Following Nike’s post showcasing examples of their 2024 Summer Olympics uniforms, thousands took to social media to share their reactions.
Among the most common themes in the responses were outrage at the revealing cut and body exposure of the women’s uniform (11.5% – with words used like “coochie” and “bikini”), and criticism that the design reflects deeper issues of sexism and female objectification (5.3% – with words used like “sexist” and “misogyny”).
The following tables illustrate the frequency of these themes in the user responses.
Mentions of body exposure | ||
Exposure | Count | Percent |
---|---|---|
0 | 4847 | 88.5 |
1 | 632 | 11.5 |
Mentions of sexism and gender inequality | ||
Sexism | Count | Percent |
---|---|---|
0 | 5187 | 94.7 |
1 | 292 | 5.3 |
# Load packages
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("tidytext")) install.packages("tidytext")
if (!require("plotly")) install.packages("plotly")
if (!require("gtExtras")) install.packages("gtExtras")
library(tidyverse)
library(tidytext)
library(gtExtras)
library(plotly)
library(lubridate)
# Read the data
mydata <- read.csv("https://raw.githubusercontent.com/drkblake/Data/main/NikeUniforms.csv")
# Counting posts about Nike
tidy_text <- mydata %>%
unnest_tokens(word,Full.Text) %>%
count(word, sort = TRUE)
# Deleting standard stop words
data("stop_words")
tidy_text <- tidy_text %>%
anti_join(stop_words)
# Deleting custom stop words
my_stopwords <- tibble(word = c("https",
"t.co",
"rt"))
tidy_text <- tidy_text %>%
anti_join(my_stopwords)
head(tidy_text, 75)
# Exposure topic table
searchterms <- "coochie|labia|pussy|bikini|bush|lips"
mydata$Exposure <- ifelse(grepl(searchterms,
mydata$Full.Text,
ignore.case = TRUE),1,0)
Exposure <- mydata %>%
group_by(Exposure) %>%
summarize(
Count = n(),
Percent = round(n() / nrow(mydata) * 100, 1)
)
ExposureTable <- gt(Exposure) %>%
tab_header("Mentions of body exposure") %>%
cols_align(align = "left") %>%
gt_theme_538
ExposureTable
# Sexism topic table
searchterms <- "sexis|sexuali|patriarch|objectif|misogyn| male gaze"
mydata$Sexism <- ifelse(grepl(searchterms,
mydata$Full.Text,
ignore.case = TRUE),1,0)
Sexism <- mydata %>%
group_by(Sexism) %>%
summarize(
Count = n(),
Percent = round(n() / nrow(mydata) * 100, 1)
)
SexismTable <- gt(Sexism) %>%
tab_header("Mentions of sexism and gender inequality") %>%
cols_align(align = "left") %>%
gt_theme_538
SexismTable