Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## Warning: package 'h2o' was built under R version 4.4.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.7     ✔ rsample      1.2.1
## ✔ dials        1.4.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.3.0     ✔ yardstick    1.3.2
## ✔ recipes      1.1.1     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
library(tidyquant)
## Warning: package 'tidyquant' was built under R version 4.4.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Warning: package 'xts' was built under R version 4.4.3
## Warning: package 'zoo' was built under R version 4.4.3
## Warning: package 'quantmod' was built under R version 4.4.3
## Warning: package 'TTR' was built under R version 4.4.3
## Warning: package 'PerformanceAnalytics' was built under R version 4.4.3
## ── Attaching core tidyquant packages ─────────────────────── tidyquant 1.0.11 ──
## ✔ PerformanceAnalytics 2.0.8      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.27     ✔ xts                  0.14.1
## ── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ scales::col_factor()           masks readr::col_factor()
## ✖ lubridate::day()               masks h2o::day()
## ✖ scales::discard()              masks purrr::discard()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ recipes::fixed()               masks stringr::fixed()
## ✖ lubridate::hour()              masks h2o::hour()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ TTR::momentum()                masks dials::momentum()
## ✖ lubridate::month()             masks h2o::month()
## ✖ yardstick::spec()              masks readr::spec()
## ✖ quantmod::summary()            masks h2o::summary(), base::summary()
## ✖ lubridate::week()              masks h2o::week()
## ✖ lubridate::year()              masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read_csv("../00_data/data_wrangled/data_clean.csv") %>%
    
    mutate(Attrition = if_else(Attrition == "Yes", "Left", Attrition)) %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## Rows: 1470 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (24): Age, DailyRate, DistanceFromHome, Education, EmployeeNumber, Envir...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "Attrition")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(Attrition ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h20
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         12 hours 24 minutes 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 3 days 
##     H2O cluster name:           H2O_started_from_R_sheac_qxv383 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   1.37 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.2 (2024-10-31 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 3 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2345)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h20 <- as.h2o(test_tbl)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
y <- "Attrition"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
    x = x,
    y = y, 
    training_frame    = train_h2o,
    validation_frame  = valid_h2o,
    leaderboard_frame = test_h20, 
    max_runtime_secs  = 30,
    nfolds            = 5,
    seed              = 3456
)
##   |                                                                              |                                                                      |   0%  |                                                                              |===                                                                   |   4%
## 11:25:41.421: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 11:25:41.435: AutoML: XGBoost is not available; skipping it.  |                                                                              |=========                                                             |  13%  |                                                                              |================                                                      |  23%  |                                                                              |======================                                                |  32%  |                                                                              |=============================                                         |  41%  |                                                                              |===================================                                   |  50%  |                                                                              |=========================================                             |  59%  |                                                                              |================================================                      |  68%  |                                                                              |======================================================                |  77%  |                                                                              |===============================================================       |  90%  |                                                                              |===================================================================== |  99%  |                                                                              |======================================================================| 100%

Examine output of h2o.automl

