t_small
Error: object 't_small' not found

Descriptive Statistics

table(t$decision_severity)

 3  4  5  6  7 
 4  2 11  5  1 

Correlations with time?

Severity is only correlated with time variables (at p>0.3) are time closing and time overview. Removing all others from further consideration.

Correlations with other variables

I use p<0.3, assuming that these will drop with n increasing:

temp  <- t %>% 
  select(-starts_with('time'), -ends_with('time'), time_closing, time_overview) 


p_matrix <- ggcorrplot::cor_pmat(temp)

ggcorrplot::ggcorrplot(cor(temp, use = "pairwise.complete.obs"), 
         lab = TRUE, 
         lab_size = 3, 
         colors = c("red", "white", "blue"), 
         title = "Correlation Matrix (p<.2)",
         sig.level = 0.2,
         p.mat = p_matrix,
         insig = 'blank',
         ggtheme = theme_minimal())

Modeling

Basic model with regression (r.47)

Assuming a pop around 69 (bootstrapping) three times,

  • skepticism score slightly decreases severity
  • data-viz strongly increases severity
  • icl is on the edge of sig, with positive impact
  • ecl is on the edge of sig, with negative impact

Going to a pop of around 200, all above reach sig.

temp <- triple(select(t, -starts_with('time'), -ends_with('time')) )


m <- lm(decision_severity ~ ., data = temp)
summary(m)

Call:
lm(formula = decision_severity ~ ., data = temp)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.3521 -0.7413  0.2600  0.5868  1.0686 

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          6.409210   1.161352   5.519 7.39e-07 ***
pre_skepticism      -0.015997   0.008851  -1.807   0.0757 .  
pre_numeracy        -0.118533   0.081129  -1.461   0.1491    
condition_isDataViz  1.411916   0.228886   6.169 6.07e-08 ***
decision_confidence  0.033854   0.087401   0.387   0.6999    
cl_intrinsic         0.199526   0.147256   1.355   0.1804    
cl_germane          -0.043080   0.117471  -0.367   0.7151    
cl_extrinsic        -0.176244   0.155574  -1.133   0.2617    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7915 on 61 degrees of freedom
Multiple R-squared:  0.5212,    Adjusted R-squared:  0.4663 
F-statistic: 9.487 on 7 and 61 DF,  p-value: 6.574e-08
caret::varImp(m)

PCA

print(pca_results)
Standard deviations (1, .., p=6):
[1] 1.4084773 1.1344122 0.9971643 0.9046241 0.8108966 0.5089855

Rotation (n x k) = (6 x 6):
                          PC1        PC2        PC3          PC4         PC5         PC6
pre_skepticism     0.43767103  0.2618586 -0.3788836 -0.002465966 -0.76715101  0.08828701
pre_numeracy      -0.26473757 -0.1022290 -0.8600394 -0.259954670  0.26347298  0.20688417
decision_severity -0.14837812  0.6160380  0.2492391 -0.690686558  0.03252771  0.24136078
cl_intrinsic       0.58535244  0.1950367 -0.1633801 -0.207084206  0.41085128 -0.61720944
cl_germane        -0.03620795  0.6713515 -0.1273448  0.640857218  0.29124292  0.19036568
cl_extrinsic       0.61024055 -0.2296179  0.1083955 -0.042281499  0.29560454  0.68844951

ANOVA


temp <- t %>% 
  mutate(pre_skepticism = ifelse(pre_skepticism < 120, 'low', 
                                   ifelse(pre_skepticism < 130, 'middle', 'high'))) %>% 
  mutate(pre_skepticism = factor(pre_skepticism, levels = c('low', 'middle', 'high')),
         condition_isDataViz = factor(condition_isDataViz, levels = c(0, 1), labels = c('table', 'graph'))
         ) 

table(temp$pre_skepticism)

   low middle   high 
     5     10      8 
m <- aov(decision_severity ~ pre_skepticism + condition_isDataViz, 
          data = triple(temp))
summary(m)
                    Df Sum Sq Mean Sq F value   Pr(>F)    
pre_skepticism       2   4.23    2.11   3.655   0.0313 *  
condition_isDataViz  1  38.02   38.02  65.778 1.86e-11 ***
Residuals           65  37.57    0.58                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TukeyHSD(m)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = decision_severity ~ pre_skepticism + condition_isDataViz, data = triple(temp))

