── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(performance)library(lmerTest)
Loading required package: lme4
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
Attaching package: 'lmerTest'
The following object is masked from 'package:lme4':
lmer
The following object is masked from 'package:stats':
step
library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
group_rows
Rows: 44775 Columns: 12
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (8): prolific_id, trial_type, block_type, background_stimulus, deviant_s...
dbl (4): total_rt, block_number, trial_number, total_trial_number
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## unique combinations of stimuli pairs in test trialsexp2_unique_stimuli_pairs <- exp2_test_only %>%group_by(bg_image, dv_image, violation_type) %>%summarise(count =n(), .groups ="drop") %>%mutate(pairID =row_number())### number of unique combinations of deviant trials used in study:nrow(filter(exp2_unique_stimuli_pairs, violation_type !="background"))
[1] 2674
### number of background trials used in studynrow(filter(exp2_unique_stimuli_pairs, violation_type =="background"))
[1] 128
2.1 number
within_POP_ID: 1 (pair to single), 2 (single to pair)
exp2_core_number <- exp2_core %>%filter(violation_type =="number") # for modelingABBA_number <- exp2_core_number %>%left_join(exp2_pairs_number, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))# for plottingABBA_number_noidentity <- exp2_core_number %>%mutate(bg_image =str_replace_all(bg_image, "_[0-9]+", ""),dv_image =str_replace_all(dv_image, "_[0-9]+", "") ) %>%left_join(exp2_pairs_number_noidentity, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))
3.1 summary of mean dishab
ABBA_number %>%group_by(change_direction) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 2 × 11
change_direction variable n min max median iqr mean sd se
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 pair to single dishab 943 -3.20 1.28 -0.048 0.416 -0.117 0.453 0.015
2 single to pair dishab 909 -2.46 2.39 0.003 0.404 -0.035 0.464 0.015
# ℹ 1 more variable: ci <dbl>
ABBA_number %>%group_by(violation_type, change_direction, fam_trial_number) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 6 × 13
violation_type fam_trial_number change_direction variable n min max
<chr> <dbl> <chr> <fct> <dbl> <dbl> <dbl>
1 number 1 pair to single dishab 311 -3.20 0.94
2 number 3 pair to single dishab 312 -1.10 1.28
3 number 5 pair to single dishab 320 -1.89 1.28
4 number 1 single to pair dishab 314 -2.46 1.15
5 number 3 single to pair dishab 286 -1.95 2.39
6 number 5 single to pair dishab 309 -0.927 1.99
# ℹ 6 more variables: median <dbl>, iqr <dbl>, mean <dbl>, sd <dbl>, se <dbl>,
# ci <dbl>
3.2 variable recoding
ABBA_number$change_direction_dc <-as.factor(ABBA_number$change_direction)contrasts(ABBA_number$change_direction_dc) <--contr.sum(2)/2ABBA_number$one_fam_dc <-as.factor(ABBA_number$one_fam)contrasts(ABBA_number$one_fam_dc) <--contr.sum(2)/2ABBA_number$fam_trial_number_c <-scale(ABBA_number$fam_trial_number, center =TRUE, scale =FALSE)ABBA_number$block_position_log_c <-scale(log(ABBA_number$block_position), center =TRUE, scale =FALSE)
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
summary(best_model_number)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
(1 | prolific_id)
Data: ABBA_number
REML criterion at convergence: 2135.7
Scaled residuals:
Min 1Q Median 3Q Max
-6.6860 -0.4503 0.0271 0.5078 5.7093
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 9.267e-05 0.009627
Residual 1.829e-01 0.427723
Number of obs: 1852, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -7.616e-02 9.951e-03 4.500e+02 -7.654 1.20e-13 ***
fam_trial_number_c 9.970e-02 6.041e-03 1.844e+03 16.503 < 2e-16 ***
block_position_log_c -2.411e-02 1.224e-02 1.484e+03 -1.970 0.0491 *
change_direction_dc1 8.547e-02 1.989e-02 1.834e+03 4.297 1.82e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___
fm_trl_nmb_ 0.000
blck_pstn__ 0.000 0.000
chng_drct_1 0.018 0.009 -0.021
plot(effects::allEffects(best_model_number))
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
4 ABBA: ANIMACY
exp2_core_animacy <- exp2_core %>%filter(violation_type =="animacy") # for modelingABBA_animacy <- exp2_core_animacy %>%left_join(exp2_pairs_animacy, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))# for plottingABBA_animacy_noidentity <- exp2_core_animacy %>%mutate(bg_image =str_replace_all(bg_image, "_[0-9]+", ""),dv_image =str_replace_all(dv_image, "_[0-9]+", "") ) %>%left_join(exp2_pairs_animacy_noidentity, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))