models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                  model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_4_AutoML_6_20250424_112541 0.8314455 0.3260147
## 2 StackedEnsemble_BestOfFamily_3_AutoML_6_20250424_112541 0.8286408 0.3244964
## 3 StackedEnsemble_BestOfFamily_2_AutoML_6_20250424_112541 0.8283172 0.3241037
## 4                          GLM_1_AutoML_6_20250424_112541 0.8261597 0.3318676
## 5 StackedEnsemble_BestOfFamily_1_AutoML_6_20250424_112541 0.8258900 0.3346208
## 6    StackedEnsemble_AllModels_2_AutoML_6_20250424_112541 0.8236785 0.3286664
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9506808            0.2997573 0.3074941 0.09455264
## 2 0.9509546            0.2677994 0.3068511 0.09415761
## 3 0.9504244            0.2677994 0.3068317 0.09414572
## 4 0.9466326            0.2930421 0.3082111 0.09499409
## 5 0.9494447            0.2627023 0.3115649 0.09707267
## 6 0.9491895            0.3148058 0.3100281 0.09611743
## 
## [34 rows x 7 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_4_AutoML_6_20250424_112541 
## Model Summary for Stacked Ensemble: 
##                                          key            value
## 1                          Stacking strategy cross_validation
## 2       Number of base models (used / total)              5/5
## 3           # GBM base models (used / total)              1/1
## 4           # GLM base models (used / total)              1/1
## 5  # DeepLearning base models (used / total)              1/1
## 6           # DRF base models (used / total)              2/2
## 7                      Metalearner algorithm              GLM
## 8         Metalearner fold assignment scheme           Random
## 9                         Metalearner nfolds                5
## 10                   Metalearner fold_column               NA
## 11        Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.06520428
## RMSE:  0.2553513
## LogLoss:  0.2311669
## Mean Per-Class Error:  0.15895
## AUC:  0.9374838
## AUCPR:  0.9836121
## Gini:  0.8749675
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    110  48 0.303797  =48/158
## No       11 769 0.014103  =11/780
## Totals  121 817 0.062900  =59/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.552341   0.963056 293
## 2                       max f2  0.433879   0.977661 333
## 3                 max f0point5  0.737926   0.953209 237
## 4                 max accuracy  0.552341   0.937100 293
## 5                max precision  0.999431   1.000000   0
## 6                   max recall  0.313889   1.000000 358
## 7              max specificity  0.999431   1.000000   0
## 8             max absolute_mcc  0.552341   0.761588 293
## 9   max min_per_class_accuracy  0.799611   0.862821 206
## 10 max mean_per_class_accuracy  0.737926   0.871608 237
## 11                     max tns  0.999431 158.000000   0
## 12                     max fns  0.999431 775.000000   0
## 13                     max fps  0.035816 158.000000 399
## 14                     max tps  0.313889 780.000000 358
## 15                     max tnr  0.999431   1.000000   0
## 16                     max fnr  0.999431   0.993590   0
## 17                     max fpr  0.035816   1.000000 399
## 18                     max tpr  0.313889   1.000000 358
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.08470985
## RMSE:  0.2910496
## LogLoss:  0.3082252
## Mean Per-Class Error:  0.3684211
## AUC:  0.748538
## AUCPR:  0.9478571
## Gini:  0.497076
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left      5  14 0.736842   =14/19
## No        0 144 0.000000   =0/144
## Totals    5 158 0.085890  =14/163
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.304545   0.953642 157
## 2                       max f2  0.304545   0.980926 157
## 3                 max f0point5  0.563663   0.940860 149
## 4                 max accuracy  0.563663   0.914110 149
## 5                max precision  0.999506   1.000000   0
## 6                   max recall  0.304545   1.000000 157
## 7              max specificity  0.999506   1.000000   0
## 8             max absolute_mcc  0.563663   0.528183 149
## 9   max min_per_class_accuracy  0.870915   0.645833  98
## 10 max mean_per_class_accuracy  0.563663   0.722953 149
## 11                     max tns  0.999506  19.000000   0
## 12                     max fns  0.999506 143.000000   0
## 13                     max fps  0.084365  19.000000 162
## 14                     max tps  0.304545 144.000000 157
## 15                     max tnr  0.999506   1.000000   0
## 16                     max fnr  0.999506   0.993056   0
## 17                     max fpr  0.084365   1.000000 162
## 18                     max tpr  0.304545   1.000000 157
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09602834
## RMSE:  0.3098844
## LogLoss:  0.3368525
## Mean Per-Class Error:  0.3418939
## AUC:  0.8414841
## AUCPR:  0.9453246
## Gini:  0.6829682
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     53 105 0.664557  =105/158