$pre_skepticism
            diff         lwr        upr     p adj
middle-low  -0.6 -1.17668880 -0.0233112 0.0396107
high-low    -0.2 -0.80023673  0.4002367 0.7048456
high-middle  0.4 -0.09942715  0.8994272 0.1409069

$condition_isDataViz
                diff       lwr      upr p adj
graph-table 1.359091 0.9931447 1.725037     0

Lavaan

library(lavaan)
library(lavaanPlot)

temp <- t %>% 
  mutate(condition_isDataViz = factor(condition_isDataViz, levels = c(0, 1), labels = c('table', 'graph'))
         ) %>% 
  rename(condition = condition_isDataViz,
         pre_skepticism = pre_skepticism) %>%   # skepticism_score
  mutate(cognitive_load = cl_extrinsic )  #cl_extrinsic, cl_intrinsic, cl_germane


model <- '
  # Mediation path
  cognitive_load ~ a1*condition + a2*pre_skepticism

  decision_severity ~ b1*cognitive_load + b2*pre_skepticism

  # Indirect effect (mediation)
  indirect := a1 * b1

  # Total effect (direct + indirect)
  total :=  (a1 * b1)
'
fit <- sem(model, data = triple(temp), meanstructure = T)
summary(fit, fit.measures = TRUE, standardized = TRUE)
lavaan 0.6-19 ended normally after 1 iteration

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         8

  Number of observations                            69

Model Test User Model:
                                                      
  Test statistic                                41.780
  Degrees of freedom                                 1
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                                59.903
  Degrees of freedom                                 5
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.257
  Tucker-Lewis Index (TLI)                      -2.714

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -191.715
  Loglikelihood unrestricted model (H1)       -170.825
                                                      
  Akaike (AIC)                                 399.429
  Bayesian (BIC)                               417.302
  Sample-size adjusted Bayesian (SABIC)        392.106

Root Mean Square Error of Approximation:

  RMSEA                                          0.769
  90 Percent confidence interval - lower         0.580
  90 Percent confidence interval - upper         0.976
  P-value H_0: RMSEA <= 0.050                    0.000
  P-value H_0: RMSEA >= 0.080                    1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.161

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Expected
  Information saturated (h1) model          Structured

Regressions:
                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  cognitive_load ~                                                         
    condition (a1)      -0.628    0.223   -2.812    0.005   -0.628   -0.314
    pr_skptcs (a2)       0.028    0.009    3.034    0.002    0.028    0.339
  decision_severity ~                                                      
    cogntv_ld (b1)      -0.297    0.130   -2.285    0.022   -0.297   -0.276
    pr_skptcs (b2)       0.005    0.011    0.432    0.666    0.005    0.052

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .cognitive_load    0.379    1.144    0.331    0.740    0.379    0.380
   .decision_svrty    5.166    1.299    3.977    0.000    5.166    4.803

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .cognitive_load    0.826    0.141    5.874    0.000    0.826    0.828
   .decision_svrty    1.075    0.183    5.874    0.000    1.075    0.929

