Import data

## # A tibble: 96,429 × 13
##    reported_date_time  reported_date_time_utc posted_date         city     state
##    <dttm>              <dttm>                 <dttm>              <chr>    <chr>
##  1 2022-08-29 02:03:00 2022-08-29 02:03:00    2022-09-09 00:00:00 Pinehur… NC   
##  2 2022-08-19 21:51:00 2022-08-19 21:51:00    2022-10-08 00:00:00 Rapid C… MI   
##  3 2022-08-13 01:30:00 2022-08-13 01:30:00    2022-09-09 00:00:00 Clevela… OH   
##  4 2022-08-06 17:00:00 2022-08-06 17:00:00    2022-09-09 00:00:00 Bloomin… IN   
##  5 2022-08-04 03:40:00 2022-08-04 03:40:00    2022-09-09 00:00:00 Irvine   CA   
##  6 2022-07-22 12:00:00 2022-07-22 12:00:00    2022-09-09 00:00:00 Moore    OK   
##  7 2022-07-19 12:27:00 2022-07-19 12:27:00    2022-09-09 00:00:00 Short P… VA   
##  8 2022-07-14 14:56:00 2022-07-14 14:56:00    2022-09-09 00:00:00 Norwalk  CT   
##  9 2022-07-13 15:40:00 2022-07-13 15:40:00    2022-09-09 00:00:00 Blayney  New …
## 10 2022-07-13 00:10:00 2022-07-13 00:10:00    2022-09-09 00:00:00 Greybull WY   
## # ℹ 96,419 more rows
## # ℹ 8 more variables: country_code <chr>, shape <chr>, reported_duration <chr>,
## #   duration_seconds <dbl>, summary <chr>, has_images <lgl>, day_part <chr>,
## #   Time <dttm>

Apply the following dplyr verbs to your data

Filter rows

## # A tibble: 797 × 13
##    reported_date_time  reported_date_time_utc posted_date         city     state
##    <dttm>              <dttm>                 <dttm>              <chr>    <chr>
##  1 2023-04-30 19:01:00 2023-04-30 19:01:00    2023-05-19 00:00:00 Calgary  AB   
##  2 2023-04-16 15:42:00 2023-04-16 15:42:00    2023-05-19 00:00:00 Toronto  ON   
##  3 2023-04-15 22:04:00 2023-04-15 22:04:00    2023-05-19 00:00:00 Ottawa   ON   
##  4 2023-02-13 00:32:00 2023-02-13 00:32:00    2023-03-06 00:00:00 Port Ro… ON   
##  5 2023-02-11 20:30:00 2023-02-11 20:30:00    2023-03-06 00:00:00 Barrie   ON   
##  6 2022-10-09 17:00:00 2022-10-09 17:00:00    2022-12-22 00:00:00 Toronto  ON   
##  7 2022-10-02 00:15:00 2022-10-02 00:15:00    2022-10-08 00:00:00 Little … ON   
##  8 2022-09-30 23:10:00 2022-09-30 23:10:00    2022-10-08 00:00:00 victoria BC   
##  9 2022-08-27 06:47:00 2022-08-27 06:47:00    2022-09-09 00:00:00 Toronto  ON   
## 10 2022-07-28 01:00:00 2022-07-28 01:00:00    2022-09-09 00:00:00 Burnaby  BC   
## # ℹ 787 more rows
## # ℹ 8 more variables: country_code <chr>, shape <chr>, reported_duration <chr>,
## #   duration_seconds <dbl>, summary <chr>, has_images <lgl>, day_part <chr>,
## #   Time <dttm>

