R Markdown

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
library(ggplot2)

# Import dataset
titanic <- read.csv("C:\\Users\\dafy9\\Downloads\\College\\ITS\\ITS\\Academic\\2\\Data Visualization Exploratory\\titanic2.csv.csv")


# Cek jumlah baris
tally(titanic)
##     n
## 1 891
# Sample 10 data pertama kolom 1-9
titanic %>%
  select(1:9) %>%
  sample_n(size = 10)
##    PassengerId Survived Pclass                                    Name    Sex
## 1          356        0      3             Vanden Steen, Mr. Leo Peter   male
## 2          253        0      1               Stead, Mr. William Thomas   male
## 3          223        0      3                 Green, Mr. George Henry   male
## 4          385        0      3                  Plotcharsky, Mr. Vasil   male
## 5          648        1      1     Simonius-Blumer, Col. Oberst Alfons   male
## 6          826        0      3                         Flynn, Mr. John   male
## 7          376        1      1   Meyer, Mrs. Edgar Joseph (Leila Saks) female
## 8          851        0      3 Andersson, Master. Sigvard Harald Elias   male
## 9           58        0      3                     Novel, Mr. Mansouer   male
## 10         466        0      3         Goncalves, Mr. Manuel Estanslas   male
##     Age SibSp Parch             Ticket
## 1  28.0     0     0             345783
## 2  62.0     0     0             113514
## 3  51.0     0     0              21440
## 4    NA     0     0             349227
## 5  56.0     0     0              13213
## 6    NA     0     0             368323
## 7    NA     1     0           PC 17604
## 8   4.0     4     2             347082
## 9  28.5     0     0               2697
## 10 38.0     0     0 SOTON/O.Q. 3101306
# Ringkasan data
glimpse(titanic)
## Rows: 891
## Columns: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,…
## $ Survived    <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1…
## $ Pclass      <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3, 3…
## $ Name        <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley (Fl…
## $ Sex         <chr> "male", "female", "female", "female", "male", "male", "mal…
## $ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 14, …
## $ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1, 0…
## $ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0…
## $ Ticket      <chr> "A/5 21171", "PC 17599", "STON/O2. 3101282", "113803", "37…
## $ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.8625,…
## $ Cabin       <chr> "", "C85", "", "C123", "", "", "E46", "", "", "", "G6", "C…
## $ Embarked    <chr> "S", "C", "S", "S", "S", "Q", "S", "S", "S", "C", "S", "S"…
str(titanic)
## 'data.frame':    891 obs. of  12 variables:
##  $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Survived   : int  0 1 1 1 0 0 0 0 1 1 ...
##  $ Pclass     : int  3 1 3 1 3 3 1 3 3 2 ...
##  $ Name       : chr  "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)" "Heikkinen, Miss. Laina" "Futrelle, Mrs. Jacques Heath (Lily May Peel)" ...
##  $ Sex        : chr  "male" "female" "female" "female" ...
##  $ Age        : num  22 38 26 35 35 NA 54 2 27 14 ...
##  $ SibSp      : int  1 1 0 1 0 0 0 3 0 1 ...
##  $ Parch      : int  0 0 0 0 0 0 0 1 2 0 ...
##  $ Ticket     : chr  "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
##  $ Fare       : num  7.25 71.28 7.92 53.1 8.05 ...
##  $ Cabin      : chr  "" "C85" "" "C123" ...
##  $ Embarked   : chr  "S" "C" "S" "S" ...
summary(titanic)
##   PassengerId       Survived          Pclass          Name          
##  Min.   :  1.0   Min.   :0.0000   Min.   :1.000   Length:891        
##  1st Qu.:223.5   1st Qu.:0.0000   1st Qu.:2.000   Class :character  
##  Median :446.0   Median :0.0000   Median :3.000   Mode  :character  
##  Mean   :446.0   Mean   :0.3838   Mean   :2.309                     
##  3rd Qu.:668.5   3rd Qu.:1.0000   3rd Qu.:3.000                     
##  Max.   :891.0   Max.   :1.0000   Max.   :3.000                     
##                                                                     
##      Sex                 Age            SibSp           Parch       
##  Length:891         Min.   : 0.42   Min.   :0.000   Min.   :0.0000  
##  Class :character   1st Qu.:20.12   1st Qu.:0.000   1st Qu.:0.0000  
##  Mode  :character   Median :28.00   Median :0.000   Median :0.0000  
##                     Mean   :29.70   Mean   :0.523   Mean   :0.3816  
##                     3rd Qu.:38.00   3rd Qu.:1.000   3rd Qu.:0.0000  
##                     Max.   :80.00   Max.   :8.000   Max.   :6.0000  
##                     NA's   :177                                     
##     Ticket               Fare           Cabin             Embarked        
##  Length:891         Min.   :  0.00   Length:891         Length:891        
##  Class :character   1st Qu.:  7.91   Class :character   Class :character  
##  Mode  :character   Median : 14.45   Mode  :character   Mode  :character  
##                     Mean   : 32.20                                        
##                     3rd Qu.: 31.00                                        
##                     Max.   :512.33                                        
## 
# Visualisasi 1: Perbandingan jenis kelamin
ggplot(titanic, aes(x=Sex)) +
  geom_bar(fill='pink') +
  labs(title = "Perbandingan Jenis Kelamin di Titanic")

# Visualisasi 2: Proporsi survival berdasarkan kelas
ggplot(titanic, aes(x=factor(Pclass), fill = factor(Survived))) +
  geom_bar(position = "fill") +
  labs(title = "Proporsi Survival berdasarkan kelas")

# Visualisasi 3: Distribusi umur
ggplot(titanic, aes(x=Age)) + 
  geom_histogram(bins=20, fill='purple') + 
  labs(title = "Distribusi Umur Penumpang")
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_bin()`).

# Visualisasi 4: Boxplot umur berdasarkan status selamat
ggplot(titanic, aes(x=factor(Survived), y=Age, fill=factor(Survived))) +
  geom_boxplot() +
  labs(title="Boxplot Umur berdasarkan Status Selamat")
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_boxplot()`).

# Visualisasi 5: Scatterplot umur vs harga tiket
ggplot(titanic, aes(x=Age, y=Fare)) +
  geom_point() +
  geom_smooth(method="lm", color='blue') +
  labs(title="Pengaruh Umur terhadap Harga Tiket")
## Warning: Removed 177 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 177 rows containing missing values or values outside the scale range
## (`geom_point()`).