4.1 summary of mean dishab
ABBA_animacy %>%group_by(change_direction) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 2 × 11
change_direction variable n min max median iqr mean sd se
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 animate to inanimate dishab 931 -2.74 2.53 0.103 0.474 0.124 0.544 0.018
2 inanimate to animate dishab 925 -2.10 2.37 0.165 0.521 0.2 0.508 0.017
# ℹ 1 more variable: ci <dbl>
summary_animacy <- ABBA_animacy %>%group_by(violation_type, change_direction, fam_trial_number) %>% rstatix::get_summary_stats(dishab, type ="common")summary_animacy
# A tibble: 6 × 13
violation_type fam_trial_number change_direction variable n min max
<chr> <dbl> <chr> <fct> <dbl> <dbl> <dbl>
1 animacy 1 animate to inanima… dishab 299 -2.74 1.3
2 animacy 3 animate to inanima… dishab 318 -1.79 2.53
3 animacy 5 animate to inanima… dishab 314 -1.64 2.48
4 animacy 1 inanimate to anima… dishab 279 -2.10 1.91
5 animacy 3 inanimate to anima… dishab 312 -1.77 2.20
6 animacy 5 inanimate to anima… dishab 334 -1.09 2.37
# ℹ 6 more variables: median <dbl>, iqr <dbl>, mean <dbl>, sd <dbl>, se <dbl>,
# ci <dbl>
4.2 variable recoding
ABBA_animacy$change_direction_dc <-as.factor(ABBA_animacy$change_direction)contrasts(ABBA_animacy$change_direction_dc) <--contr.sum(2)/2ABBA_animacy$one_fam_dc <-as.factor(ABBA_animacy$one_fam)contrasts(ABBA_animacy$one_fam_dc) <--contr.sum(2)/2ABBA_animacy$fam_trial_number_c <-scale(ABBA_animacy$fam_trial_number, center =TRUE, scale =FALSE)ABBA_animacy$block_position_log_c <-scale(log(ABBA_animacy$block_position), center =TRUE, scale =FALSE)
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
summary(best_model_animacy)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
(1 | prolific_id)
Data: ABBA_animacy
REML criterion at convergence: 2702.5
Scaled residuals:
Min 1Q Median 3Q Max
-5.1109 -0.4950 -0.0498 0.4678 4.6642
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 0.01581 0.1257
Residual 0.23367 0.4834
Number of obs: 1856, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 1.619e-01 1.264e-02 4.523e+02 12.813 <2e-16 ***
fam_trial_number_c 1.020e-01 7.103e-03 1.823e+03 14.367 <2e-16 ***
block_position_log_c 2.844e-02 2.101e-02 1.590e+03 1.354 0.1760
change_direction_dc1 1.027e-01 3.429e-02 1.499e+03 2.994 0.0028 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___
fm_trl_nmb_ 0.000
blck_pstn__ 0.003 0.049
chng_drct_1 0.004 0.019 0.756
plot(effects::allEffects(best_model_animacy))
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
5 ABBA: POSE
exp2_core_pose <- exp2_core %>%filter(violation_type =="pose") # for modelingABBA_pose <- exp2_core_pose %>%left_join(exp2_pairs_pose, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))# for plottingABBA_pose_noidentity <- exp2_core_pose %>%mutate(bg_image =str_replace_all(bg_image, "_[0-9]+", ""),dv_image =str_replace_all(dv_image, "_[0-9]+", "") ) %>%left_join(exp2_pairs_pose_noidentity, by =c("violation_type", "bg_image", "dv_image")) %>%filter(!is.na(first_fam) &!is.na(dishab))
5.1 summary of mean dishab
ABBA_pose %>%group_by(change_direction) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 2 × 11
change_direction variable n min max median iqr mean sd se
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 left to right dishab 939 -2.30 2.92 -0.029 0.394 -0.074 0.453 0.015
2 right to left dishab 917 -2.54 2.52 -0.028 0.433 -0.078 0.526 0.017
# ℹ 1 more variable: ci <dbl>
ABBA_pose %>%group_by(violation_type, change_direction, fam_trial_number) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 6 × 13
violation_type fam_trial_number change_direction variable n min max
<chr> <dbl> <chr> <fct> <dbl> <dbl> <dbl>
1 pose 1 left to right dishab 320 -2.30 0.962
2 pose 3 left to right dishab 307 -1.97 1.56
3 pose 5 left to right dishab 312 -1.79 2.92
4 pose 1 right to left dishab 324 -2.54 1.32
5 pose 3 right to left dishab 287 -1.89 1.78
6 pose 5 right to left dishab 306 -1.61 2.52
# ℹ 6 more variables: median <dbl>, iqr <dbl>, mean <dbl>, sd <dbl>, se <dbl>,
# ci <dbl>
5.2 variable recoding
ABBA_pose$change_direction_dc <-as.factor(ABBA_pose$change_direction)contrasts(ABBA_pose$change_direction_dc) <--contr.sum(2)/2ABBA_pose$one_fam_dc <-as.factor(ABBA_pose$one_fam)contrasts(ABBA_pose$one_fam_dc) <--contr.sum(2)/2ABBA_pose$fam_trial_number_c <-scale(ABBA_pose$fam_trial_number, center =TRUE, scale =FALSE)ABBA_pose$block_position_log_c <-scale(log(ABBA_pose$block_position), center =TRUE, scale =FALSE)
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
Some of the variables were in matrix-format - probably you used
`scale()` on your data?