## No       15 765 0.019231   =15/780
## Totals   68 870 0.127932  =120/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.465007   0.927273 341
## 2                       max f2  0.288287   0.966543 378
## 3                 max f0point5  0.722615   0.922810 254
## 4                 max accuracy  0.597211   0.875267 307
## 5                max precision  0.946145   0.963526  74
## 6                   max recall  0.288287   1.000000 378
## 7              max specificity  0.999973   0.993671   0
## 8             max absolute_mcc  0.683781   0.525260 273
## 9   max min_per_class_accuracy  0.827259   0.769231 191
## 10 max mean_per_class_accuracy  0.776041   0.788843 225
## 11                     max tns  0.999973 157.000000   0
## 12                     max fns  0.999973 768.000000   0
## 13                     max fps  0.068648 158.000000 399
## 14                     max tps  0.288287 780.000000 378
## 15                     max tnr  0.999973   0.993671   0
## 16                     max fnr  0.999973   0.984615   0
## 17                     max fpr  0.068648   1.000000 399
## 18                     max tpr  0.288287   1.000000 378
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.893267 0.018435   0.890476   0.886010   0.877095   0.887755
## auc        0.838717 0.040077   0.798057   0.868682   0.892262   0.823945
## err        0.106733 0.018435   0.109524   0.113990   0.122905   0.112245
## err_count 20.200000 4.604346  23.000000  22.000000  22.000000  22.000000
## f0point5   0.922107 0.010477   0.917098   0.920365   0.920330   0.912744
##           cv_5_valid
## accuracy    0.925000
## auc         0.810642
## err         0.075000
## err_count  12.000000
## f0point5    0.940000
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.912478  0.011803   0.903061   0.915584   0.917808
## r2                  0.290977  0.082476   0.228137   0.376384   0.344062
## recall              0.963375  0.026719   0.977901   0.940000   0.930556
## residual_deviance 125.598250 19.735897 135.778880 140.812440 125.405400
## rmse                0.309254  0.016621   0.303102   0.328610   0.321213
## specificity         0.508616  0.159600   0.344828   0.697674   0.657143
##                   cv_4_valid cv_5_valid
## precision           0.898305   0.927632
## r2                  0.324865   0.181434
## recall              0.975460   0.992958
## residual_deviance 134.272800  91.721700
## rmse                0.307461   0.285882
## specificity         0.454545   0.388889

Save and Load

h2o.getModel("GLM_1_AutoML_5_20250424_103634")
## Model Details:
## ==============
## 
## H2OBinomialModel: glm
## Model ID:  GLM_1_AutoML_5_20250424_103634 
## GLM Model: summary
##     family  link              regularization
## 1 binomial logit Ridge ( lambda = 0.008518 )
##                                                                    lambda_search
## 1 nlambda = 30, lambda.max = 6.7124, lambda.min = 0.008518, lambda.1se = 0.03556
##   number_of_predictors_total number_of_active_predictors number_of_iterations
## 1                         52                          52                   30
##                                        training_frame
## 1 AutoML_5_20250424_103634_training_RTMP_sid_af9d_201
## 
## Coefficients: glm coefficients
##                               names coefficients standardized_coefficients
## 1                         Intercept    -5.142680                  1.767724
## 2 JobRole.Healthcare Representative     0.321331                  0.321331
## 3           JobRole.Human Resources    -0.065161                 -0.065161
## 4     JobRole.Laboratory Technician    -0.446654                 -0.446654
## 5                   JobRole.Manager    -0.025882                 -0.025882
## 
## ---
##                      names coefficients standardized_coefficients
## 48   TrainingTimesLastYear     0.216898                  0.280265
## 49         WorkLifeBalance     0.274133                  0.195818
## 50          YearsAtCompany    -0.039922                 -0.253102
## 51      YearsInCurrentRole     0.109755                  0.403564
## 52 YearsSinceLastPromotion    -0.147206                 -0.473088
## 53    YearsWithCurrManager     0.124474                  0.451897
## 
## H2OBinomialMetrics: glm
## ** Reported on training data. **
## 
## MSE:  0.08440264
## RMSE:  0.2905213
## LogLoss:  0.2934829
## Mean Per-Class Error:  0.2614979
## AUC:  0.8826964
## AUCPR:  0.9635699
## Gini:  0.7653927
## R^2:  0.3974265
## Residual Deviance:  550.5739
## AIC:  656.5739
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left     78  80 0.506329  =80/158
## No       13 767 0.016667  =13/780
## Totals   91 847 0.099147  =93/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.526677   0.942840 322
## 2                       max f2  0.413690   0.971007 350
## 3                 max f0point5  0.695482   0.933264 257
## 4                 max accuracy  0.526677   0.900853 322
## 5                max precision  0.999466   1.000000   0
## 6                   max recall  0.249509   1.000000 385
## 7              max specificity  0.999466   1.000000   0
## 8             max absolute_mcc  0.526677   0.603164 322
## 9   max min_per_class_accuracy  0.807357   0.814103 197
## 10 max mean_per_class_accuracy  0.807357   0.815279 197
## 11                     max tns  0.999466 158.000000   0
## 12                     max fns  0.999466 778.000000   0
## 13                     max fps  0.043805 158.000000 399
## 14                     max tps  0.249509 780.000000 385
## 15                     max tnr  0.999466   1.000000   0
## 16                     max fnr  0.999466   0.997436   0
## 17                     max fpr  0.043805   1.000000 399
## 18                     max tpr  0.249509   1.000000 385
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: glm
