1 Loading libraries

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(afex)
## Loading required package: lme4
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - Get and set global package options with: afex_options()
## - Set sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attaching package: 'afex'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
library(emmeans)
## Welcome to emmeans.
## Caution: You lose important information if you filter this package's results.
## See '? untidy'
library(e1071)
library(DT)
library(gt)

2 Data input and wrangling

data.thirds <- read.csv("gamex_data.csv")

data.thirds$game.experience.thirds <- cut(
  data.thirds$Game.Experience,
  breaks = quantile(data.thirds$Game.Experience, probs = c(0, 1/3, 2/3, 1), na.rm = TRUE),
  labels = c("Low", "Medium", "High"),
  include.lowest = TRUE
)

data.thirds %>%
  count(game.experience.thirds)
##   game.experience.thirds  n
## 1                    Low 44
## 2                 Medium 37
## 3                   High 40
## 4                   <NA>  1
data.thirds <- data.thirds %>%
  filter(!is.na(game.experience.thirds))

names(data.thirds) <- tolower(names(data.thirds))

data.thirds <- data.thirds %>% 
  rename(subject = what.is.your.participant.code.)


long_data.thirds <- data.thirds %>%
  pivot_longer(
    cols = matches("^(pre|post)"), 
    names_to = c("time", "construct"),
    names_pattern = "(pre|post)\\.\\.\\.(.*)score",
    values_to = "score"
  ) %>%
  mutate(time = factor(time, levels = c("pre", "post")))

3 Summary Stats for main effect of group

4 Summary stats for the main effect of game experience

5 Summary stats for the effect of gamex and time

6 Summary stats for the effect of gamex and group and time

7 Linear mixed effects model

7.1 Enjoyment

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ group * game.experience.thirds * time + (1 | subject)
##    Data: filter(long_data.thirds, construct == "enjoyment")
## 
## REML criterion at convergence: 1281.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.12394 -0.47115  0.05627  0.67388  2.35026 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  1.393   1.180   
##  Residual             14.966   3.869   
## Number of obs: 242, groups:  subject, 121
## 
## Fixed effects:
##                                              Estimate Std. Error       df
## (Intercept)                                   36.4286     1.5287 216.4313
## groupI                                        -0.5119     1.9236 216.4313
## groupS                                        -0.9911     1.8329 216.4313
## groupT                                        -1.9841     2.0383 216.4313
## game.experience.thirdsMedium                   0.5714     2.0383 216.4313
## game.experience.thirdsHigh                    -3.2857     1.8723 216.4313
## timepost                                      -7.4286     2.0678 109.0000
## groupI:game.experience.thirdsMedium           -5.5881     2.6746 216.4313
## groupS:game.experience.thirdsMedium           -3.0089     2.6873 216.4313
## groupT:game.experience.thirdsMedium            2.1841     2.7583 216.4313
## groupI:game.experience.thirdsHigh              0.7440     2.6293 216.4313
## groupS:game.experience.thirdsHigh              4.0149     2.6934 216.4313
## groupT:game.experience.thirdsHigh              5.5079     2.5858 216.4313
## groupI:timepost                                2.9286     2.6020 109.0000
## groupS:timepost                                2.7411     2.4793 109.0000
## groupT:timepost                                6.3175     2.7571 109.0000
## game.experience.thirdsMedium:timepost          2.6508     2.7571 109.0000
## game.experience.thirdsHigh:timepost            8.0714     2.5326 109.0000
## groupI:game.experience.thirdsMedium:timepost   1.5492     3.6179 109.0000
## groupS:game.experience.thirdsMedium:timepost   2.2867     3.6351 109.0000
## groupT:game.experience.thirdsMedium:timepost  -7.4397     3.7310 109.0000
## groupI:game.experience.thirdsHigh:timepost    -1.0714     3.5566 109.0000
## groupS:game.experience.thirdsHigh:timepost    -6.7173     3.6433 109.0000
## groupT:game.experience.thirdsHigh:timepost    -9.8770     3.4977 109.0000
##                                              t value Pr(>|t|)    
## (Intercept)                                   23.830  < 2e-16 ***
## groupI                                        -0.266 0.790399    
## groupS                                        -0.541 0.589252    
## groupT                                        -0.973 0.331424    
## game.experience.thirdsMedium                   0.280 0.779477    
## game.experience.thirdsHigh                    -1.755 0.080686 .  
## timepost                                      -3.592 0.000493 ***
## groupI:game.experience.thirdsMedium           -2.089 0.037849 *  
## groupS:game.experience.thirdsMedium           -1.120 0.264096    
## groupT:game.experience.thirdsMedium            0.792 0.429316    
## groupI:game.experience.thirdsHigh              0.283 0.777464    
## groupS:game.experience.thirdsHigh              1.491 0.137509    
## groupT:game.experience.thirdsHigh              2.130 0.034293 *  
## groupI:timepost                                1.126 0.262842    
## groupS:timepost                                1.106 0.271333    
## groupT:timepost                                2.291 0.023867 *  
## game.experience.thirdsMedium:timepost          0.961 0.338461    
## game.experience.thirdsHigh:timepost            3.187 0.001876 ** 
## groupI:game.experience.thirdsMedium:timepost   0.428 0.669346    
## groupS:game.experience.thirdsMedium:timepost   0.629 0.530624    
## groupT:game.experience.thirdsMedium:timepost  -1.994 0.048649 *  
## groupI:game.experience.thirdsHigh:timepost    -0.301 0.763800    
## groupS:game.experience.thirdsHigh:timepost    -1.844 0.067935 .  
## groupT:game.experience.thirdsHigh:timepost    -2.824 0.005643 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: impasse_data_enjoyment
## 
## REML criterion at convergence: 319.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.03901 -0.46619  0.02843  0.63772  1.47574 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  7.681   2.771   
##  Residual             10.761   3.280   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             35.917      1.240 46.017  28.972
## game.experience.thirdsMedium            -5.017      1.839 46.017  -2.728
## game.experience.thirdsHigh              -2.542      1.960 46.017  -1.297
## timepost                                -4.500      1.339 27.000  -3.360
## game.experience.thirdsMedium:timepost    4.200      1.986 27.000   2.114
## game.experience.thirdsHigh:timepost      7.000      2.117 27.000   3.306
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium           0.00899 ** 
## game.experience.thirdsHigh             0.20121    
## timepost                               0.00234 ** 
## game.experience.thirdsMedium:timepost  0.04386 *  
## game.experience.thirdsHigh:timepost    0.00268 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.674                            
## gm.xprnc.tH -0.632  0.426                     
## timepost    -0.540  0.364  0.342              
## gm.xprnc.M:  0.364 -0.540 -0.230 -0.674       
## gm.xprnc.H:  0.342 -0.230 -0.540 -0.632  0.426
##     contrast game.experience.thirds estimate       SE df    t.ratio     p.value
## 1 pre - post                    Low      4.5 1.339223 27  3.3601571 0.002335746
## 2 pre - post                 Medium      0.3 1.467045 27  0.2044926 0.839502229
## 3 pre - post                   High     -2.5 1.640207 27 -1.5241982 0.139087864
##     cohens_d
## 1  3.3601571
## 2  0.2044926
## 3 -1.5241982
##        contrast time   estimate       SE       df    t.ratio    p.value
## 1  Low - Medium post  0.8166667 1.838773 46.01735  0.4441368 0.89722303
## 2    Low - High post -4.4583333 1.960138 46.01735 -2.2744993 0.06962378
## 3 Medium - High post -5.2750000 2.037036 46.01735 -2.5895473 0.03367334
##     cohens_d
## 1  0.4441368
## 2 -2.2744993
## 3 -2.5895473
##        contrast time  estimate       SE       df   t.ratio    p.value  cohens_d
## 1  Low - Medium  pre  5.016667 1.838773 46.01735  2.728269 0.02394844  2.728269
## 2    Low - High  pre  2.541667 1.960138 46.01735  1.296677 0.40426069  1.296677
## 3 Medium - High  pre -2.475000 2.037036 46.01735 -1.215001 0.45049941 -1.215001
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              -4.5 1.34 27   -7.248    -1.75
##  Medium                           -0.3 1.47 27   -3.310     2.71
##  High                              2.5 1.64 27   -0.865     5.87
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      -4.2 1.99 27  -2.114  0.1057