If so, and you get an error, please try `datawizard::standardize()` to
standardize your data.
summary(best_model_pose)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
(1 | prolific_id)
Data: ABBA_pose
REML criterion at convergence: 2407.2
Scaled residuals:
Min 1Q Median 3Q Max
-4.8901 -0.4481 0.0294 0.5057 6.1025
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 0.004422 0.0665
Residual 0.207129 0.4551
Number of obs: 1856, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -7.577e-02 1.100e-02 4.583e+02 -6.886 1.9e-11 ***
fam_trial_number_c 1.027e-01 6.473e-03 1.851e+03 15.864 < 2e-16 ***
block_position_log_c -1.870e-02 1.298e-02 1.485e+03 -1.441 0.150
change_direction_dc1 -1.386e-03 2.131e-02 1.829e+03 -0.065 0.948
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___
fm_trl_nmb_ 0.000
blck_pstn__ 0.000 -0.003
chng_drct_1 0.011 0.007 -0.012
plot(effects::allEffects(best_model_pose))
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
Warning in Analyze.model(focal.predictors, mod, xlevels, default.levels, : the
predictors fam_trial_number_c, block_position_log_c are one-column matrices
that were converted to vectors
ABBA_number$bg_image_type_dc <-as.factor(ABBA_number$bg_image_type)contrasts(ABBA_number$bg_image_type_dc) <-contr.sum(2)/2ABBA_number_baselined <- ABBA_number %>%left_join(stimuli_baseline_fam_img, by ="bg_image") %>%left_join(stimuli_baseline_test_img, by ="dv_image")m_number_baselined <-lmer(dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc + fam_img_baseline + test_img_baseline + (1|prolific_id), data = ABBA_number_baselined)summary(m_number_baselined)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
fam_img_baseline + test_img_baseline + (1 | prolific_id)
Data: ABBA_number_baselined
REML criterion at convergence: 2141.6
Scaled residuals:
Min 1Q Median 3Q Max
-6.6878 -0.4511 0.0247 0.5158 5.7092
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 0.0001835 0.01355
Residual 0.1830274 0.42782
Number of obs: 1852, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -4.080e-01 7.696e-01 1.629e+03 -0.530 0.59606
fam_trial_number_c 9.978e-02 6.046e-03 1.842e+03 16.504 < 2e-16 ***
block_position_log_c -1.891e-02 1.753e-02 1.650e+03 -1.079 0.28084
change_direction_dc1 8.113e-02 2.488e-02 1.843e+03 3.261 0.00113 **
fam_img_baseline 9.233e-04 9.120e-02 1.807e+03 0.010 0.99192
test_img_baseline 4.206e-02 8.712e-02 1.829e+03 0.483 0.62936
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___ chn__1 fm_mg_
fm_trl_nmb_ -0.020
blck_pstn__ -0.715 0.014
chng_drct_1 -0.013 -0.004 0.022
fam_mg_bsln -0.586 -0.004 0.453 0.494
tst_mg_bsln -0.530 0.027 0.344 -0.502 -0.376
6.3 animacy
ABBA_animacy$bg_image_type_dc <-as.factor(ABBA_animacy$bg_image_type)contrasts(ABBA_animacy$bg_image_type_dc) <-contr.sum(2)/2ABBA_animacy_baselined <- ABBA_animacy %>%left_join(stimuli_baseline_fam_img, by ="bg_image") %>%left_join(stimuli_baseline_test_img, by ="dv_image")m_animacy_baselined <-lmer(dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc + fam_img_baseline + test_img_baseline + (1|prolific_id), data = ABBA_animacy_baselined)summary(m_animacy_baselined)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
fam_img_baseline + test_img_baseline + (1 | prolific_id)
Data: ABBA_animacy_baselined
REML criterion at convergence: 2707.1
Scaled residuals:
Min 1Q Median 3Q Max
-5.1048 -0.4966 -0.0512 0.4684 4.6568
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 0.01583 0.1258
Residual 0.23390 0.4836
Number of obs: 1856, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.453e-01 1.219e+00 1.774e+03 0.447 0.6548
fam_trial_number_c 1.020e-01 7.111e-03 1.822e+03 14.350 <2e-16 ***
block_position_log_c 2.850e-02 2.102e-02 1.587e+03 1.356 0.1753
change_direction_dc1 1.020e-01 6.130e-02 1.790e+03 1.664 0.0962 .