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    indirect          0.187    0.105    1.773    0.076    0.187    0.087
    total             0.187    0.105    1.773    0.076    0.187    0.087
lavaanPlot(model = fit, 
           node_options = list(shape = 'box', fontname = 'Helvetica'),
           edge_options = list(color = 'grey'),
           coefs = T,
           sig = 0.3,
           stars = 'regress')
NA
NA
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyIGxvYWRfZGF0YX0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShoYXZlbikNCg0KIyBSZWFkIFNQU1MgLnNhdiBmaWxlDQp0X3JhdyA8LSByZWFkX3NhdigiUGlsb3QgU3R1ZHkgQW5hbHlzaXMuc2F2IikgJT4lIA0KICBqYW5pdG9yOjpjbGVhbl9uYW1lcygpICU+JSANCiAgc2VsZWN0KC1za2VwdGljaXNtX21lZF9zcGxpdCwgLXRhYnVsYXIpDQoNCg0KDQp0IDwtIHRfcmF3ICU+JSANCiAgbXV0YXRlKHRpbWVfZXZhbF9ncmFwaCA9IGlmZWxzZShkYXRhX3ZpeiA9PSAxLCB0aW1lX2V2YWxfZ3JhcGgsIE5BKSwNCiAgICAgICAgIHRpbWVfb3ZlcnZpZXdfZ3JhcGggPSBpZmVsc2UoZGF0YV92aXogPT0gMSwgdGltZV9vdmVydmlld19ncmFwaCwgTkEpLA0KICAgICAgICAgdGltZV9ldmFsX3RhYmxlID0gaWZlbHNlKGRhdGFfdml6ID09IDAsIHRpbWVfZXZhbF90YWJsZSwgTkEpLA0KICAgICAgICAgdGltZV9vdmVydmlld190YWJsZSA9IGlmZWxzZShkYXRhX3ZpeiA9PSAwLCB0aW1lX292ZXJ2aWV3X3RhYmxlLCBOQSksDQogICAgICAgICB0aW1lX2V2YWwgPSBpZmVsc2UoZGF0YV92aXogPT0gMSwgdGltZV9ldmFsX2dyYXBoLCB0aW1lX2V2YWxfdGFibGUpLA0KICAgICAgICAgdGltZV9vdmVydmlldyA9IGlmZWxzZShkYXRhX3ZpeiA9PSAxLCB0aW1lX292ZXJ2aWV3X2dyYXBoLCB0aW1lX292ZXJ2aWV3X3RhYmxlKSwNCiAgICAgICAgICkgJT4lIA0KICByZW5hbWUoY2xfZXh0cmluc2ljID0gZWNsLA0KICAgICAgICAgY2xfaW50cmluc2ljID0gaWNsLA0KICAgICAgICAgY2xfZ2VybWFuZSA9IGdjbCwNCiAgICAgICAgIGRlY2lzaW9uX2NvbmZpZGVuY2UgPSBkZWNpc2lvbl9jb25maWRlbmNlLA0KICAgICAgICAgZGVjaXNpb25fc2V2ZXJpdHkgPSBzZXZlcml0eSwNCiAgICAgICAgIHByZV9za2VwdGljaXNtID0gc2tlcHRpY2lzbV9zY29yZSwNCiAgICAgICAgIHByZV9udW1lcmFjeSA9IGJlcmxpbl9udW1lcmFjeSwNCiAgICAgICAgIGNvbmRpdGlvbl9pc0RhdGFWaXogPSBkYXRhX3ZpeiwNCiAgICAgICAgICkgDQoNCiMgSW5jcmVhc2UgdGhlIHNhbXBsZSBzaXplIGJ5IDN4DQp0cmlwbGUgPC0gZnVuY3Rpb24odF9zbWFsbCkgew0KICBiaW5kX3Jvd3ModF9zbWFsbCwgdF9zbWFsbCwgdF9zbWFsbCkNCn0NCg0KcHJpbnQodCkNCmBgYA0KDQoNCiMjIERlc2NyaXB0aXZlIFN0YXRpc3RpY3MNCg0KYGBge3J9DQoNCiMgRm9yIGVhY2ggY29sdW1uIGluIHQsIHByaW50IGEgaGlzdG9ncmFtDQpmb3IgKGNvbG5hbWUgaW4gbmFtZXModCkpIHsNCiAgaWYgKGlzLm51bWVyaWModFtbY29sbmFtZV1dKSkgew0KICAgIHByaW50KGNvbG5hbWUpDQogICAgaGlzdCh0W1tjb2xuYW1lXV0sDQogICAgICAgICBtYWluID0gcGFzdGUoIkhpc3RvZ3JhbSBvZiIsIGNvbG5hbWUpKQ0KICB9DQp9DQoNCnRhYmxlKHQkZGVjaXNpb25fc2V2ZXJpdHkpDQoNCg0KYGBgDQoNCg0KIyMgQ29ycmVsYXRpb25zIHdpdGggdGltZT8NCg0KU2V2ZXJpdHkgaXMgb25seSBjb3JyZWxhdGVkIHdpdGggdGltZSB2YXJpYWJsZXMgKGF0IHA+MC4zKSBhcmUgdGltZSBjbG9zaW5nIGFuZCB0aW1lIG92ZXJ2aWV3LiBSZW1vdmluZyBhbGwgb3RoZXJzIGZyb20gZnVydGhlciBjb25zaWRlcmF0aW9uLg0KDQpgYGB7cn0NCnRlbXAgIDwtIHQgJT4lIA0KICBzZWxlY3Qoc3RhcnRzX3dpdGgoJ3RpbWUnKSwgZW5kc193aXRoKCd0aW1lJyksIGRlY2lzaW9uX3NldmVyaXR5KSAlPiUgDQogIHNlbGVjdCgtYyh0aW1lX292ZXJ2aWV3X2dyYXBoLCB0aW1lX2V2YWxfZ3JhcGgsIHRpbWVfb3ZlcnZpZXdfdGFibGUsIHRpbWVfZXZhbF90YWJsZSkpIA0KDQpwX21hdHJpeCA8LSBnZ2NvcnJwbG90Ojpjb3JfcG1hdCh0ZW1wKQ0KDQpnZ2NvcnJwbG90OjpnZ2NvcnJwbG90KGNvcih0ZW1wLCB1c2UgPSAicGFpcndpc2UuY29tcGxldGUub2JzIiksIA0KICAgICAgICAgbGFiID0gVFJVRSwgDQogICAgICAgICBsYWJfc2l6ZSA9IDMsIA0KICAgICAgICAgY29sb3JzID0gYygicmVkIiwgIndoaXRlIiwgImJsdWUiKSwgDQogICAgICAgICB0aXRsZSA9ICJDb3JyZWxhdGlvbiBNYXRyaXggd2l0aCB0aW1lIiwNCiAgICAgICAgIHNpZy5sZXZlbCA9IDAuMywNCiAgICAgICAgIHAubWF0ID0gcF9tYXRyaXgsDQogICAgICAgICBpbnNpZyA9ICdibGFuaycsDQogICAgICAgICBnZ3RoZW1lID0gdGhlbWVfbWluaW1hbCgpKQ0KYGBgDQoNCiMjIENvcnJlbGF0aW9ucyB3aXRoIG90aGVyIHZhcmlhYmxlcw0KDQpJIHVzZSBwPDAuMywgYXNzdW1pbmcgdGhhdCB0aGVzZSB3aWxsIGRyb3Agd2l0aCBuIGluY3JlYXNpbmc6DQoNCi0gU2V2ZXJpdHkgaGFzIGEgcG9zIGNvciB3aXRoIGRhdGFfdml6PT0xLCBkZWNpc2lvbiBjb25maWRlbmNlLCBhbmQgdGltZSB0YWtlbi4NCiAgLSBJdCBoYXMgYSBuZWdhdGl2ZSBjb3Igd2l0aCBlY2wuDQotIERhdGEgdml6IGluY3JlYXNlIGRlY2lzaW9uIGNvbmZpZGVuY2UsIGRlY3JlYXNlcyBlY2wsIGFuZCBpbmNyZWFzZXMgdGltZSBvdmVydmlldy4NCiAgLSBXaGF0IGV4YWN0bHkgaXMgdGltZSBvbiBvdmVydmlldz8NCi0gQ0wgbWVhc3VyZXMgYXJlIG9rLg0KICAtIGVjbCBhbmQgaWNsIGNvcnJlbGF0ZWQgYnV0IG5vIG90aGVycy4NCi0gTnVtZXJhY3kgd29ya3Mgd2VsbCwgd2l0aCBuZWcgY29yIHdpdGggZWNsLCBhbmQgZGF0YSB2aXogY29uZGl0aW9uLg0KICAtIFdoYXQgZXhhY3RseSBpcyB0aW1lIG9uIGNsb3NpbmcgLyBvdmVydmlldz8NCi0gU2tlcHRpY2lzbSBpcyBjb3Igd2l0aCBpY2wgYW5kIGVjbC4NCg0KYGBge3J9DQp0ZW1wICA8LSB0ICU+JSANCiAgc2VsZWN0KC1zdGFydHNfd2l0aCgndGltZScpLCAtZW5kc193aXRoKCd0aW1lJyksIHRpbWVfY2xvc2luZywgdGltZV9vdmVydmlldykgDQoNCg0KcF9tYXRyaXggPC0gZ2djb3JycGxvdDo6Y29yX3BtYXQodGVtcCkNCg0KZ2djb3JycGxvdDo6Z2djb3JycGxvdChjb3IodGVtcCwgdXNlID0gInBhaXJ3aXNlLmNvbXBsZXRlLm9icyIpLCANCiAgICAgICAgIGxhYiA9IFRSVUUsIA0KICAgICAgICAgbGFiX3NpemUgPSAzLCANCiAgICAgICAgIGNvbG9ycyA9IGMoInJlZCIsICJ3aGl0ZSIsICJibHVlIiksIA0KICAgICAgICAgdGl0bGUgPSAiQ29ycmVsYXRpb24gTWF0cml4IChwPC4yKSIsDQogICAgICAgICBzaWcubGV2ZWwgPSAwLjIsDQogICAgICAgICBwLm1hdCA9IHBfbWF0cml4LA0KICAgICAgICAgaW5zaWcgPSAnYmxhbmsnLA0KICAgICAgICAgZ2d0aGVtZSA9IHRoZW1lX21pbmltYWwoKSkNCmBgYA0KDQojIE1vZGVsaW5nDQoNCg0KIyMgQmFzaWMgbW9kZWwgd2l0aCByZWdyZXNzaW9uIChyLjQ3KQ0KDQpBc3N1bWluZyBhIHBvcCBhcm91bmQgNjkgKGJvb3RzdHJhcHBpbmcpIHRocmVlIHRpbWVzLA0KDQotICBza2VwdGljaXNtIHNjb3JlIHNsaWdodGx5IGRlY3JlYXNlcyBzZXZlcml0eQ0KLSAgZGF0YS12aXogc3Ryb25nbHkgaW5jcmVhc2VzIHNldmVyaXR5DQotICBpY2wgaXMgb24gdGhlIGVkZ2Ugb2Ygc2lnLCB3aXRoIHBvc2l0aXZlIGltcGFjdA0KLSAgZWNsIGlzIG9uIHRoZSBlZGdlIG9mIHNpZywgd2l0aCBuZWdhdGl2ZSBpbXBhY3QNCg0KR29pbmcgdG8gYSBwb3Agb2YgYXJvdW5kIDIwMCwgYWxsIGFib3ZlIHJlYWNoIHNpZy4NCg0KYGBge3J9DQp0ZW1wIDwtIHRyaXBsZShzZWxlY3QodCwgLXN0YXJ0c193aXRoKCd0aW1lJyksIC1lbmRzX3dpdGgoJ3RpbWUnKSkgKQ0KDQoNCm0gPC0gbG0oZGVjaXNpb25fc2V2ZXJpdHkgfiAuLCBkYXRhID0gdGVtcCkNCnN1bW1hcnkobSkNCg0KY2FyZXQ6OnZhckltcChtKQ0KYGBgDQoNCg0KIyMjIFBDQQ0KDQoNCmBgYHtyfQ0KdGVtcCA8LSB0ICU+JSANCiAgICAgc2VsZWN0KC1zdGFydHNfd2l0aCgndGltZScpLCAtZW5kc193aXRoKCd0aW1lJykpICU+JSANCiAgICAgc2VsZWN0KC1jb25kaXRpb25faXNEYXRhVml6LCAtZGVjaXNpb25fY29uZmlkZW5jZSApICU+JQ0KICAgICB0cmlwbGUoKSANCg0KDQojIFBDQSBhbmFseXNpcw0KcGNhX3Jlc3VsdHMgPC0gcHJjb21wKHRlbXAsIHNjYWxlID0gVCwgY2VudGVyID0gVCkNCnN1bW1hcnkocGNhX3Jlc3VsdHMpDQpwcmludChwY2FfcmVzdWx0cykNCmBgYA0KDQojIEFOT1ZBDQoNCmBgYHtyfQ0KDQp0ZW1wIDwtIHQgJT4lIA0KICBtdXRhdGUocHJlX3NrZXB0aWNpc20gPSBpZmVsc2UocHJlX3NrZXB0aWNpc20gPCAxMjAsICdsb3cnLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHByZV9za2VwdGljaXNtIDwgMTMwLCAnbWlkZGxlJywgJ2hpZ2gnKSkpICU+JSANCiAgbXV0YXRlKHByZV9za2VwdGljaXNtID0gZmFjdG9yKHByZV9za2VwdGljaXNtLCBsZXZlbHMgPSBjKCdsb3cnLCAnbWlkZGxlJywgJ2hpZ2gnKSksDQogICAgICAgICBjb25kaXRpb25faXNEYXRhVml6ID0gZmFjdG9yKGNvbmRpdGlvbl9pc0RhdGFWaXosIGxldmVscyA9IGMoMCwgMSksIGxhYmVscyA9IGMoJ3RhYmxlJywgJ2dyYXBoJykpDQogICAgICAgICApIA0KDQp0YWJsZSh0ZW1wJHByZV9za2VwdGljaXNtKQ0KDQptIDwtIGFvdihkZWNpc2lvbl9zZXZlcml0eSB+IHByZV9za2VwdGljaXNtICsgY29uZGl0aW9uX2lzRGF0YVZpeiwgDQogICAgICAgICAgZGF0YSA9IHRyaXBsZSh0ZW1wKSkNCnN1bW1hcnkobSkNClR1a2V5SFNEKG0pDQpgYGANCg0KIyBMYXZhYW4NCg0KYGBge3J9DQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCg0KdGVtcCA8LSB0ICU+JSANCiAgbXV0YXRlKGNvbmRpdGlvbl9pc0RhdGFWaXogPSBmYWN0b3IoY29uZGl0aW9uX2lzRGF0YVZpeiwgbGV2ZWxzID0gYygwLCAxKSwgbGFiZWxzID0gYygndGFibGUnLCAnZ3JhcGgnKSkNCiAgICAgICAgICkgJT4lIA0KICByZW5hbWUoY29uZGl0aW9uID0gY29uZGl0aW9uX2lzRGF0YVZpeiwNCiAgICAgICAgIHByZV9za2VwdGljaXNtID0gcHJlX3NrZXB0aWNpc20pICU+JSAgICMgc2tlcHRpY2lzbV9zY29yZQ0KICBtdXRhdGUoY29nbml0aXZlX2xvYWQgPSBjbF9leHRyaW5zaWMgKSAgI2NsX2V4dHJpbnNpYywgY2xfaW50cmluc2ljLCBjbF9nZXJtYW5lDQoNCg0KbW9kZWwgPC0gJw0KICAjIE1lZGlhdGlvbiBwYXRoDQogIGNvZ25pdGl2ZV9sb2FkIH4gYTEqY29uZGl0aW9uICsgYTIqcHJlX3NrZXB0aWNpc20NCg0KICBkZWNpc2lvbl9zZXZlcml0eSB+IGIxKmNvZ25pdGl2ZV9sb2FkICsgY19wcmltZSpjb25kaXRpb24gKyBiMipwcmVfc2tlcHRpY2lzbQ0KDQogICMgSW5kaXJlY3QgZWZmZWN0IChtZWRpYXRpb24pDQogIGluZGlyZWN0IDo9IGExICogYjENCg0KICAjIFRvdGFsIGVmZmVjdCAoZGlyZWN0ICsgaW5kaXJlY