##  Low - High        -7.0 2.12 27  -3.306  0.0073
##  Medium - High     -2.8 2.20 27  -1.272  0.4225
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: tutorial_data_enjoyment
## 
## REML criterion at convergence: 314.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4670 -0.4698 -0.0564  0.7047  1.8885 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  subject  (Intercept) 2.397e-18 1.548e-09
##  Residual             1.259e+01 3.548e+00
## Number of obs: 62, groups:  subject, 31
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             34.444      1.183 56.000  29.127
## game.experience.thirdsMedium             2.756      1.630 56.000   1.690
## game.experience.thirdsHigh               2.222      1.564 56.000   1.420
## timepost                                -1.111      1.672 56.000  -0.664
## game.experience.thirdsMedium:timepost   -4.789      2.305 56.000  -2.077
## game.experience.thirdsHigh:timepost     -1.806      2.212 56.000  -0.816
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium            0.0965 .  
## game.experience.thirdsHigh              0.1610    
## timepost                                0.5092    
## game.experience.thirdsMedium:timepost   0.0424 *  
## game.experience.thirdsHigh:timepost     0.4179    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.725                            
## gm.xprnc.tH -0.756  0.548                     
## timepost    -0.707  0.513  0.535              
## gm.xprnc.M:  0.513 -0.707 -0.388 -0.725       
## gm.xprnc.H:  0.535 -0.388 -0.707 -0.756  0.548
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds estimate       SE df   t.ratio      p.value
## 1 pre - post                    Low 1.111111 1.672417 28 0.6643743 0.5118854415
## 2 pre - post                 Medium 5.900000 1.586594 28 3.7186568 0.0008886793
## 3 pre - post                   High 2.916667 1.448356 28 2.0137776 0.0537330888
##    cohens_d
## 1 0.6643743
## 2 3.7186568
## 3 2.0137776
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post  2.0333333 1.630071 56  1.2473896 0.4307261  1.2473896
## 2    Low - High post -0.4166667 1.564403 56 -0.2663423 0.9616767 -0.2663423
## 3 Medium - High post -2.4500000 1.519048 56 -1.6128518 0.2487019 -1.6128518
##        contrast time   estimate       SE df   t.ratio   p.value  cohens_d
## 1  Low - Medium  pre -2.7555556 1.630071 56 -1.690451 0.2177845 -1.690451
## 2    Low - High  pre -2.2222222 1.564403 56 -1.420492 0.3373915 -1.420492
## 3 Medium - High  pre  0.5333333 1.519048 56  0.351097 0.9343901  0.351097
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             -1.11 1.67 28    -4.54   2.3147
##  Medium                          -5.90 1.59 28    -9.15  -2.6500
##  High                            -2.92 1.45 28    -5.88   0.0502
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      4.79 2.31 28   2.077  0.1129
##  Low - High        1.81 2.21 28   0.816  0.6963
##  Medium - High    -2.98 2.15 28  -1.389  0.3603
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: original_data_enjoyment
## 
## REML criterion at convergence: 317.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1793 -0.4440  0.0000  0.7105  2.4866 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             16.17    4.022   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            36.4286     1.5200 54.0000  23.966
## game.experience.thirdsMedium            0.5714     2.0267 54.0000   0.282
## game.experience.thirdsHigh             -3.2857     1.8616 54.0000  -1.765
## timepost                               -7.4286     2.1496 54.0000  -3.456
## game.experience.thirdsMedium:timepost   2.6508     2.8662 54.0000   0.925
## game.experience.thirdsHigh:timepost     8.0714     2.6327 54.0000   3.066
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium           0.77906    
## game.experience.thirdsHigh             0.08322 .  
## timepost                               0.00108 ** 
## game.experience.thirdsMedium:timepost  0.35915    
## game.experience.thirdsHigh:timepost    0.00339 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.750                            
## gm.xprnc.tH -0.816  0.612                     
## timepost    -0.707  0.530  0.577              
## gm.xprnc.M:  0.530 -0.707 -0.433 -0.750       
## gm.xprnc.H:  0.577 -0.433 -0.707 -0.816  0.612
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds   estimate       SE df    t.ratio
## 1 pre - post                    Low  7.4285714 2.149617 27  3.4557651
## 2 pre - post                 Medium  4.7777778 1.895784 27  2.5202121
## 3 pre - post                   High -0.6428571 1.520009 27 -0.4229299
##       p.value   cohens_d
## 1 0.001829909  3.4557651
## 2 0.017946398  2.5202121
## 3 0.675696003 -0.4229299
##        contrast time  estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post -3.222222 2.026678 54 -1.5899031 0.2586934 -1.5899031
## 2    Low - High post -4.785714 1.861623 54 -2.5707216 0.0340474 -2.5707216
## 3 Medium - High post -1.563492 1.718200 54 -0.9099592 0.6364142 -0.9099592
##        contrast time   estimate       SE df    t.ratio    p.value   cohens_d
## 1  Low - Medium  pre -0.5714286 2.026678 54 -0.2819533 0.95715857 -0.2819533
## 2    Low - High  pre  3.2857143 1.861623 54  1.7649730 0.19107483  1.7649730
## 3 Medium - High  pre  3.8571429 1.718200 54  2.2448740 0.07273952  2.2448740
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                            -7.429 2.15 27   -11.84   -3.018
##  Medium                         -4.778 1.90 27    -8.67   -0.888
##  High                            0.643 1.52 27    -2.48    3.762
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -2.65 2.87 27  -0.925  0.6296
##  Low - High       -8.07 2.63 27  -3.066  0.0131
##  Medium - High    -5.42 2.43 27  -2.231  0.0840
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: safe_data_enjoyment
## 
## REML criterion at convergence: 323.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3330 -0.7145  0.1312  0.7582  1.9247 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             18.37    4.286   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            35.4375     1.0716 54.0000  33.071
## game.experience.thirdsMedium           -2.4375     1.8560 54.0000  -1.313
## game.experience.thirdsHigh              0.7292     2.0519 54.0000   0.355
## timepost                               -4.6875     1.5154 54.0000  -3.093
## game.experience.thirdsMedium:timepost   4.9375     2.6248 54.0000   1.881
## game.experience.thirdsHigh:timepost     1.3542     2.9018 54.0000   0.467
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium           0.19464    
## game.experience.thirdsHigh             0.72370    
## timepost                               0.00313 ** 
## game.experience.thirdsMedium:timepost  0.06536 .  
## game.experience.thirdsHigh:timepost    0.64262    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.577                            
## gm.xprnc.tH -0.522  0.302                     
## timepost    -0.707  0.408  0.369              
## gm.xprnc.M:  0.408 -0.707 -0.213 -0.577       
## gm.xprnc.H:  0.369 -0.213 -0.707 -0.522  0.302
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds  estimate       SE df    t.ratio
## 1 pre - post                    Low  4.687500 1.515433 27  3.0931752
## 2 pre - post                 Medium -0.250000 2.143146 27 -0.1166509
## 3 pre - post                   High  3.333333 2.474692 27  1.3469690
##       p.value   cohens_d
## 1 0.004566763  3.0931752
## 2 0.908000032 -0.1166509
## 3 0.189187733  1.3469690
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post -2.5000000 1.856019 54 -1.3469690 0.3758391 -1.3469690
## 2    Low - High post -2.0833333 2.051906 54 -1.0153161 0.5705055 -1.0153161
## 3 Medium - High post  0.4166667 2.314862 54  0.1799963 0.9823033  0.1799963
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre  2.4375000 1.856019 54  1.3132948 0.3940570  1.3132948
## 2    Low - High  pre -0.7291667 2.051906 54 -0.3553606 0.9328473 -0.3553606
## 3 Medium - High  pre -3.1666667 2.314862 54 -1.3679720 0.3647028 -1.3679720
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             -4.69 1.52 27    -7.80    -1.58
##  Medium                           0.25 2.14 27    -4.15     4.65
##  High                            -3.33 2.47 27    -8.41     1.74
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -4.94 2.62 27  -1.881  0.1635
##  Low - High       -1.35 2.90 27  -0.467  0.8874
##  Medium - High     3.58 3.27 27   1.095  0.5256
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

