273280696
## x9 0.5050903 0.45350149 0.006389851
Her bir satırda bir değişkenin (örneğin, X1, X2) her bir faktörle olan yüklemeleri (korelasyonları) yer alır.
PA1, PA2, PA3 sütunları, her değişkenin her bir faktörle ne kadar ilişkili olduğunu gösterir.
Yükleme değerleri 0 ile 1 arasında olmalıdır. Yükleme değeri yüksek olan değişkenler, o faktörle güçlü bir şekilde ilişkilidir.
0.65, 0.80 gibi yüksek yüklemeler, o faktörün güçlü bir temsilcisi olduğunu gösterir.
## Factor Analysis using method = pa
## Call: fa(r = afa, nfactors = 3, rotate = "none", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
## PA1 PA2 PA3 h2 u2 com
## x1 0.58 0.17 0.34 0.48 0.52 1.8
## x2 0.31 0.10 0.39 0.26 0.74 2.0
## x3 0.40 0.31 0.44 0.45 0.55 2.8
## x4 0.77 -0.36 -0.11 0.73 0.27 1.5
## x5 0.75 -0.40 -0.16 0.75 0.25 1.6
## x6 0.76 -0.33 -0.05 0.69 0.31 1.4
## x7 0.31 0.43 -0.48 0.51 0.49 2.7
## x8 0.39 0.54 -0.27 0.52 0.48 2.4
## x9 0.51 0.45 0.01 0.46 0.54 2.0
##
## PA1 PA2 PA3
## SS loadings 2.83 1.21 0.81
## Proportion Var 0.31 0.13 0.09
## Cumulative Var 0.31 0.45 0.54
## Proportion Explained 0.58 0.25 0.17
## Cumulative Proportion 0.58 0.83 1.00
##
## Mean item complexity = 2
## Test of the hypothesis that 3 factors are sufficient.
##
## df null model = 36 with the objective function = 3.05 with Chi Square = 904.1
## df of the model are 12 and the objective function was 0.08
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.03
##
## The harmonic n.obs is 301 with the empirical chi square 7.87 with prob < 0.8
## The total n.obs was 301 with Likelihood Chi Square = 22.54 with prob < 0.032
##
## Tucker Lewis Index of factoring reliability = 0.963
## RMSEA index = 0.054 and the 90 % confidence intervals are 0.016 0.088
## BIC = -45.95
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
## PA1 PA2 PA3
## Correlation of (regression) scores with factors 0.94 0.86 0.78
## Multiple R square of scores with factors 0.89 0.74 0.61
## Minimum correlation of possible factor scores 0.77 0.48 0.21
# h2 sütünu açıklanan varyans oranlarını gösterir. En yüksek x4 değişkeni.
## [1] 31.41691
## [1] 13.49584
## [1] 9.039061
## PA1 PA2 PA3
## SS loadings 2.8275221 1.2146253 0.81351551
## Proportion Var 0.3141691 0.1349584 0.09039061
## Cumulative Var 0.3141691 0.4491275 0.53951810
## Proportion Explained 0.5823143 0.2501461 0.16753954
## Cumulative Proportion 0.5823143 0.8324605 1.00000000
# Her bir faktörün açıklanan varyans oranını gösterir. 1. faktör % 31, 2. faktör % 13, 3. faktör % 9 oranında açıklamaktadır. Toplam açıklanan varyans % 53 oranındadır.
## x1 x2 x3 x4 x5 x6 x7
## x1 0.47691481 0.32687705 0.43454580 0.3460381 0.3075522 0.3672245 0.08381469
## x2 0.32687705 0.25555894 0.32591709 0.1614984 0.1287498 0.1847464 -0.05159910
## x3 0.43454580 0.32591709 0.45303818 0.1505089 0.1025127 0.1824727 0.04122856
## x4 0.34603814 0.16149837 0.15050893 0.7282906 0.7376777 0.7078840 0.13443307
## x5 0.30755217 0.12874980 0.10251266 0.7376777 0.7530983 0.7126930 0.13568786
## x6 0.36722451 0.18474643 0.18247272 0.7078840 0.7126930 0.6915787 0.11740453
## x7 0.08381469 -0.05159910 0.04122856 0.1344331 0.1356879 0.1174045 0.51187462
## x8 0.22539772 0.06813458 0.20471859 0.1393722 0.1213888 0.1370892 0.48582309
## x9 0.36966276 0.20230220 0.34552349 0.2263404 0.1945759 0.2368748 0.34639902
## x8 x9
## x1 0.22539772 0.3696628
## x2 0.06813458 0.2023022
## x3 0.20471859 0.3455235
## x4 0.13937224 0.2263404
## x5 0.12138877 0.1945759
## x6 0.13708918 0.2368748
## x7 0.48582309 0.3463990
## x8 0.52448810 0.4434788
## x9 0.44347885 0.4608206
#Üretilen korelasyon matrisinin köşegenindeki öğeler çıkarılan ortak varyanslardır.