fam_img_baseline -2.345e-02 1.298e-01 1.817e+03 -0.181 0.8567
test_img_baseline -2.620e-02 1.202e-01 1.825e+03 -0.218 0.8274
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___ chn__1 fm_mg_
fm_trl_nmb_ 0.006
blck_pstn__ 0.008 0.049
chng_drct_1 0.069 0.041 0.413
fam_mg_bsln -0.667 -0.031 0.004 -0.661
tst_mg_bsln -0.593 0.026 -0.015 0.624 -0.204
6.4 pose
ABBA_pose$bg_image_type_dc <-as.factor(ABBA_pose$bg_image_type)contrasts(ABBA_pose$bg_image_type_dc) <-contr.sum(2)/2ABBA_pose_baselined <- ABBA_pose %>%left_join(stimuli_baseline_fam_img, by ="bg_image") %>%left_join(stimuli_baseline_test_img, by ="dv_image")m_pose_baselined <-lmer(dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc + fam_img_baseline + test_img_baseline + (1|prolific_id), data = ABBA_pose_baselined)summary(m_pose_baselined)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
dishab ~ fam_trial_number_c + block_position_log_c + change_direction_dc +
fam_img_baseline + test_img_baseline + (1 | prolific_id)
Data: ABBA_pose_baselined
REML criterion at convergence: 2410.7
Scaled residuals:
Min 1Q Median 3Q Max
-4.9038 -0.4544 0.0263 0.5022 6.1067
Random effects:
Groups Name Variance Std.Dev.
prolific_id (Intercept) 0.004554 0.06749
Residual 0.206973 0.45494
Number of obs: 1856, groups: prolific_id, 468
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -9.112e-01 7.154e-01 1.693e+03 -1.274 0.203
fam_trial_number_c 1.026e-01 6.472e-03 1.849e+03 15.859 <2e-16 ***
block_position_log_c -4.929e-03 1.732e-02 1.657e+03 -0.285 0.776
change_direction_dc1 -1.263e-03 2.131e-02 1.827e+03 -0.059 0.953
fam_img_baseline -2.708e-02 1.073e-01 1.846e+03 -0.253 0.801
test_img_baseline 1.353e-01 1.010e-01 1.843e+03 1.339 0.181
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) fm_t__ blc___ chn__1 fm_mg_
fm_trl_nmb_ -0.002
blck_pstn__ -0.662 -0.001
chng_drct_1 -0.014 0.007 0.001
fam_mg_bsln -0.497 0.008 0.310 0.017
tst_mg_bsln -0.390 -0.006 0.279 -0.004 -0.606
7 Effect of unchanged feature in stimuli
7.1 in number change
ABBA_number_baselined$animacy_dc <-as_factor(ABBA_number_baselined$animacy)contrasts(ABBA_number_baselined$animacy_dc) <--contr.sum(2)/2ABBA_number_baselined %>%group_by(animacy_dc, change_direction) %>% rstatix::get_summary_stats(dishab, type ="common")
# A tibble: 4 × 12
change_direction animacy_dc variable n min max median iqr mean
<chr> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 pair to single inanimate dishab 466 -1.89 1.28 -0.047 0.395 -0.083
2 single to pair inanimate dishab 455 -2.46 1.56 0.004 0.427 -0.039
3 pair to single animate dishab 477 -3.20 1.28 -0.048 0.419 -0.15
4 single to pair animate dishab 454 -2.04 2.39 0.002 0.388 -0.032
# ℹ 3 more variables: sd <dbl>, se <dbl>, ci <dbl>