7.1.1 Tables for enjoyment

7.1.1.1 Enjoyment Impasse Contrasts

7.1.1.2 Enjoyment Tutorial Contrasts

7.1.1.3 Enjoyment Original Contrasts

7.1.1.4 Enjoyment Safe Contrasts

7.2 Curiosity

## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ group * game.experience.thirds * time + (1 | subject)
##    Data: filter(long_data.thirds, construct == "curiosity")
## 
## REML criterion at convergence: 1243.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9875 -0.6479  0.0319  0.7012  2.5876 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             13.68    3.699   
## Number of obs: 242, groups:  subject, 121
## 
## Fixed effects:
##                                              Estimate Std. Error       df
## (Intercept)                                   39.1429     1.3981 218.0000
## groupI                                         0.4405     1.7592 218.0000
## groupS                                         0.9821     1.6763 218.0000
## groupT                                         0.7460     1.8641 218.0000
## game.experience.thirdsMedium                   3.0794     1.8641 218.0000
## game.experience.thirdsHigh                    -0.2857     1.7123 218.0000
## timepost                                      -3.7143     1.9772 218.0000
## groupI:game.experience.thirdsMedium           -4.3627     2.4461 218.0000
## groupS:game.experience.thirdsMedium           -3.8294     2.4577 218.0000
## groupT:game.experience.thirdsMedium           -3.0683     2.5226 218.0000
## groupI:game.experience.thirdsHigh             -2.5476     2.4047 218.0000
## groupS:game.experience.thirdsHigh             -0.3393     2.4633 218.0000
## groupT:game.experience.thirdsHigh              0.1468     2.3649 218.0000
## groupI:timepost                                2.1310     2.4879 218.0000
## groupS:timepost                                1.2768     2.3706 218.0000
## groupT:timepost                                3.6032     2.6363 218.0000
## game.experience.thirdsMedium:timepost          1.4921     2.6363 218.0000
## game.experience.thirdsHigh:timepost            6.5000     2.4216 218.0000
## groupI:game.experience.thirdsMedium:timepost  -0.4087     3.4593 218.0000
## groupS:game.experience.thirdsMedium:timepost   1.0704     3.4758 218.0000
## groupT:game.experience.thirdsMedium:timepost  -1.3810     3.5675 218.0000
## groupI:game.experience.thirdsHigh:timepost    -1.7917     3.4008 218.0000
## groupS:game.experience.thirdsHigh:timepost    -2.3958     3.4836 218.0000
## groupT:game.experience.thirdsHigh:timepost    -7.2222     3.3444 218.0000
##                                              t value Pr(>|t|)    
## (Intercept)                                   27.997  < 2e-16 ***
## groupI                                         0.250  0.80253    
## groupS                                         0.586  0.55854    
## groupT                                         0.400  0.68940    
## game.experience.thirdsMedium                   1.652  0.09999 .  
## game.experience.thirdsHigh                    -0.167  0.86764    
## timepost                                      -1.879  0.06164 .  
## groupI:game.experience.thirdsMedium           -1.784  0.07589 .  
## groupS:game.experience.thirdsMedium           -1.558  0.12067    
## groupT:game.experience.thirdsMedium           -1.216  0.22519    
## groupI:game.experience.thirdsHigh             -1.059  0.29058    
## groupS:game.experience.thirdsHigh             -0.138  0.89057    
## groupT:game.experience.thirdsHigh              0.062  0.95055    
## groupI:timepost                                0.857  0.39265    
## groupS:timepost                                0.539  0.59072    
## groupT:timepost                                1.367  0.17311    
## game.experience.thirdsMedium:timepost          0.566  0.57200    
## game.experience.thirdsHigh:timepost            2.684  0.00783 ** 
## groupI:game.experience.thirdsMedium:timepost  -0.118  0.90606    
## groupS:game.experience.thirdsMedium:timepost   0.308  0.75840    
## groupT:game.experience.thirdsMedium:timepost  -0.387  0.69907    
## groupI:game.experience.thirdsHigh:timepost    -0.527  0.59884    
## groupS:game.experience.thirdsHigh:timepost    -0.688  0.49234    
## groupT:game.experience.thirdsHigh:timepost    -2.159  0.03190 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: impasse_data_curiosity
## 
## REML criterion at convergence: 318.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6231 -0.5097  0.0491  0.5936  1.6457 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             16.57    4.071   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             39.583      1.175 54.000  33.681
## game.experience.thirdsMedium            -1.283      1.743 54.000  -0.736
## game.experience.thirdsHigh              -2.833      1.858 54.000  -1.525
## timepost                                -1.583      1.662 54.000  -0.953
## game.experience.thirdsMedium:timepost    1.083      2.465 54.000   0.439
## game.experience.thirdsHigh:timepost      4.708      2.628 54.000   1.792
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium            0.4648    
## game.experience.thirdsHigh              0.1332    
## timepost                                0.3450    
## game.experience.thirdsMedium:timepost   0.6621    
## game.experience.thirdsHigh:timepost     0.0788 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.674                            
## gm.xprnc.tH -0.632  0.426                     
## timepost    -0.707  0.477  0.447              
## gm.xprnc.M:  0.477 -0.707 -0.302 -0.674       
## gm.xprnc.H:  0.447 -0.302 -0.707 -0.632  0.426
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds  estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low  1.583333 1.662023 27  0.9526544 0.3492165
## 2 pre - post                 Medium  0.500000 1.820655 27  0.2746265 0.7856937
## 3 pre - post                   High -3.125000 2.035554 27 -1.5352086 0.1363691
##     cohens_d
## 1  0.9526544
## 2  0.2746265
## 3 -1.5352086
##        contrast time estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post    0.200 1.743144 54  0.1147352 0.9927697  0.1147352
## 2    Low - High post   -1.875 1.858198 54 -1.0090421 0.5744154 -1.0090421
## 3 Medium - High post   -2.075 1.931096 54 -1.0745193 0.5338408 -1.0745193
##        contrast time estimate       SE df   t.ratio   p.value  cohens_d
## 1  Low - Medium  pre 1.283333 1.743144 54 0.7362175 0.7431608 0.7362175
## 2    Low - High  pre 2.833333 1.858198 54 1.5247747 0.2874999 1.5247747
## 3 Medium - High  pre 1.550000 1.931096 54 0.8026530 0.7030030 0.8026530
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             -1.58 1.66 27    -4.99     1.83
##  Medium                          -0.50 1.82 27    -4.24     3.24
##  High                             3.12 2.04 27    -1.05     7.30
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -1.08 2.47 27  -0.439  0.8994
##  Low - High       -4.71 2.63 27  -1.792  0.1914
##  Medium - High    -3.62 2.73 27  -1.327  0.3927
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: tutorial_data_curiosity
## 
## REML criterion at convergence: 309.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7455 -0.8113  0.0295  0.9096  1.7947 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.00    
##  Residual             11.49    3.39    
## Number of obs: 62, groups:  subject, 31
## 
## Fixed effects:
##                                       Estimate Std. Error       df t value
## (Intercept)                           39.88889    1.12987 56.00000  35.304
## game.experience.thirdsMedium           0.01111    1.55742 56.00000   0.007
## game.experience.thirdsHigh            -0.13889    1.49468 56.00000  -0.093
## timepost                              -0.11111    1.59788 56.00000  -0.070
## game.experience.thirdsMedium:timepost  0.11111    2.20252 56.00000   0.050
## game.experience.thirdsHigh:timepost   -0.72222    2.11380 56.00000  -0.342
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium             0.994    
## game.experience.thirdsHigh               0.926    
## timepost                                 0.945    
## game.experience.thirdsMedium:timepost    0.960    
## game.experience.thirdsHigh:timepost      0.734    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.725                            
## gm.xprnc.tH -0.756  0.548                     
## timepost    -0.707  0.513  0.535              
## gm.xprnc.M:  0.513 -0.707 -0.388 -0.725       
## gm.xprnc.H:  0.535 -0.388 -0.707 -0.756  0.548
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds      estimate       SE df       t.ratio
## 1 pre - post                    Low  1.111111e-01 1.597879 28  6.953660e-02
## 2 pre - post                 Medium -4.163336e-17 1.515882 28 -2.746479e-17
## 3 pre - post                   High  8.333333e-01 1.383804 28  6.022047e-01
##     p.value      cohens_d
## 1 0.9450567  6.953660e-02
## 2 1.0000000 -2.746479e-17
## 3 0.5518839  6.022047e-01
##        contrast time   estimate       SE df     t.ratio   p.value    cohens_d
## 1  Low - Medium post -0.1222222 1.557420 56 -0.07847736 0.9966105 -0.07847736
## 2    Low - High post  0.8611111 1.494679 56  0.57611762 0.8333793  0.57611762
## 3 Medium - High post  0.9833333 1.451346 56  0.67753195 0.7774763  0.67753195
##        contrast time    estimate       SE df      t.ratio   p.value
## 1  Low - Medium  pre -0.01111111 1.557420 56 -0.007134305 0.9999719
## 2    Low - High  pre  0.13888889 1.494679 56  0.092922197 0.9952513
## 3 Medium - High  pre  0.15000000 1.451346 56  0.103352331 0.9941289
##       cohens_d
## 1 -0.007134305
## 2  0.092922197
## 3  0.103352331
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                            -0.111 1.60 28    -3.38     3.16
##  Medium                          0.000 1.52 28    -3.11     3.11
##  High                           -0.833 1.38 28    -3.67     2.00
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium    -0.111 2.20 28  -0.050  0.9986
##  Low - High       0.722 2.11 28   0.342  0.9378
##  Medium - High    0.833 2.05 28   0.406  0.9134
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: original_data_curiosity
## 
## REML criterion at convergence: 305.7
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.11216 -0.62838  0.06909  0.76766  2.64513 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             13.09    3.619   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            39.1429     1.3677 54.0000  28.620
## game.experience.thirdsMedium            3.0794     1.8236 54.0000   1.689
## game.experience.thirdsHigh             -0.2857     1.6750 54.0000  -0.171
## timepost                               -3.7143     1.9342 54.0000  -1.920
## game.experience.thirdsMedium:timepost   1.4921     2.5789 54.0000   0.579
## game.experience.thirdsHigh:timepost     6.5000     2.3689 54.0000   2.744
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium           0.09705 .  
## game.experience.thirdsHigh             0.86520    
## timepost                               0.06010 .  
## game.experience.thirdsMedium:timepost  0.56529    
## game.experience.thirdsHigh:timepost    0.00822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.750                            
## gm.xprnc.tH -0.816  0.612                     
## timepost    -0.707  0.530  0.577              
## gm.xprnc.M:  0.530 -0.707 -0.433 -0.750       
## gm.xprnc.H:  0.577 -0.433 -0.707 -0.816  0.612
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds  estimate       SE df   t.ratio    p.value
## 1 pre - post                    Low  3.714286 1.934175 27  1.920346 0.06543507
## 2 pre - post                 Medium  2.222222 1.705782 27  1.302758 0.20365964
## 3 pre - post                   High -2.785714 1.367669 27 -2.036834 0.05158080
##    cohens_d
## 1  1.920346
## 2  1.302758
## 3 -2.036834
##        contrast time  estimate       SE df   t.ratio    p.value  cohens_d
## 1  Low - Medium post -4.571429 1.823558 54 -2.506873 0.03975021 -2.506873
## 2    Low - High post -6.214286 1.675045 54 -3.709921 0.00140515 -3.709921
## 3 Medium - High post -1.642857 1.545997 54 -1.062652 0.54115069 -1.062652
##        contrast time   estimate       SE df    t.ratio    p.value   cohens_d
## 1  Low - Medium  pre -3.0793651 1.823558 54 -1.6886575 0.21879423 -1.6886575
## 2    Low - High  pre  0.2857143 1.675045 54  0.1705711 0.98409302  0.1705711
## 3 Medium - High  pre  3.3650794 1.545997 54  2.1766409 0.08440962  2.1766409
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             -3.71 1.93 27  -7.6829    0.254
##  Medium                          -2.22 1.71 27  -5.7222    1.278
##  High                             2.79 1.37 27  -0.0205    5.592
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -1.49 2.58 27  -0.579  0.8326
##  Low - High       -6.50 2.37 27  -2.744  0.0278
##  Medium - High    -5.01 2.19 27  -2.291  0.0744
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: safe_data_curiosity
## 
## REML criterion at convergence: 307.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.19274 -0.56399 -0.03854  0.63457  1.91887 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.5787  0.7607  
##  Residual             13.0768  3.6162  
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            40.1250     0.9238 53.9032  43.433
## game.experience.thirdsMedium           -0.7500     1.6001 53.9032  -0.469
## game.experience.thirdsHigh             -0.6250     1.7690 53.9032  -0.353
## timepost                               -2.4375     1.2785 27.0000  -1.907
## game.experience.thirdsMedium:timepost   2.5625     2.2145 27.0000   1.157
## game.experience.thirdsHigh:timepost     4.1042     2.4482 27.0000   1.676
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium            0.6412    
## game.experience.thirdsHigh              0.7252    
## timepost                                0.0673 .  
## game.experience.thirdsMedium:timepost   0.2573    
## game.experience.thirdsHigh:timepost     0.1052    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.577                            
## gm.xprnc.tH -0.522  0.302                     
## timepost    -0.692  0.400  0.361              
## gm.xprnc.M:  0.400 -0.692 -0.209 -0.577       
## gm.xprnc.H:  0.361 -0.209 -0.692 -0.522  0.302
##     contrast game.experience.thirds  estimate       SE df     t.ratio
## 1 pre - post                    Low  2.437500 1.278514 27  1.90651092
## 2 pre - post                 Medium -0.125000 1.808091 27 -0.06913368
## 3 pre - post                   High -1.666667 2.087804 27 -0.79828700
##      p.value    cohens_d
## 1 0.06727901  1.90651092
## 2 0.94539269 -0.06913368
## 3 0.43166983 -0.79828700
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium post -1.812500 1.600126 53.90319 -1.1327235 0.4983722
## 2    Low - High post -3.479167 1.769006 53.90319 -1.9667359 0.1303386
## 3 Medium - High post -1.666667 1.995707 53.90319 -0.8351258 0.6830188
##     cohens_d
## 1 -1.1327235
## 2 -1.9667359
## 3 -0.8351258
##        contrast time estimate       SE       df     t.ratio   p.value
## 1  Low - Medium  pre    0.750 1.600126 53.90319  0.46871318 0.8862169
## 2    Low - High  pre    0.625 1.769006 53.90319  0.35330585 0.9335944
## 3 Medium - High  pre   -0.125 1.995707 53.90319 -0.06263443 0.9978395
##      cohens_d
## 1  0.46871318
## 2  0.35330585
## 3 -0.06263443
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                            -2.438 1.28 27    -5.06    0.186
##  Medium                          0.125 1.81 27    -3.58    3.835
##  High                            1.667 2.09 27    -2.62    5.950
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -2.56 2.21 27  -1.157  0.4883
##  Low - High       -4.10 2.45 27  -1.676  0.2324
##  Medium - High    -1.54 2.76 27  -0.558  0.8432
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

