Nike

William Lane

2025-04-23

Trends in Nike Olympic Kits

Our first table reveals the concerns of practicality of the kits. To find this, keywords like, ” impractical,” “uncomfortable,” and,” revealing,” were used.

##          word    n
## 1        nike 3561
## 2   citiusmag 2527
## 3       women 1323
## 4        wear  644
## 5    athletes  523
## 6       track  517
## 7      female  432
## 8       field  407
## 9        team  391
## 10   olympics  390
## 11     shorts  373
## 12       kits  315
## 13        kit  313
## 14        run  313
## 15       2024  289
## 16    women's  283
## 17    women’s  277
## 18     design  257
## 19      paris  249
## 20        u.s  241
## 21       worn  241
## 22   designed  235
## 23   breaking  230
## 24     outfit  226
## 25 xpwonbrwsv  226
Mentions of Practicality
Topic Count Percent
0 5205 95
1 274 5

Our second table represents concerns regarding equality as clearly the female’s kit has more concerns than the male. To find this, I searched words like,“equality,” “sexist,” and “misogynistic,” to find these results.

Mentions of Equality
Topic Count Percent
0 5259 96
1 220 4

Code Block

# Load packages

if (!require("tidyverse")) install.packages("tidyverse")
if (!require("tidytext")) install.packages("tidytext")
if (!require("plotly")) install.packages("plotly")
if (!require("gtExtras")) install.packages("gtExtras")

library(tidyverse)
library(tidytext)
library(gtExtras) 
library(plotly)
library(lubridate)

# Read the data

mydata <- read.csv("https://raw.githubusercontent.com/drkblake/Data/main/NikeUniforms.csv")

tidy_text <- mydata %>% 
  unnest_tokens(word,Full.Text) %>% 
  count(word, sort = TRUE)

data("stop_words")
tidy_text <- tidy_text %>%
  anti_join(stop_words)

my_stopwords <- tibble(word = c("https",
                                "t.co",
                                "rt"))
tidy_text <- tidy_text %>% 
  anti_join(my_stopwords)

head(tidy_text, 25)

searchterms <- "wedgies|chafe|impractical|uncomfortable|discomfort|exposed|expose|revealing"

mydata$Topic <- ifelse(grepl(searchterms,
                             mydata$Full.Text,
                             ignore.case = TRUE),1,0)
Topic <- mydata %>%
  group_by(Topic) %>%
  summarize(
    Count = n(),
    Percent = round(n() / nrow(mydata) * 100, 1)
  )

TopicTable <- gt(Topic) %>% 
  tab_header("Mentions of Practicality") %>%
  cols_align(align = "left") %>%
  gt_theme_538

TopicTable

searchterms <- "sexist|sexism|sexualized|equality|misogyny|misogynistic|misogynist"

mydata$Topic <- ifelse(grepl(searchterms,
                             mydata$Full.Text,
                             ignore.case = TRUE),1,0)
Topic <- mydata %>%
  group_by(Topic) %>%
  summarize(
    Count = n(),
    Percent = round(n() / nrow(mydata) * 100, 1)
  )

TopicTable <- gt(Topic) %>% 
  tab_header("Mentions of Equality") %>%
  cols_align(align = "left") %>%
  gt_theme_538

TopicTable