3QpDQogIHRvdGFsIDo9IGNfcHJpbWUgKyAoYTEgKiBiMSkNCicNCmZpdCA8LSBzZW0obW9kZWwsIGRhdGEgPSB0cmlwbGUodGVtcCksIG1lYW5zdHJ1Y3R1cmUgPSBUKQ0Kc3VtbWFyeShmaXQsIGZpdC5tZWFzdXJlcyA9IFRSVUUsIHN0YW5kYXJkaXplZCA9IFRSVUUpDQoNCmxhdmFhblBsb3QobW9kZWwgPSBmaXQsIA0KICAgICAgICAgICBub2RlX29wdGlvbnMgPSBsaXN0KHNoYXBlID0gJ2JveCcsIGZvbnRuYW1lID0gJ0hlbHZldGljYScpLA0KICAgICAgICAgICBlZGdlX29wdGlvbnMgPSBsaXN0KGNvbG9yID0gJ2dyZXknKSwNCiAgICAgICAgICAgY29lZnMgPSBULA0KICAgICAgICAgICBzaWcgPSAwLjksDQogICAgICAgICAgIHN0YXJzID0gJ3JlZ3Jlc3MnKQ0KDQoNCmBgYA0KDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGxhdmFhbikNCmxpYnJhcnkobGF2YWFuUGxvdCkNCg0KdGVtcCA8LSB0ICU+JSANCiAgbXV0YXRlKGNvbmRpdGlvbl9pc0RhdGFWaXogPSBmYWN0b3IoY29uZGl0aW9uX2lzRGF0YVZpeiwgbGV2ZWxzID0gYygwLCAxKSwgbGFiZWxzID0gYygndGFibGUnLCAnZ3JhcGgnKSkNCiAgICAgICAgICkgJT4lIA0KICByZW5hbWUoY29uZGl0aW9uID0gY29uZGl0aW9uX2lzRGF0YVZpeiwNCiAgICAgICAgIHByZV9za2VwdGljaXNtID0gcHJlX3NrZXB0aWNpc20pICU+JSAgICMgc2tlcHRpY2lzbV9zY29yZQ0KICBtdXRhdGUoY29nbml0aXZlX2xvYWQgPSBjbF9leHRyaW5zaWMgKSAgI2NsX2V4dHJpbnNpYywgY2xfaW50cmluc2ljLCBjbF9nZXJtYW5lDQoNCg0KbW9kZWwgPC0gJw0KICAjIE1lZGlhdGlvbiBwYXRoDQogIGNvZ25pdGl2ZV9sb2FkIH4gYTEqY29uZGl0aW9uICsgYTIqcHJlX3NrZXB0aWNpc20NCg0KICBkZWNpc2lvbl9zZXZlcml0eSB+IGIxKmNvZ25pdGl2ZV9sb2FkICsgYjIqcHJlX3NrZXB0aWNpc20NCg0KICAjIEluZGlyZWN0IGVmZmVjdCAobWVkaWF0aW9uKQ0KICBpbmRpcmVjdCA6PSBhMSAqIGIxDQoNCiAgIyBUb3RhbCBlZmZlY3QgKGRpcmVjdCArIGluZGlyZWN0KQ0KICB0b3RhbCA6PSAgKGExICogYjEpDQonDQpmaXQgPC0gc2VtKG1vZGVsLCBkYXRhID0gdHJpcGxlKHRlbXApLCBtZWFuc3RydWN0dXJlID0gVCkNCnN1bW1hcnkoZml0LCBmaXQubWVhc3VyZXMgPSBUUlVFLCBzdGFuZGFyZGl6ZWQgPSBUUlVFKQ0KDQpsYXZhYW5QbG90KG1vZGVsID0gZml0LCANCiAgICAgICAgICAgbm9kZV9vcHRpb25zID0gbGlzdChzaGFwZSA9ICdib3gnLCBmb250bmFtZSA9ICdIZWx2ZXRpY2EnKSwNCiAgICAgICAgICAgZWRnZV9vcHRpb25zID0gbGlzdChjb2xvciA9ICdncmV5JyksDQogICAgICAgICAgIGNvZWZzID0gVCwNCiAgICAgICAgICAgc2lnID0gMC4zLA0KICAgICAgICAgICBzdGFycyA9ICdyZWdyZXNzJykNCg0KDQpgYGA=