7.2.1 Tables for curiosity

7.2.1.1 Curiosity Impasse Contrasts

7.2.1.2 Curiosity Tutorial Contrasts

7.2.1.3 Curiosity Original Contrasts

7.2.1.4 Curiosity Safe Contrasts

7.3 Difficulty

## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ group * game.experience.thirds * time + (1 | subject)
##    Data: filter(long_data.thirds, construct == "difficulty")
## 
## REML criterion at convergence: 1212.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4650 -0.5261  0.1088  0.4769  2.3403 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             11.87    3.445   
## Number of obs: 242, groups:  subject, 121
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   21.57143    1.30214 218.00000
## groupI                                         2.26190    1.63849 218.00000
## groupS                                        -3.63393    1.56121 218.00000
## groupT                                        -2.01587    1.73618 218.00000
## game.experience.thirdsMedium                  -0.46032    1.73618 218.00000
## game.experience.thirdsHigh                    -0.71429    1.59479 218.00000
## timepost                                       3.42857    1.84150 218.00000
## groupI:game.experience.thirdsMedium            0.32698    2.27822 218.00000
## groupS:game.experience.thirdsMedium           -1.85218    2.28905 218.00000
## groupT:game.experience.thirdsMedium            0.30476    2.34947 218.00000
## groupI:game.experience.thirdsHigh              0.50595    2.23965 218.00000
## groupS:game.experience.thirdsHigh              0.77679    2.29419 218.00000
## groupT:game.experience.thirdsHigh             -1.84127    2.20254 218.00000
## groupI:timepost                               -3.59524    2.31717 218.00000
## groupS:timepost                                4.00893    2.20788 218.00000
## groupT:timepost                                1.57143    2.45533 218.00000
## game.experience.thirdsMedium:timepost          0.01587    2.45533 218.00000
## game.experience.thirdsHigh:timepost            1.07143    2.25537 218.00000
## groupI:game.experience.thirdsMedium:timepost   2.15079    3.22189 218.00000
## groupS:game.experience.thirdsMedium:timepost   0.54663    3.23721 218.00000
## groupT:game.experience.thirdsMedium:timepost  -0.31587    3.32265 218.00000
## groupI:game.experience.thirdsHigh:timepost     0.72024    3.16735 218.00000
## groupS:game.experience.thirdsHigh:timepost    -0.84226    3.24447 218.00000
## groupT:game.experience.thirdsHigh:timepost     1.67857    3.11486 218.00000
##                                              t value Pr(>|t|)    
## (Intercept)                                   16.566   <2e-16 ***
## groupI                                         1.380   0.1689    
## groupS                                        -2.328   0.0208 *  
## groupT                                        -1.161   0.2469    
## game.experience.thirdsMedium                  -0.265   0.7912    
## game.experience.thirdsHigh                    -0.448   0.6547    
## timepost                                       1.862   0.0640 .  
## groupI:game.experience.thirdsMedium            0.144   0.8860    
## groupS:game.experience.thirdsMedium           -0.809   0.4193    
## groupT:game.experience.thirdsMedium            0.130   0.8969    
## groupI:game.experience.thirdsHigh              0.226   0.8215    
## groupS:game.experience.thirdsHigh              0.339   0.7352    
## groupT:game.experience.thirdsHigh             -0.836   0.4041    
## groupI:timepost                               -1.552   0.1222    
## groupS:timepost                                1.816   0.0708 .  
## groupT:timepost                                0.640   0.5228    
## game.experience.thirdsMedium:timepost          0.006   0.9948    
## game.experience.thirdsHigh:timepost            0.475   0.6352    
## groupI:game.experience.thirdsMedium:timepost   0.668   0.5051    
## groupS:game.experience.thirdsMedium:timepost   0.169   0.8661    
## groupT:game.experience.thirdsMedium:timepost  -0.095   0.9243    
## groupI:game.experience.thirdsHigh:timepost     0.227   0.8203    
## groupS:game.experience.thirdsHigh:timepost    -0.260   0.7954    
## groupT:game.experience.thirdsHigh:timepost     0.539   0.5905    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: impasse_data_difficulty
## 
## REML criterion at convergence: 266.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6627 -0.6657  0.1258  0.5299  2.1361 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.000    0.000   
##  Residual             6.332    2.516   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            23.8333     0.7264 54.0000  32.811
## game.experience.thirdsMedium           -0.1333     1.0774 54.0000  -0.124
## game.experience.thirdsHigh             -0.2083     1.1485 54.0000  -0.181
## timepost                               -0.1667     1.0273 54.0000  -0.162
## game.experience.thirdsMedium:timepost   2.1667     1.5237 54.0000   1.422
## game.experience.thirdsHigh:timepost     1.7917     1.6242 54.0000   1.103
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium             0.902    
## game.experience.thirdsHigh               0.857    
## timepost                                 0.872    
## game.experience.thirdsMedium:timepost    0.161    
## game.experience.thirdsHigh:timepost      0.275    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.674                            
## gm.xprnc.tH -0.632  0.426                     
## timepost    -0.707  0.477  0.447              
## gm.xprnc.M:  0.477 -0.707 -0.302 -0.674       
## gm.xprnc.H:  0.447 -0.302 -0.707 -0.632  0.426
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds   estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low  0.1666667 1.027265 27  0.1622432 0.8723225
## 2 pre - post                 Medium -2.0000000 1.125312 27 -1.7772848 0.0867895
## 3 pre - post                   High -1.6250000 1.258137 27 -1.2915922 0.2074462
##     cohens_d
## 1  0.1622432
## 2 -1.7772848
## 3 -1.2915922
##        contrast time  estimate       SE df   t.ratio   p.value  cohens_d
## 1  Low - Medium post -2.033333 1.077404 54 -1.887252 0.1521594 -1.887252
## 2    Low - High post -1.583333 1.148517 54 -1.378590 0.3591411 -1.378590
## 3 Medium - High post  0.450000 1.193574 54  0.377019 0.9247517  0.377019
##        contrast time  estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre 0.1333333 1.077404 54 0.12375423 0.9915935 0.12375423
## 2    Low - High  pre 0.2083333 1.148517 54 0.18139337 0.9820301 0.18139337
## 3 Medium - High  pre 0.0750000 1.193574 54 0.06283651 0.9978256 0.06283651
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                            -0.167 1.03 27   -2.274     1.94
##  Medium                          2.000 1.13 27   -0.309     4.31
##  High                            1.625 1.26 27   -0.956     4.21
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium    -2.167 1.52 27  -1.422  0.3441
##  Low - High      -1.792 1.62 27  -1.103  0.5205
##  Medium - High    0.375 1.69 27   0.222  0.9732
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: tutorial_data_difficulty
## 
## REML criterion at convergence: 313
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5752 -0.6581  0.1272  0.5723  2.1301 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  subject  (Intercept) 1.100e-19 3.316e-10
##  Residual             1.221e+01 3.495e+00
## Number of obs: 62, groups:  subject, 31
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            19.5556     1.1650 56.0000  16.786
## game.experience.thirdsMedium           -0.1556     1.6058 56.0000  -0.097
## game.experience.thirdsHigh             -2.5556     1.5411 56.0000  -1.658
## timepost                                5.0000     1.6475 56.0000   3.035
## game.experience.thirdsMedium:timepost  -0.3000     2.2709 56.0000  -0.132
## game.experience.thirdsHigh:timepost     2.7500     2.1794 56.0000   1.262
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium           0.92317    
## game.experience.thirdsHigh             0.10285    
## timepost                               0.00365 ** 
## game.experience.thirdsMedium:timepost  0.89537    
## game.experience.thirdsHigh:timepost    0.21225    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.725                            
## gm.xprnc.tH -0.756  0.548                     
## timepost    -0.707  0.513  0.535              
## gm.xprnc.M:  0.513 -0.707 -0.388 -0.725       
## gm.xprnc.H:  0.535 -0.388 -0.707 -0.756  0.548
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds estimate       SE df   t.ratio      p.value
## 1 pre - post                    Low    -5.00 1.647502 28 -3.034897 5.151824e-03
## 2 pre - post                 Medium    -4.70 1.562958 28 -3.007119 5.519291e-03
## 3 pre - post                   High    -7.75 1.426779 28 -5.431816 8.529335e-06
##    cohens_d
## 1 -3.034897
## 2 -3.007119
## 3 -5.431816
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post  0.4555556 1.605787 56  0.2836962 0.9566382  0.2836962
## 2    Low - High post -0.1944444 1.541097 56 -0.1261727 0.9912632 -0.1261727
## 3 Medium - High post -0.6500000 1.496418 56 -0.4343705 0.9014162 -0.4343705
##        contrast time  estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre 0.1555556 1.605787 56 0.09687188 0.9948402 0.09687188
## 2    Low - High  pre 2.5555556 1.541097 56 1.65827015 0.2302635 1.65827015
## 3 Medium - High  pre 2.4000000 1.496418 56 1.60382970 0.2524799 1.60382970
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              5.00 1.65 28     1.63     8.37
##  Medium                           4.70 1.56 28     1.50     7.90
##  High                             7.75 1.43 28     4.83    10.67
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      0.30 2.27 28   0.132  0.9904
##  Low - High       -2.75 2.18 28  -1.262  0.4280
##  Medium - High    -3.05 2.12 28  -1.441  0.3341
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: original_data_difficulty
## 
## REML criterion at convergence: 278.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4307 -0.5514  0.1139  0.5296  2.1775 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.000    0.000   
##  Residual             7.958    2.821   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error       df t value
## (Intercept)                           21.57143    1.06626 54.00000  20.231
## game.experience.thirdsMedium          -0.46032    1.42168 54.00000  -0.324
## game.experience.thirdsHigh            -0.71429    1.30590 54.00000  -0.547
## timepost                               3.42857    1.50792 54.00000   2.274
## game.experience.thirdsMedium:timepost  0.01587    2.01056 54.00000   0.008
## game.experience.thirdsHigh:timepost    1.07143    1.84682 54.00000   0.580
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium             0.747    
## game.experience.thirdsHigh               0.587    
## timepost                                 0.027 *  
## game.experience.thirdsMedium:timepost    0.994    
## game.experience.thirdsHigh:timepost      0.564    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.750                            
## gm.xprnc.tH -0.816  0.612                     
## timepost    -0.707  0.530  0.577              
## gm.xprnc.M:  0.530 -0.707 -0.433 -0.750       
## gm.xprnc.H:  0.577 -0.433 -0.707 -0.816  0.612
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds  estimate       SE df   t.ratio
## 1 pre - post                    Low -3.428571 1.507923 27 -2.273705
## 2 pre - post                 Medium -3.444444 1.329863 27 -2.590075
## 3 pre - post                   High -4.500000 1.066262 27 -4.220350
##        p.value  cohens_d
## 1 0.0311510696 -2.273705
## 2 0.0152809350 -2.590075
## 3 0.0002465001 -4.220350
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post  0.4444444 1.421683 54  0.3126185 0.9476061  0.3126185
## 2    Low - High post -0.3571429 1.305899 54 -0.2734842 0.9596394 -0.2734842
## 3 Medium - High post -0.8015873 1.205290 54 -0.6650574 0.7846417 -0.6650574
##        contrast time  estimate       SE df   t.ratio   p.value  cohens_d
## 1  Low - Medium  pre 0.4603175 1.421683 54 0.3237835 0.9439104 0.3237835
## 2    Low - High  pre 0.7142857 1.305899 54 0.5469685 0.8484574 0.5469685
## 3 Medium - High  pre 0.2539683 1.205290 54 0.2107112 0.9758317 0.2107112
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              3.43 1.51 27    0.335     6.52
##  Medium                           3.44 1.33 27    0.716     6.17
##  High                             4.50 1.07 27    2.312     6.69
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium   -0.0159 2.01 27  -0.008  1.0000
##  Low - High     -1.0714 1.85 27  -0.580  0.8318
##  Medium - High  -1.0556 1.70 27  -0.619  0.8109
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: safe_data_difficulty
## 
## REML criterion at convergence: 330.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6075 -0.5734  0.1365  0.4676  1.7611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             20.96    4.578   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            17.9375     1.1445 54.0000  15.673
## game.experience.thirdsMedium           -2.3125     1.9824 54.0000  -1.167
## game.experience.thirdsHigh              0.0625     2.1916 54.0000   0.029
## timepost                                7.4375     1.6186 54.0000   4.595
## game.experience.thirdsMedium:timepost   0.5625     2.8035 54.0000   0.201
## game.experience.thirdsHigh:timepost     0.2292     3.0994 54.0000   0.074
##                                       Pr(>|t|)    
## (Intercept)                            < 2e-16 ***
## game.experience.thirdsMedium             0.249    
## game.experience.thirdsHigh               0.977    
## timepost                              2.64e-05 ***
## game.experience.thirdsMedium:timepost    0.842    
## game.experience.thirdsHigh:timepost      0.941    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.577                            
## gm.xprnc.tH -0.522  0.302                     
## timepost    -0.707  0.408  0.369              
## gm.xprnc.M:  0.408 -0.707 -0.213 -0.577       
## gm.xprnc.H:  0.369 -0.213 -0.707 -0.522  0.302
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds  estimate       SE df   t.ratio
## 1 pre - post                    Low -7.437500 1.618592 27 -4.595043
## 2 pre - post                 Medium -8.000000 2.289035 27 -3.494923
## 3 pre - post                   High -7.666667 2.643150 27 -2.900580
##        p.value  cohens_d
## 1 9.042398e-05 -4.595043
## 2 1.654948e-03 -3.494923
## 3 7.320781e-03 -2.900580
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post  1.7500000 1.982362 54  0.8827852 0.6533976  0.8827852
## 2    Low - High post -0.2916667 2.191584 54 -0.1330849 0.9902847 -0.1330849
## 3 Medium - High post -2.0416667 2.472440 54 -0.8257699 0.6887933 -0.8257699
##        contrast time estimate       SE df     t.ratio   p.value    cohens_d
## 1  Low - Medium  pre   2.3125 1.982362 54  1.16653759 0.4780985  1.16653759
## 2    Low - High  pre  -0.0625 2.191584 54 -0.02851819 0.9995517 -0.02851819
## 3 Medium - High  pre  -2.3750 2.472440 54 -0.96058952 0.6047038 -0.96058952
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              7.44 1.62 27     4.12     10.8
##  Medium                           8.00 2.29 27     3.30     12.7
##  High                             7.67 2.64 27     2.24     13.1
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate  SE df t.ratio p.value
##  Low - Medium    -0.562 2.8 27  -0.201  0.9781
##  Low - High      -0.229 3.1 27  -0.074  0.9970
##  Medium - High    0.333 3.5 27   0.095  0.9950
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