## ** Reported on validation data. **
## 
## MSE:  0.08692475
## RMSE:  0.29483
## LogLoss:  0.3030857
## Mean Per-Class Error:  0.3684211
## AUC:  0.7638889
## AUCPR:  0.9583231
## Gini:  0.5277778
## R^2:  0.1558832
## Residual Deviance:  98.80594
## AIC:  204.8059
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left      5  14 0.736842   =14/19
## No        0 144 0.000000   =0/144
## Totals    5 158 0.085890  =14/163
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.325763   0.953642 157
## 2                       max f2  0.325763   0.980926 157
## 3                 max f0point5  0.575959   0.934066 145
## 4                 max accuracy  0.453091   0.914110 155
## 5                max precision  0.999070   1.000000   0
## 6                   max recall  0.325763   1.000000 157
## 7              max specificity  0.999070   1.000000   0
## 8             max absolute_mcc  0.325763   0.489735 157
## 9   max min_per_class_accuracy  0.876904   0.631944  96
## 10 max mean_per_class_accuracy  0.620794   0.724963 141
## 11                     max tns  0.999070  19.000000   0
## 12                     max fns  0.999070 143.000000   0
## 13                     max fps  0.105333  19.000000 162
## 14                     max tps  0.325763 144.000000 157
## 15                     max tnr  0.999070   1.000000   0
## 16                     max fnr  0.999070   0.993056   0
## 17                     max fpr  0.105333   1.000000 162
## 18                     max tpr  0.325763   1.000000 157
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: glm
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09599129
## RMSE:  0.3098246
## LogLoss:  0.3310776
## Mean Per-Class Error:  0.2901006
## AUC:  0.8417681
## AUCPR:  0.9474195
## Gini:  0.6835362
## R^2:  0.314692
## Residual Deviance:  621.1016
## AIC:  727.1016
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     72  86 0.544304   =86/158
## No       28 752 0.035897   =28/780
## Totals  100 838 0.121535  =114/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.564254   0.929543 316
## 2                       max f2  0.294826   0.965064 380
## 3                 max f0point5  0.681445   0.919156 274
## 4                 max accuracy  0.596011   0.878465 306
## 5                max precision  0.999172   1.000000   0
## 6                   max recall  0.260496   1.000000 386
## 7              max specificity  0.999172   1.000000   0
## 8             max absolute_mcc  0.596011   0.525035 306
## 9   max min_per_class_accuracy  0.824523   0.772152 196
## 10 max mean_per_class_accuracy  0.760789   0.780112 236
## 11                     max tns  0.999172 158.000000   0
## 12                     max fns  0.999172 777.000000   0
## 13                     max fps  0.039958 158.000000 399
## 14                     max tps  0.260496 780.000000 386
## 15                     max tnr  0.999172   1.000000   0
## 16                     max fnr  0.999172   0.996154   0
## 17                     max fpr  0.039958   1.000000 399
## 18                     max tpr  0.260496   1.000000 386
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.888048 0.018138   0.914894   0.867021   0.893617   0.887701
## auc        0.841059 0.048630   0.910457   0.822716   0.812901   0.869934
## err        0.111952 0.018138   0.085106   0.132979   0.106383   0.112299
## err_count 21.000000 3.391165  16.000000  25.000000  20.000000  21.000000
## f0point5   0.912584 0.015115   0.932927   0.898810   0.920732   0.913462
##           cv_5_valid
## accuracy    0.877005
## auc         0.789289
## err         0.122995
## err_count  23.000000
## f0point5    0.896991
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.897896  0.018836   0.921687   0.883041   0.909639
## r2                  0.313790  0.091724   0.450767   0.277413   0.283759
## recall              0.976923  0.010726   0.980769   0.967949   0.967949
## residual_deviance 123.716354 15.462305 101.618470 131.161740 134.643690
## rmse                0.309405  0.020572   0.278521   0.319466   0.318060
## specificity         0.448387  0.120807   0.593750   0.375000   0.531250
##                   cv_4_valid cv_5_valid
## precision           0.899408   0.875706
## r2                  0.349834   0.207177
## recall              0.974359   0.993590
## residual_deviance 113.615730 137.542110
## rmse                0.299857   0.331123
## specificity         0.451613   0.290323
best.model <- h2o.loadModel("h2o_models/StackedEnsemble_BestOfFamily_4_AutoML_5_20250424_103634")

Make predictions

predictions <- h2o.predict(best.model, newdata = test_h20)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
predictions_tbl <- predictions %>%
    as.tibble()
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` instead.