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
##
## Loadings:
## PA1 PA2 PA3
## x1 0.576 0.169 0.342
## x2 0.309 0.389
## x3 0.400 0.310 0.444
## x4 0.769 -0.355 -0.106
## x5 0.750 -0.404 -0.164
## x6 0.763 -0.327
## x7 0.307 0.429 -0.483
## x8 0.394 0.542 -0.273
## x9 0.505 0.454
##
## PA1 PA2 PA3
## SS loadings 2.828 1.215 0.814
## Proportion Var 0.314 0.135 0.090
## Cumulative Var 0.314 0.449 0.540
# bütün yükler 1. faktöre yüklenmiş gibi döndürelim biraz
## PA1 PA3 PA2
## x1 0.2793 0.6129 0.1523
## x2 0.1022 0.4942 -0.0300
## x3 0.0382 0.6595 0.1291
## x4 0.8322 0.1607 0.0992
## x5 0.8587 0.0883 0.0892
## x6 0.7991 0.2137 0.0855
## x7 0.0931 -0.0808 0.7047
## x8 0.0510 0.1700 0.7021
## x9 0.1298 0.4143 0.5219
# dik döndürme sonucunda yükler güzel dağıldı. x1 x2 x3 2. faktörde, x4 x5 x6 1. faktörde, x7, x8, x9 3. faktörde toplandı.
## PA1 PA2 PA3
## Proportion Var 0.3141691 0.1349584 0.09039061
## Cumulative Var 0.3141691 0.4491275 0.53951810
## PA1 PA2 PA3
## Proportion Var 0.3141691 0.1349584 0.09039061
## Cumulative Var 0.3141691 0.4491275 0.53951810
# toplam açıklanan varyans değişmedi
## NULL
#dik döndürmede faktörler arası korelasyon değeri yoktur. Örüntü katsayıları yapı katsayıları birbirine eşittir.
## MR1 MR3 MR2
## [1,] 0.09847506 -0.8280351 -0.003537455
## [2,] -1.34967717 0.6843043 0.942361500
## [3,] -1.87071276 -0.1817172 -1.234141568
## [4,] -0.07734837 1.0113368 -0.990323046
## [5,] -0.05927204 -0.6460524 0.408616056
## [6,] -1.69217423 0.4676333 1.352384857
## [1;m[4;m
## EGAnet (version 2.3.0)[0m[0m
##
## For help getting started, see <https://r-ega.net>
##
## For bugs and errors, submit an issue to <https://github.com/hfgolino/EGAnet/issues>
##
## Attaching package: 'psychTools'
## The following object is masked from 'package:dplyr':
##
## recode
## $keep
## [1] "x5" "x6" "x7"
##
## $remove
## [1] "x4" "x4" "x6" "x8"
## Model: GLASSO (EBIC with gamma = 0.5)
## Correlations: auto
## Lambda: 0.103924976788167 (n = 100, ratio = 0.1)
##
## Number of nodes: 9
## Number of edges: 18
## Edge density: 0.500
##
## Non-zero edge weights:
## M SD Min Max
## 0.168 0.130 0.018 0.405
##
## ----
##
## Algorithm: Walktrap
##
## Number of communities: 3
##
## x1 x2 x3 x4 x5 x6 x7 x8 x9
## 1 1 1 2 2 2 3 3 3
##
## ----
##
## Unidimensional Method: Louvain
## Unidimensional: No
##
## ----
##
## TEFI: -5.15