7.3.1 Tables for difficulty

7.3.1.1 Difficulty Impasse Contrasts

7.3.1.2 Difficulty Tutorial Contrasts

7.3.1.3 Difficulty Original Contrasts

7.3.1.4 Difficulty Safe Contrasts

7.4 Leveldifficulty

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ group * game.experience.thirds * time + (1 | subject)
##    Data: filter(long_data.thirds, construct == "leveldifficulty")
## 
## REML criterion at convergence: 1677
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2275 -0.4369  0.0299  0.5626  3.0006 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  2.173   1.474   
##  Residual             97.782   9.888   
## Number of obs: 242, groups:  subject, 121
## 
## Fixed effects:
##                                               Estimate Std. Error        df
## (Intercept)                                   15.28571    3.77879 217.89704
## groupI                                         1.88095    4.75488 217.89704
## groupS                                        -2.84821    4.53061 217.89704
## groupT                                        -2.17460    5.03839 217.89704
## game.experience.thirdsMedium                   2.93651    5.03839 217.89704
## game.experience.thirdsHigh                     1.92857    4.62806 217.89704
## timepost                                      16.42857    5.28562 109.00000
## groupI:game.experience.thirdsMedium           -4.60317    6.61139 217.89704
## groupS:game.experience.thirdsMedium           -1.12401    6.64281 217.89704
## groupT:game.experience.thirdsMedium           -0.04762    6.81813 217.89704
## groupI:game.experience.thirdsHigh             -0.59524    6.49945 217.89704
## groupS:game.experience.thirdsHigh              1.46726    6.65772 217.89704
## groupT:game.experience.thirdsHigh             -2.12302    6.39176 217.89704
## groupI:timepost                                0.07143    6.65092 109.00000
## groupS:timepost                                0.50893    6.33723 109.00000
## groupT:timepost                                4.01587    7.04749 109.00000
## game.experience.thirdsMedium:timepost         -6.53968    7.04749 109.00000
## game.experience.thirdsHigh:timepost           -2.64286    6.47353 109.00000
## groupI:game.experience.thirdsMedium:timepost   7.43968    9.24773 109.00000
## groupS:game.experience.thirdsMedium:timepost   6.72718    9.29168 109.00000
## groupT:game.experience.thirdsMedium:timepost  -2.70476    9.53692 109.00000
## groupI:game.experience.thirdsHigh:timepost     0.39286    9.09116 109.00000
## groupS:game.experience.thirdsHigh:timepost    -6.96131    9.31254 109.00000
## groupT:game.experience.thirdsHigh:timepost    -0.63492    8.94052 109.00000
##                                              t value Pr(>|t|)    
## (Intercept)                                    4.045 7.26e-05 ***
## groupI                                         0.396   0.6928    
## groupS                                        -0.629   0.5302    
## groupT                                        -0.432   0.6665    
## game.experience.thirdsMedium                   0.583   0.5606    
## game.experience.thirdsHigh                     0.417   0.6773    
## timepost                                       3.108   0.0024 ** 
## groupI:game.experience.thirdsMedium           -0.696   0.4870    
## groupS:game.experience.thirdsMedium           -0.169   0.8658    
## groupT:game.experience.thirdsMedium           -0.007   0.9944    
## groupI:game.experience.thirdsHigh             -0.092   0.9271    
## groupS:game.experience.thirdsHigh              0.220   0.8258    
## groupT:game.experience.thirdsHigh             -0.332   0.7401    
## groupI:timepost                                0.011   0.9915    
## groupS:timepost                                0.080   0.9361    
## groupT:timepost                                0.570   0.5700    
## game.experience.thirdsMedium:timepost         -0.928   0.3555    
## game.experience.thirdsHigh:timepost           -0.408   0.6839    
## groupI:game.experience.thirdsMedium:timepost   0.804   0.4229    
## groupS:game.experience.thirdsMedium:timepost   0.724   0.4706    
## groupT:game.experience.thirdsMedium:timepost  -0.284   0.7772    
## groupI:game.experience.thirdsHigh:timepost     0.043   0.9656    
## groupS:game.experience.thirdsHigh:timepost    -0.748   0.4564    
## groupT:game.experience.thirdsHigh:timepost    -0.071   0.9435    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: impasse_data_leveldifficulty
## 
## REML criterion at convergence: 414.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1782 -0.3207  0.0309  0.4050  2.2294 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  6.414   2.533   
##  Residual             91.054   9.542   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             17.167      2.850 53.767   6.023
## game.experience.thirdsMedium            -1.667      4.227 53.767  -0.394
## game.experience.thirdsHigh               1.333      4.506 53.767   0.296
## timepost                                16.500      3.896 27.000   4.236
## game.experience.thirdsMedium:timepost    0.900      5.778 27.000   0.156
## game.experience.thirdsHigh:timepost     -2.250      6.160 27.000  -0.365
##                                       Pr(>|t|)    
## (Intercept)                           1.59e-07 ***
## game.experience.thirdsMedium          0.694938    
## game.experience.thirdsHigh            0.768454    
## timepost                              0.000237 ***
## game.experience.thirdsMedium:timepost 0.877380    
## game.experience.thirdsHigh:timepost   0.717740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.674                            
## gm.xprnc.tH -0.632  0.426                     
## timepost    -0.683  0.461  0.432              
## gm.xprnc.M:  0.461 -0.683 -0.291 -0.674       
## gm.xprnc.H:  0.432 -0.291 -0.683 -0.632  0.426
##     contrast game.experience.thirds estimate       SE df   t.ratio      p.value
## 1 pre - post                    Low   -16.50 3.895590 27 -4.235559 0.0002367051
## 2 pre - post                 Medium   -17.40 4.267404 27 -4.077420 0.0003604987
## 3 pre - post                   High   -14.25 4.771103 27 -2.986731 0.0059355428
##    cohens_d
## 1 -4.235559
## 2 -4.077420
## 3 -2.986731
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium post 0.7666667 4.227174 53.76719 0.18136623 0.9820355
## 2    Low - High post 0.9166667 4.506183 53.76719 0.20342420 0.9774550
## 3 Medium - High post 0.1500000 4.682963 53.76719 0.03203101 0.9994345
##     cohens_d
## 1 0.18136623
## 2 0.20342420
## 3 0.03203101
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium  pre  1.666667 4.227174 53.76719  0.3942744 0.9180164
## 2    Low - High  pre -1.333333 4.506183 53.76719 -0.2958898 0.9529272
## 3 Medium - High  pre -3.000000 4.682963 53.76719 -0.6406201 0.7984234
##     cohens_d
## 1  0.3942744
## 2 -0.2958898
## 3 -0.6406201
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              16.5 3.90 27     8.51     24.5
##  Medium                           17.4 4.27 27     8.64     26.2
##  High                             14.2 4.77 27     4.46     24.0
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -0.90 5.78 27  -0.156  0.9867
##  Low - High        2.25 6.16 27   0.365  0.9293
##  Medium - High     3.15 6.40 27   0.492  0.8757
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: tutorial_data_leveldifficulty
## 
## REML criterion at convergence: 444.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5970 -0.3546  0.0706  0.4795  2.6252 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)   4.769   2.184  
##  Residual             123.205  11.100  
## Number of obs: 62, groups:  subject, 31
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            13.1111     3.7709 55.9223   3.477