## ℹ The signature and semantics have changed, see `?as_tibble`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
predictions_tbl %>% 
    bind_cols(test_tbl)
## # A tibble: 369 × 35
##    predict   Left    No   Age Attrition BusinessTravel    DailyRate Department  
##    <fct>    <dbl> <dbl> <dbl> <fct>     <fct>                 <dbl> <fct>       
##  1 No      0.543  0.457    41 Left      Travel_Rarely          1102 Sales       
##  2 No      0.0203 0.980    49 No        Travel_Frequently       279 Research & …
##  3 No      0.287  0.713    33 No        Travel_Frequently      1392 Research & …
##  4 No      0.195  0.805    59 No        Travel_Rarely          1324 Research & …
##  5 No      0.0635 0.937    38 No        Travel_Frequently       216 Research & …
##  6 No      0.315  0.685    29 No        Travel_Rarely           153 Research & …
##  7 No      0.0649 0.935    34 No        Travel_Rarely          1346 Research & …
##  8 Left    0.863  0.137    28 Left      Travel_Rarely           103 Research & …
##  9 No      0.354  0.646    22 No        Non-Travel             1123 Research & …
## 10 No      0.0207 0.979    53 No        Travel_Rarely          1219 Sales       
## # ℹ 359 more rows
## # ℹ 27 more variables: DistanceFromHome <dbl>, Education <dbl>,
## #   EducationField <fct>, EmployeeNumber <dbl>, EnvironmentSatisfaction <dbl>,
## #   Gender <fct>, HourlyRate <dbl>, JobInvolvement <dbl>, JobLevel <dbl>,
## #   JobRole <fct>, JobSatisfaction <dbl>, MaritalStatus <fct>,
## #   MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## #   OverTime <fct>, PercentSalaryHike <dbl>, PerformanceRating <dbl>, …

Evaluate model

performance_h2o <- h2o.performance(best.model, newdata = test_h20)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_4_AutoML_5_20250424_103634"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_4_AutoML_5_20250424_103634"
## 
## 
## $model_checksum
## [1] "6160410419765183744"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_9db6_3"
## 
## 
## $frame_checksum
## [1] "-54192601206779456"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.74551e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.09459258
## 
## $RMSE
## [1] 0.3075591
## 
## $nobs
## [1] 369
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.3052956
## 
## $logloss
## [1] 0.3255777
## 
## $AUC
## [1] 0.8325782
## 
## $pr_auc
## [1] 0.951554
## 
## $Gini
## [1] 0.6651564
## 
## $mean_per_class_error
## [1] 0.2997573
## 
## $domain
## [1] "Left" "No"  
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        Left  No  Error       Rate
## Left     25  35 0.5833 =  35 / 60
## No        5 304 0.0162 =  5 / 309
## Totals   30 339 0.1084 = 40 / 369
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.999009 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.998915 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.998491 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.998190 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.998052 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.223651 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.222842 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.152141 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.137085 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.080428 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.062590 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.425831   0.938272 338
## 2                       max f2  0.260699   0.967439 360
## 3                 max f0point5  0.543874   0.920645 325
## 4                 max accuracy  0.462280   0.891599 336
## 5                max precision  0.999009   1.000000   0
## 6                   max recall  0.260699   1.000000 360
## 7              max specificity  0.999009   1.000000   0
## 8             max absolute_mcc  0.543874   0.549524 325
## 9   max min_per_class_accuracy  0.830086   0.766667 250
## 10 max mean_per_class_accuracy  0.842075   0.778883 239
## 11                     max tns  0.999009  60.000000   0
## 12                     max fns  0.999009 308.000000   0
## 13                     max fps  0.062590  60.000000 368
## 14                     max tps  0.260699 309.000000 360
## 15                     max tnr  0.999009   1.000000   0
## 16                     max fnr  0.999009   0.996764   0
## 17                     max fpr  0.062590   1.000000 368
## 18                     max tpr  0.260699   1.000000 360
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate: 83.74 %, avg score: 82.81 %