Arrange rows

## # A tibble: 96,429 × 13
##    reported_date_time  reported_date_time_utc posted_date         city     state
##    <dttm>              <dttm>                 <dttm>              <chr>    <chr>
##  1 2022-08-29 02:03:00 2022-08-29 02:03:00    2022-09-09 00:00:00 Pinehur… NC   
##  2 2022-08-19 21:51:00 2022-08-19 21:51:00    2022-10-08 00:00:00 Rapid C… MI   
##  3 2022-08-13 01:30:00 2022-08-13 01:30:00    2022-09-09 00:00:00 Clevela… OH   
##  4 2022-08-06 17:00:00 2022-08-06 17:00:00    2022-09-09 00:00:00 Bloomin… IN   
##  5 2022-08-04 03:40:00 2022-08-04 03:40:00    2022-09-09 00:00:00 Irvine   CA   
##  6 2022-07-22 12:00:00 2022-07-22 12:00:00    2022-09-09 00:00:00 Moore    OK   
##  7 2022-07-19 12:27:00 2022-07-19 12:27:00    2022-09-09 00:00:00 Short P… VA   
##  8 2022-07-14 14:56:00 2022-07-14 14:56:00    2022-09-09 00:00:00 Norwalk  CT   
##  9 2022-07-13 15:40:00 2022-07-13 15:40:00    2022-09-09 00:00:00 Blayney  New …
## 10 2022-07-13 00:10:00 2022-07-13 00:10:00    2022-09-09 00:00:00 Greybull WY   
## # ℹ 96,419 more rows
## # ℹ 8 more variables: country_code <chr>, shape <chr>, reported_duration <chr>,
## #   duration_seconds <dbl>, summary <chr>, has_images <lgl>, day_part <chr>,
## #   Time <dttm>

Select columns

## # A tibble: 96,429 × 2
##    shape day_part         
##    <chr> <chr>            
##  1 NA    night            
##  2 NA    nautical dusk    
##  3 NA    night            
##  4 NA    afternoon        
##  5 NA    night            
##  6 NA    morning          
##  7 NA    morning          
##  8 NA    afternoon        
##  9 NA    NA               
## 10 NA    astronomical dusk
## # ℹ 96,419 more rows

Add columns

## # A tibble: 96,429 × 14
##    reported_date_time  reported_date_time_utc posted_date         city     state
##    <dttm>              <dttm>                 <dttm>              <chr>    <chr>
##  1 2022-08-29 02:03:00 2022-08-29 02:03:00    2022-09-09 00:00:00 Pinehur… NC   
##  2 2022-08-19 21:51:00 2022-08-19 21:51:00    2022-10-08 00:00:00 Rapid C… MI   
##  3 2022-08-13 01:30:00 2022-08-13 01:30:00    2022-09-09 00:00:00 Clevela… OH   
##  4 2022-08-06 17:00:00 2022-08-06 17:00:00    2022-09-09 00:00:00 Bloomin… IN   
##  5 2022-08-04 03:40:00 2022-08-04 03:40:00    2022-09-09 00:00:00 Irvine   CA   
##  6 2022-07-22 12:00:00 2022-07-22 12:00:00    2022-09-09 00:00:00 Moore    OK   
##  7 2022-07-19 12:27:00 2022-07-19 12:27:00    2022-09-09 00:00:00 Short P… VA   
##  8 2022-07-14 14:56:00 2022-07-14 14:56:00    2022-09-09 00:00:00 Norwalk  CT   
##  9 2022-07-13 15:40:00 2022-07-13 15:40:00    2022-09-09 00:00:00 Blayney  New …
## 10 2022-07-13 00:10:00 2022-07-13 00:10:00    2022-09-09 00:00:00 Greybull WY   
## # ℹ 96,419 more rows
## # ℹ 9 more variables: country_code <chr>, shape <chr>, reported_duration <chr>,
## #   duration_seconds <dbl>, summary <chr>, has_images <lgl>, day_part <chr>,
## #   Time <dttm>, state_time <chr>
## # A tibble: 96,429 × 1
##    state_time          
##    <chr>               
##  1 NC_night            
##  2 MI_nautical dusk    
##  3 OH_night            
##  4 IN_afternoon        
##  5 CA_night            
##  6 OK_morning          
##  7 VA_morning          
##  8 CT_afternoon        
##  9 New South Wales_NA  
## 10 WY_astronomical dusk
## # ℹ 96,419 more rows

Summarize by groups

## # A tibble: 692 × 3
## # Groups:   country_code [152]
##    country_code state             duration
##    <chr>        <chr>                <dbl>
##  1 AE           Abu Dhabi            316. 
##  2 AE           Dubai                 78.7
##  3 AE           Sharjah            28870  
##  4 AF           Kabul                382. 
##  5 AL           Tirana               112. 
##  6 AM           Yerevan              285  
##  7 AO           Luanda                 3  
##  8 AR           Buenos Aires         244. 
##  9 AR           Buenos Aires F.D.    234. 
## 10 AR           Cordoba               37.5
## # ℹ 682 more rows