## game.experience.thirdsMedium            2.8889     5.1978 55.9223   0.556
## game.experience.thirdsHigh             -0.1944     4.9884 55.9223  -0.039
## timepost                               20.4444     5.2325 28.0000   3.907
## game.experience.thirdsMedium:timepost  -9.2444     7.2125 28.0000  -1.282
## game.experience.thirdsHigh:timepost    -3.2778     6.9219 28.0000  -0.474
##                                       Pr(>|t|)    
## (Intercept)                           0.000989 ***
## game.experience.thirdsMedium          0.580568    
## game.experience.thirdsHigh            0.969046    
## timepost                              0.000539 ***
## game.experience.thirdsMedium:timepost 0.210451    
## game.experience.thirdsHigh:timepost   0.639503    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.725                            
## gm.xprnc.tH -0.756  0.548                     
## timepost    -0.694  0.503  0.524              
## gm.xprnc.M:  0.503 -0.694 -0.380 -0.725       
## gm.xprnc.H:  0.524 -0.380 -0.694 -0.756  0.548
##     contrast game.experience.thirds  estimate       SE df   t.ratio
## 1 pre - post                    Low -20.44444 5.232487 28 -3.907213
## 2 pre - post                 Medium -11.20000 4.963973 28 -2.256257
## 3 pre - post                   High -17.16667 4.531467 28 -3.788324
##        p.value  cohens_d
## 1 0.0005386079 -3.907213
## 2 0.0320516869 -2.256257
## 3 0.0007390373 -3.788324
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium post  6.355556 5.197762 55.92235  1.2227484 0.4449085
## 2    Low - High post  3.472222 4.988370 55.92235  0.6960635 0.7667632
## 3 Medium - High post -2.883333 4.843749 55.92235 -0.5952690 0.8232193
##     cohens_d
## 1  1.2227484
## 2  0.6960635
## 3 -0.5952690
##        contrast time   estimate       SE       df     t.ratio   p.value
## 1  Low - Medium  pre -2.8888889 5.197762 55.92235 -0.55579471 0.8439349
## 2    Low - High  pre  0.1944444 4.988370 55.92235  0.03897956 0.9991627
## 3 Medium - High  pre  3.0833333 4.843749 55.92235  0.63655931 0.8006583
##      cohens_d
## 1 -0.55579471
## 2  0.03897956
## 3  0.63655931
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                              20.4 5.23 28     9.73     31.2
##  Medium                           11.2 4.96 28     1.03     21.4
##  High                             17.2 4.53 28     7.88     26.4
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      9.24 7.21 28   1.282  0.4170
##  Low - High        3.28 6.92 28   0.474  0.8842
##  Medium - High    -5.97 6.72 28  -0.888  0.6524
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: original_data_leveldifficulty
## 
## REML criterion at convergence: 406.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3640 -0.3514  0.0267  0.5852  1.7673 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev. 
##  subject  (Intercept) 3.117e-18 1.766e-09
##  Residual             8.492e+01 9.215e+00
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             15.286      3.483 54.000   4.389
## game.experience.thirdsMedium             2.937      4.644 54.000   0.632
## game.experience.thirdsHigh               1.929      4.266 54.000   0.452
## timepost                                16.429      4.926 54.000   3.335
## game.experience.thirdsMedium:timepost   -6.540      6.568 54.000  -0.996
## game.experience.thirdsHigh:timepost     -2.643      6.033 54.000  -0.438
##                                       Pr(>|t|)    
## (Intercept)                           5.34e-05 ***
## game.experience.thirdsMedium           0.52985    
## game.experience.thirdsHigh             0.65301    
## timepost                               0.00155 ** 
## game.experience.thirdsMedium:timepost  0.32382    
## game.experience.thirdsHigh:timepost    0.66307    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.750                            
## gm.xprnc.tH -0.816  0.612                     
## timepost    -0.707  0.530  0.577              
## gm.xprnc.M:  0.530 -0.707 -0.433 -0.750       
## gm.xprnc.H:  0.577 -0.433 -0.707 -0.816  0.612
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds   estimate       SE df   t.ratio
## 1 pre - post                    Low -16.428571 4.925723 27 -3.335261
## 2 pre - post                 Medium  -9.888889 4.344079 27 -2.276406
## 3 pre - post                   High -13.785714 3.483012 27 -3.957986
##        p.value  cohens_d
## 1 0.0024882141 -3.335261
## 2 0.0309677883 -2.276406
## 3 0.0004945448 -3.957986
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium post  3.6031746 4.644016 54  0.7758747 0.7193245  0.7758747
## 2    Low - High post  0.7142857 4.265801 54  0.1674447 0.9846661  0.1674447
## 3 Medium - High post -2.8888889 3.937156 54 -0.7337502 0.7446287 -0.7337502
##        contrast time  estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre -2.936508 4.644016 54 -0.6323208 0.8030377 -0.6323208
## 2    Low - High  pre -1.928571 4.265801 54 -0.4521007 0.8936827 -0.4521007
## 3 Medium - High  pre  1.007937 3.937156 54  0.2560062 0.9645397  0.2560062
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             16.43 4.93 27    6.322     26.5
##  Medium                           9.89 4.34 27    0.976     18.8
##  High                            13.79 3.48 27    6.639     20.9
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      6.54 6.57 27   0.996  0.5858
##  Low - High        2.64 6.03 27   0.438  0.9000
##  Medium - High    -3.90 5.57 27  -0.700  0.7656
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: safe_data_leveldifficulty
## 
## REML criterion at convergence: 408.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.39271 -0.59303 -0.08869  0.65476  1.84815 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  3.177   1.783   
##  Residual             85.243   9.233   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            12.4375     2.3508 53.9304   5.291
## game.experience.thirdsMedium            1.8125     4.0717 53.9304   0.445
## game.experience.thirdsHigh              3.3958     4.5015 53.9304   0.754
## timepost                               16.9375     3.2643 27.0000   5.189
## game.experience.thirdsMedium:timepost   0.1875     5.6539 27.0000   0.033
## game.experience.thirdsHigh:timepost    -9.6042     6.2506 27.0000  -1.537
##                                       Pr(>|t|)    
## (Intercept)                           2.28e-06 ***
## game.experience.thirdsMedium             0.658    
## game.experience.thirdsHigh               0.454    
## timepost                              1.83e-05 ***
## game.experience.thirdsMedium:timepost    0.974    
## game.experience.thirdsHigh:timepost      0.136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.577                            
## gm.xprnc.tH -0.522  0.302                     
## timepost    -0.694  0.401  0.363              
## gm.xprnc.M:  0.401 -0.694 -0.209 -0.577       
## gm.xprnc.H:  0.363 -0.209 -0.694 -0.522  0.302
##     contrast game.experience.thirds   estimate       SE df   t.ratio
## 1 pre - post                    Low -16.937500 3.264266 27 -5.188763
## 2 pre - post                 Medium -17.125000 4.616369 27 -3.709626
## 3 pre - post                   High  -7.333333 5.330524 27 -1.375725
##        p.value  cohens_d
## 1 1.834537e-05 -5.188763
## 2 9.491338e-04 -3.709626
## 3 1.802130e-01 -1.375725
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium post -2.000000 4.071722 53.93036 -0.4911927 0.8757954
## 2    Low - High post  6.208333 4.501458 53.93036  1.3791827 0.3588407
## 3 Medium - High post  8.208333 5.078330 53.93036  1.6163451 0.2475736
##     cohens_d
## 1 -0.4911927
## 2  1.3791827
## 3  1.6163451
##        contrast time  estimate       SE       df    t.ratio   p.value
## 1  Low - Medium  pre -1.812500 4.071722 53.93036 -0.4451433 0.8967487
## 2    Low - High  pre -3.395833 4.501458 53.93036 -0.7543852 0.7322973
## 3 Medium - High  pre -1.583333 5.078330 53.93036 -0.3117823 0.9478783
##     cohens_d
## 1 -0.4451433
## 2 -0.7543852
## 3 -0.3117823
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             16.94 3.26 27    10.24     23.6
##  Medium                          17.12 4.62 27     7.65     26.6
##  High                             7.33 5.33 27    -3.60     18.3
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium    -0.188 5.65 27  -0.033  0.9994
##  Low - High       9.604 6.25 27   1.537  0.2902
##  Medium - High    9.792 7.05 27   1.389  0.3608
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