##    group cumulative_data_fraction lower_threshold     lift cumulative_lift
## 1      1               0.01084011        0.998096 1.194175        1.194175
## 2      2               0.02168022        0.997203 1.194175        1.194175
## 3      3               0.03252033        0.996507 1.194175        1.194175
## 4      4               0.04065041        0.995538 1.194175        1.194175
## 5      5               0.05149051        0.994944 1.194175        1.194175
## 6      6               0.10027100        0.989318 1.061489        1.129625
## 7      7               0.15176152        0.983777 1.194175        1.151526
## 8      8               0.20054201        0.976027 1.127832        1.145762
## 9      9               0.30081301        0.958845 1.129625        1.140383
## 10    10               0.40108401        0.940038 1.194175        1.153831
## 11    11               0.50135501        0.910637 1.097350        1.142535
## 12    12               0.59891599        0.862774 1.127832        1.140140
## 13    13               0.69918699        0.811345 0.968250        1.115489
## 14    14               0.79945799        0.711587 0.968250        1.097022
## 15    15               0.89972900        0.476362 0.935975        1.079074
## 16    16               1.00000000        0.062590 0.290475        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.998651                 1.000000         0.998651
## 2       1.000000 0.997730                 1.000000         0.998190
## 3       1.000000 0.996856                 1.000000         0.997746
## 4       1.000000 0.995996                 1.000000         0.997396
## 5       1.000000 0.995354                 1.000000         0.996966
## 6       0.888889 0.991413                 0.945946         0.994265
## 7       1.000000 0.986741                 0.964286         0.991712
## 8       0.944444 0.978524                 0.959459         0.988504
## 9       0.945946 0.968713                 0.954955         0.981907
## 10      1.000000 0.950419                 0.966216         0.974035
## 11      0.918919 0.928836                 0.956757         0.964995
## 12      0.944444 0.889548                 0.954751         0.952705
## 13      0.810811 0.840571                 0.934109         0.936624
## 14      0.810811 0.768402                 0.918644         0.915525
## 15      0.783784 0.622739                 0.903614         0.882895
## 16      0.243243 0.336124                 0.837398         0.828070
##    capture_rate cumulative_capture_rate       gain cumulative_gain
## 1      0.012945                0.012945  19.417476       19.417476
## 2      0.012945                0.025890  19.417476       19.417476
## 3      0.012945                0.038835  19.417476       19.417476
## 4      0.009709                0.048544  19.417476       19.417476
## 5      0.012945                0.061489  19.417476       19.417476
## 6      0.051780                0.113269   6.148867       12.962477
## 7      0.061489                0.174757  19.417476       15.152566
## 8      0.055016                0.229773  12.783172       14.576227
## 9      0.113269                0.343042  12.962477       14.038310
## 10     0.119741                0.462783  19.417476       15.383102
## 11     0.110032                0.572816   9.734978       14.253477
## 12     0.110032                0.682848  12.783172       14.013970
## 13     0.097087                0.779935  -3.175020       11.548882
## 14     0.097087                0.877023  -3.175020        9.702156
## 15     0.093851                0.970874  -6.402519        7.907358
## 16     0.029126                1.000000 -70.952506        0.000000
##    kolmogorov_smirnov
## 1            0.012945
## 2            0.025890
## 3            0.038835
## 4            0.048544
## 5            0.061489
## 6            0.079935
## 7            0.141424
## 8            0.179773
## 9            0.259709
## 10           0.379450
## 11           0.439482
## 12           0.516181
## 13           0.496602
## 14           0.477023
## 15           0.437540
## 16           0.000000
## 
## $residual_deviance
## [1] 240.2764
## 
## $null_deviance
## [1] 327.7324
## 
## $AIC
## [1] 252.2764
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 368
## 
## $residual_degrees_of_freedom
## [1] 363
h2o.auc(performance_h2o)
## [1] 0.8325782
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.425831482222289:
##        Left  No    Error     Rate
## Left     25  35 0.583333   =35/60
## No        5 304 0.016181   =5/309
## Totals   30 339 0.108401  =40/369