Preliminary Analysis: Neighborhood to Charter Transfers
Data Source: Texas Education Agency - Campus Transfer Report
Which Charter Schools Gained Students from Neighborhood Schools
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readr)
xfers_campus <- read_csv("xfers_campus_2024_25.csv")
Rows: 316663 Columns: 14
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (12): YEAR, REPORT_REGION, REPORT_DISTRICT, REPORT_DISTRICT_NAME, REPORT...
dbl (2): REPORT_NUMBER, LINE_GROUP_NUMBER
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#creating a charter not charter flag
xfers_campus <- xfers_campus %>%
mutate(
charter_flag = case_when(
str_detect(REPORT_DISTRICT_NAME, regex("ISD|CISD", ignore_case = TRUE)) ~ "Not Charter",
str_detect(REPORT_DISTRICT_NAME, regex("ACADEMY|CHARTER|PREP|PREPARATORY|LEADERSHIP|SCHOOL OF EXCELLENCE|PUBLIC SCHOOLS|COMMUNITY SCHOOL|INNOVATION|EXCELLENCE|IMPACT|OUTREACH|VISION|INSPIRE|INC", ignore_case = TRUE)) ~ "Charter",
TRUE ~ "Not Charter" # Default fallback (safe side)
)
)
xfers_campus %>% count(charter_flag)
# A tibble: 2 × 2
charter_flag n
<chr> <int>
1 Charter 46200
2 Not Charter 270463
library(tidyverse)
isd_to_charter_transfers <- xfers_campus %>%
filter(
REPORT_TYPE == "Transfers In From",
charter_flag == "Charter",
str_detect(DISTNAME_RES_OR_ATTEND, "ISD|CISD")
) %>%
filter(TRANSFERS_IN_OR_OUT != -999) %>%
select(
Sending_ISD = DISTNAME_RES_OR_ATTEND,
Sending_Campus = CAMPNAME_RES_OR_ATTEND,
Receiving_Charter_District = REPORT_DISTRICT_NAME,
Receiving_Charter_Campus = REPORT_CAMPUS_NAME,
Number_of_Transfers = TRANSFERS_IN_OR_OUT
)
Charter to ISD Transfers
charter_to_isd_transfers <- xfers_campus %>%
filter(
REPORT_TYPE == "Transfers In From",
str_detect(REPORT_DISTRICT_NAME, "ISD|CISD"),
charter_flag == "Not Charter"
) %>%
filter(
str_detect(DISTNAME_RES_OR_ATTEND, regex("ACADEMY|CHARTER|PREP|PREPARATORY|LEADERSHIP|SCHOOL OF EXCELLENCE|PUBLIC SCHOOLS|COMMUNITY SCHOOL|INNOVATION|EXCELLENCE|IMPACT|OUTREACH|VISION|INSPIRE|INC", ignore_case = TRUE))
) %>%
filter(TRANSFERS_IN_OR_OUT != -999) %>%
select(
Sending_Charter_District = DISTNAME_RES_OR_ATTEND,
Sending_Charter_Campus = CAMPNAME_RES_OR_ATTEND,
Receiving_ISD_District = REPORT_DISTRICT_NAME,
Receiving_ISD_Campus = REPORT_CAMPUS_NAME,
Number_of_Transfers = TRANSFERS_IN_OR_OUT
)
Interactive Tables
DT::datatable(
isd_to_charter_transfers,
options = list(pageLength = 15, autoWidth = TRUE, filter = 'top'),
caption = "Student Transfers: From Neighborhood ISDs to Charter Schools"
)
DT::datatable(
charter_to_isd_transfers,
options = list(pageLength = 15, autoWidth = TRUE, filter = 'top'),
caption = "Student Transfers: From Charter Schools to Neighborhood ISDs"
)
Net Transfer Calculations
district_to_district_transfers <- xfers_campus %>%
filter(
REPORT_TYPE == "Transfers In From",
TRANSFERS_IN_OR_OUT != -999
) %>%
mutate(TRANSFERS_IN_OR_OUT = as.numeric(TRANSFERS_IN_OR_OUT)) %>%
group_by(DISTNAME_RES_OR_ATTEND, REPORT_DISTRICT_NAME) %>%
summarise(
total_transfers = sum(TRANSFERS_IN_OR_OUT, na.rm = TRUE),
.groups = "drop"
) %>%
arrange(desc(total_transfers))
DT::datatable(
district_to_district_transfers,
options = list(pageLength = 15, autoWidth = TRUE, filter = "top"),
caption = "District-to-District Student Transfer Totals (All Public Districts)"
)
#Top 10 Charter Campuses Receiving Students from Neighborhood ISDs
top_10_charter_campuses <- isd_to_charter_transfers %>%
mutate(Number_of_Transfers = as.numeric(Number_of_Transfers)) %>%
group_by(Receiving_Charter_District, Receiving_Charter_Campus) %>%
summarise(
total_transfers_received = sum(Number_of_Transfers, na.rm = TRUE),
.groups = "drop"
) %>%
arrange(desc(total_transfers_received)) %>%
slice_head(n = 10)
DT::datatable(
top_10_charter_campuses,
options = list(pageLength = 10, autoWidth = TRUE, filter = "top"),
caption = "Top 10 Charter Campuses Receiving Transfers from Neighborhood ISDs"
)
top_10_charter_districts <- isd_to_charter_transfers %>%
mutate(Number_of_Transfers = as.numeric(Number_of_Transfers)) %>% # ensure numeric
group_by(Receiving_Charter_District) %>%
summarise(
total_transfers_received = sum(Number_of_Transfers, na.rm = TRUE),
.groups = "drop"
) %>%
arrange(desc(total_transfers_received)) %>%
slice_head(n = 10)
DT::datatable(
top_10_charter_districts,
options = list(pageLength = 10, autoWidth = TRUE, filter = "top"),
caption = "Top 10 Charter Districts Receiving Transfers from Neighborhood ISDs"
)