7.4.1 Tables for leveldifficulty

7.4.1.1 Leveldifficulty Impasse Contrasts

7.4.1.2 Leveldifficulty Tutorial Contrasts

7.4.1.3 Leveldifficulty Original Contrasts

7.4.1.4 Leveldifficulty Safe Contrasts

7.5 Engagement

## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ group * game.experience.thirds * time + (1 | subject)
##    Data: filter(long_data.thirds, construct == "engagement")
## 
## REML criterion at convergence: 1293.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3418 -0.6610  0.0721  0.6086  2.6930 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             17.19    4.147   
## Number of obs: 242, groups:  subject, 121
## 
## Fixed effects:
##                                              Estimate Std. Error       df
## (Intercept)                                   36.0000     1.5673 218.0000
## groupI                                        -3.1667     1.9721 218.0000
## groupS                                        -2.3125     1.8791 218.0000
## groupT                                        -3.5556     2.0897 218.0000
## game.experience.thirdsMedium                  -3.1111     2.0897 218.0000
## game.experience.thirdsHigh                    -5.4286     1.9195 218.0000
## timepost                                      -2.2857     2.2165 218.0000
## groupI:game.experience.thirdsMedium            2.0778     2.7421 218.0000
## groupS:game.experience.thirdsMedium            0.7986     2.7551 218.0000
## groupT:game.experience.thirdsMedium            5.2667     2.8279 218.0000
## groupI:game.experience.thirdsHigh              5.8452     2.6957 218.0000
## groupS:game.experience.thirdsHigh              4.7411     2.7613 218.0000
## groupT:game.experience.thirdsHigh              5.8175     2.6510 218.0000
## groupI:timepost                                3.1190     2.7890 218.0000
## groupS:timepost                                0.8482     2.6574 218.0000
## groupT:timepost                                3.0635     2.9553 218.0000
## game.experience.thirdsMedium:timepost          3.1746     2.9553 218.0000
## game.experience.thirdsHigh:timepost            4.5714     2.7146 218.0000
## groupI:game.experience.thirdsMedium:timepost  -2.8079     3.8779 218.0000
## groupS:game.experience.thirdsMedium:timepost   0.6379     3.8963 218.0000
## groupT:game.experience.thirdsMedium:timepost  -4.8524     3.9992 218.0000
## groupI:game.experience.thirdsHigh:timepost    -5.9048     3.8123 218.0000
## groupS:game.experience.thirdsHigh:timepost    -4.1339     3.9051 218.0000
## groupT:game.experience.thirdsHigh:timepost    -3.5159     3.7491 218.0000
##                                              t value Pr(>|t|)    
## (Intercept)                                   22.970  < 2e-16 ***
## groupI                                        -1.606  0.10978    
## groupS                                        -1.231  0.21978    
## groupT                                        -1.701  0.09028 .  
## game.experience.thirdsMedium                  -1.489  0.13799    
## game.experience.thirdsHigh                    -2.828  0.00512 ** 
## timepost                                      -1.031  0.30357    
## groupI:game.experience.thirdsMedium            0.758  0.44943    
## groupS:game.experience.thirdsMedium            0.290  0.77220    
## groupT:game.experience.thirdsMedium            1.862  0.06389 .  
## groupI:game.experience.thirdsHigh              2.168  0.03121 *  
## groupS:game.experience.thirdsHigh              1.717  0.08741 .  
## groupT:game.experience.thirdsHigh              2.194  0.02926 *  
## groupI:timepost                                1.118  0.26465    
## groupS:timepost                                0.319  0.74989    
## groupT:timepost                                1.037  0.30106    
## game.experience.thirdsMedium:timepost          1.074  0.28391    
## game.experience.thirdsHigh:timepost            1.684  0.09361 .  
## groupI:game.experience.thirdsMedium:timepost  -0.724  0.46979    
## groupS:game.experience.thirdsMedium:timepost   0.164  0.87011    
## groupT:game.experience.thirdsMedium:timepost  -1.213  0.22631    
## groupI:game.experience.thirdsHigh:timepost    -1.549  0.12286    
## groupS:game.experience.thirdsHigh:timepost    -1.059  0.29095    
## groupT:game.experience.thirdsHigh:timepost    -0.938  0.34939    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 24 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: impasse_data_engagement
## 
## REML criterion at convergence: 310.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3758 -0.5390  0.0484  0.5995  1.7818 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             14.35    3.788   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            32.8333     1.0936 54.0000  30.024
## game.experience.thirdsMedium           -1.0333     1.6220 54.0000  -0.637
## game.experience.thirdsHigh              0.4167     1.7291 54.0000   0.241
## timepost                                0.8333     1.5465 54.0000   0.539
## game.experience.thirdsMedium:timepost   0.3667     2.2939 54.0000   0.160
## game.experience.thirdsHigh:timepost    -1.3333     2.4453 54.0000  -0.545
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium             0.527    
## game.experience.thirdsHigh               0.810    
## timepost                                 0.592    
## game.experience.thirdsMedium:timepost    0.874    
## game.experience.thirdsHigh:timepost      0.588    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.674                            
## gm.xprnc.tH -0.632  0.426                     
## timepost    -0.707  0.477  0.447              
## gm.xprnc.M:  0.477 -0.707 -0.302 -0.674       
## gm.xprnc.H:  0.447 -0.302 -0.707 -0.632  0.426
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds   estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low -0.8333333 1.546535 27 -0.5388391 0.5944133
## 2 pre - post                 Medium -1.2000000 1.694144 27 -0.7083224 0.4848159
## 3 pre - post                   High  0.5000000 1.894110 27  0.2639762 0.7938027
##     cohens_d
## 1 -0.5388391
## 2 -0.7083224
## 3  0.2639762
##        contrast time  estimate       SE df   t.ratio   p.value  cohens_d
## 1  Low - Medium post 0.6666667 1.622019 54 0.4110103 0.9112470 0.4110103
## 2    Low - High post 0.9166667 1.729078 54 0.5301476 0.8569141 0.5301476
## 3 Medium - High post 0.2500000 1.796911 54 0.1391277 0.9893875 0.1391277
##        contrast time   estimate       SE df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre  1.0333333 1.622019 54  0.6370660 0.8004016  0.6370660
## 2    Low - High  pre -0.4166667 1.729078 54 -0.2409762 0.9685140 -0.2409762
## 3 Medium - High  pre -1.4500000 1.796911 54 -0.8069404 0.7003753 -0.8069404
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             0.833 1.55 27    -2.34     4.01
##  Medium                          1.200 1.69 27    -2.28     4.68
##  High                           -0.500 1.89 27    -4.39     3.39
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium    -0.367 2.29 27  -0.160  0.9860
##  Low - High       1.333 2.45 27   0.545  0.8497
##  Medium - High    1.700 2.54 27   0.669  0.7833
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: tutorial_data_engagement
## 
## REML criterion at convergence: 345.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.44980 -0.58388  0.01015  0.60495  2.35396 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.7587  0.8711  
##  Residual             20.9665  4.5789  
## Number of obs: 62, groups:  subject, 31
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            32.4444     1.5537 55.9318  20.882
## game.experience.thirdsMedium            2.1556     2.1416 55.9318   1.007
## game.experience.thirdsHigh              0.3889     2.0553 55.9318   0.189
## timepost                                0.7778     2.1585 28.0000   0.360
## game.experience.thirdsMedium:timepost  -1.6778     2.9753 28.0000  -0.564
## game.experience.thirdsHigh:timepost     1.0556     2.8555 28.0000   0.370
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium             0.319    
## game.experience.thirdsHigh               0.851    
## timepost                                 0.721    
## game.experience.thirdsMedium:timepost    0.577    
## game.experience.thirdsHigh:timepost      0.714    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.725                            
## gm.xprnc.tH -0.756  0.548                     
## timepost    -0.695  0.504  0.525              
## gm.xprnc.M:  0.504 -0.695 -0.381 -0.725       
## gm.xprnc.H:  0.525 -0.381 -0.695 -0.756  0.548
##     contrast game.experience.thirds   estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low -0.7777778 2.158522 28 -0.3603289 0.7213052
## 2 pre - post                 Medium  0.9000000 2.047753 28  0.4395061 0.6636684
## 3 pre - post                   High -1.8333333 1.869335 28 -0.9807412 0.3351191
##     cohens_d
## 1 -0.3603289
## 2  0.4395061
## 3 -0.9807412
##        contrast time   estimate       SE       df    t.ratio   p.value
## 1  Low - Medium post -0.4777778 2.141595 55.93178 -0.2230943 0.9729488
## 2    Low - High post -1.4444444 2.055321 55.93178 -0.7027829 0.7628458
## 3 Medium - High post -0.9666667 1.995734 55.93178 -0.4843666 0.8789880
##     cohens_d
## 1 -0.2230943
## 2 -0.7027829
## 3 -0.4843666
##        contrast time   estimate       SE       df    t.ratio   p.value
## 1  Low - Medium  pre -2.1555556 2.141595 55.93178 -1.0065186 0.5758772
## 2    Low - High  pre -0.3888889 2.055321 55.93178 -0.1892108 0.9804639
## 3 Medium - High  pre  1.7666667 1.995734 55.93178  0.8852216 0.6518007
##     cohens_d
## 1 -1.0065186
## 2 -0.1892108
## 3  0.8852216
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             0.778 2.16 28    -3.64     5.20
##  Medium                         -0.900 2.05 28    -5.09     3.29
##  High                            1.833 1.87 28    -2.00     5.66
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium      1.68 2.98 28   0.564  0.8402
##  Low - High       -1.06 2.86 28  -0.370  0.9276
##  Medium - High    -2.73 2.77 28  -0.986  0.5917
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: original_data_engagement
## 
## REML criterion at convergence: 328.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10862 -0.58487  0.09614  0.57686  2.08310 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             19.87    4.458   
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error     df t value
## (Intercept)                             36.000      1.685 54.000  21.367
## game.experience.thirdsMedium            -3.111      2.246 54.000  -1.385
## game.experience.thirdsHigh              -5.429      2.063 54.000  -2.631
## timepost                                -2.286      2.383 54.000  -0.959
## game.experience.thirdsMedium:timepost    3.175      3.177 54.000   0.999
## game.experience.thirdsHigh:timepost      4.571      2.918 54.000   1.567
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium            0.1718    
## game.experience.thirdsHigh              0.0111 *  
## timepost                                0.3417    
## game.experience.thirdsMedium:timepost   0.3221    
## game.experience.thirdsHigh:timepost     0.1231    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.750                            
## gm.xprnc.tH -0.816  0.612                     
## timepost    -0.707  0.530  0.577              
## gm.xprnc.M:  0.530 -0.707 -0.433 -0.750       
## gm.xprnc.H:  0.577 -0.433 -0.707 -0.816  0.612
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
##     contrast game.experience.thirds   estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low  2.2857143 2.382715 27  0.9592897 0.3459250
## 2 pre - post                 Medium -0.8888889 2.101357 27 -0.4230070 0.6756404
## 3 pre - post                   High -2.2857143 1.684834 27 -1.3566405 0.1861312
##     cohens_d
## 1  0.9592897
## 2 -0.4230070
## 3 -1.3566405
##        contrast time    estimate       SE df     t.ratio   p.value    cohens_d
## 1  Low - Medium post -0.06349206 2.246446 54 -0.02826334 0.9995597 -0.02826334
## 2    Low - High post  0.85714286 2.063492 54  0.41538462 0.9094403  0.41538462
## 3 Medium - High post  0.92063492 1.904517 54  0.48339550 0.8794504  0.48339550
##        contrast time estimate       SE df  t.ratio    p.value cohens_d
## 1  Low - Medium  pre 3.111111 2.246446 54 1.384904 0.35585564 1.384904
## 2    Low - High  pre 5.428571 2.063492 54 2.630769 0.02935618 2.630769
## 3 Medium - High  pre 2.317460 1.904517 54 1.216823 0.44852784 1.216823
## boundary (singular) fit: see help('isSingular')
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                            -2.286 2.38 27    -7.17     2.60
##  Medium                          0.889 2.10 27    -3.42     5.20
##  High                            2.286 1.68 27    -1.17     5.74
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium     -3.17 3.18 27  -0.999  0.5837
##  Low - High       -4.57 2.92 27  -1.567  0.2771
##  Medium - High    -1.40 2.69 27  -0.519  0.8630
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: score ~ game.experience.thirds * time + (1 | subject)
##    Data: safe_data_engagement
## 
## REML criterion at convergence: 303.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.93598 -0.76511  0.07468  0.72704  1.96329 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.6296  0.7935  
##  Residual             12.0336  3.4689  
## Number of obs: 60, groups:  subject, 30
## 
## Fixed effects:
##                                       Estimate Std. Error      df t value
## (Intercept)                            33.6875     0.8896 53.8668  37.867
## game.experience.thirdsMedium           -2.3125     1.5409 53.8668  -1.501
## game.experience.thirdsHigh             -0.6875     1.7035 53.8668  -0.404
## timepost                               -1.4375     1.2265 27.0000  -1.172
## game.experience.thirdsMedium:timepost   3.8125     2.1243 27.0000   1.795
## game.experience.thirdsHigh:timepost     0.4375     2.3485 27.0000   0.186
##                                       Pr(>|t|)    
## (Intercept)                             <2e-16 ***
## game.experience.thirdsMedium            0.1393    
## game.experience.thirdsHigh              0.6881    
## timepost                                0.2514    
## game.experience.thirdsMedium:timepost   0.0839 .  
## game.experience.thirdsHigh:timepost     0.8536    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) gm.x.M gm.x.H timpst gm..M:
## gm.xprnc.tM -0.577                            
## gm.xprnc.tH -0.522  0.302                     
## timepost    -0.689  0.398  0.360              
## gm.xprnc.M:  0.398 -0.689 -0.208 -0.577       
## gm.xprnc.H:  0.360 -0.208 -0.689 -0.522  0.302
##     contrast game.experience.thirds estimate       SE df    t.ratio   p.value
## 1 pre - post                    Low   1.4375 1.226457 27  1.1720758 0.2514053
## 2 pre - post                 Medium  -2.3750 1.734471 27 -1.3692932 0.1821908
## 3 pre - post                   High   1.0000 2.002795 27  0.4993022 0.6216108
##     cohens_d
## 1  1.1720758
## 2 -1.3692932
## 3  0.4993022
##        contrast time estimate       SE       df    t.ratio   p.value   cohens_d
## 1  Low - Medium post    -1.50 1.540892 53.86683 -0.9734620 0.5966523 -0.9734620
## 2    Low - High post     0.25 1.703520 53.86683  0.1467549 0.9881994  0.1467549
## 3 Medium - High post     1.75 1.921830 53.86683  0.9105903 0.6360252  0.9105903
##        contrast time estimate       SE       df    t.ratio   p.value   cohens_d
## 1  Low - Medium  pre   2.3125 1.540892 53.86683  1.5007539 0.2986381  1.5007539
## 2    Low - High  pre   0.6875 1.703520 53.86683  0.4035760 0.9142824  0.4035760
## 3 Medium - High  pre  -1.6250 1.921830 53.86683 -0.8455481 0.6765678 -0.8455481
## $emtrends
##  game.experience.thirds time_num.trend   SE df lower.CL upper.CL
##  Low                             -1.44 1.23 27    -3.95     1.08
##  Medium                           2.38 1.73 27    -1.18     5.93
##  High                            -1.00 2.00 27    -5.11     3.11
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate   SE df t.ratio p.value
##  Low - Medium    -3.812 2.12 27  -1.795  0.1904
##  Low - High      -0.438 2.35 27  -0.186  0.9811
##  Medium - High    3.375 2.65 27   1.274  0.4217
## 
## Results are averaged over the levels of: time_num 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates

7.5.1 Tables for engagement

7.5.1.1 Engagement Impasse Contrasts

7.5.1.2 Engagement Tutorial Contrasts

7.5.1.3 Engagement Original Contrasts

7.5.1.4 Engagement Safe Contrasts