Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.8     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.1     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ scales::col_factor()           masks readr::col_factor()
## ✖ lubridate::day()               masks h2o::day()
## ✖ scales::discard()              masks purrr::discard()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ recipes::fixed()               masks stringr::fixed()
## ✖ lubridate::hour()              masks h2o::hour()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ TTR::momentum()                masks dials::momentum()
## ✖ lubridate::month()             masks h2o::month()
## ✖ yardstick::spec()              masks readr::spec()
## ✖ quantmod::summary()            masks h2o::summary(), base::summary()
## ✖ lubridate::week()              masks h2o::week()
## ✖ lubridate::year()              masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read_csv("../00_data/data_wrangled/data_clean.csv") %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## Rows: 1470 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (24): Age, DailyRate, DistanceFromHome, Education, EmployeeNumber, Envir...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "Attrition")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(Attrition ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         13 hours 6 minutes 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 3 days 
##     H2O cluster name:           H2O_started_from_R_ronjadahlin_qxv383 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.18 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.1 (2024-06-14)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 3 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2345)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
y <- "Attrition"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
    x = x,
    y = y,
    training_frame    = train_h2o, 
    validation_frame  = valid_h2o, 
    leaderboard_frame = test_h2o, 
    #max_runtime_secs  = 30,
    max_models        = 10, 
    exclude_algos     = "DeepLearning",
    nfolds            = 5, 
    seed              = 3456
)
##   |                                                                              |                                                                      |   0%  |                                                                              |======                                                                |   8%
## 22:03:06.394: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 22:03:06.396: AutoML: XGBoost is not available; skipping it.  |                                                                              |====================                                                  |  29%  |                                                                              |===============================================                       |  67%  |                                                                              |======================================================================| 100%

Examine the output of h2o.automl

models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                  model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_1_AutoML_5_20250423_220306 0.8281014 0.3298632
## 2                          GLM_1_AutoML_5_20250423_220306 0.8261597 0.3318676
## 3    StackedEnsemble_AllModels_1_AutoML_5_20250423_220306 0.8250809 0.3301943
## 4                          GBM_4_AutoML_5_20250423_220306 0.8185545 0.3461163
## 5                          DRF_1_AutoML_5_20250423_220306 0.8015102 0.3538021
## 6                          GBM_1_AutoML_5_20250423_220306 0.8011866 0.3513716
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9448252            0.2997573 0.3097286 0.09593178
## 2 0.9466326            0.2930421 0.3082111 0.09499409
## 3 0.9461063            0.2946602 0.3112418 0.09687146
## 4 0.9565239            0.3446602 0.3221756 0.10379710
## 5 0.9504370            0.3898058 0.3295324 0.10859158
## 6 0.9481461            0.3478964 0.3268063 0.10680236
## 
## [12 rows x 7 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_1_AutoML_5_20250423_220306 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              3/4
## 3      # GBM base models (used / total)              1/1
## 4      # GLM base models (used / total)              1/1
## 5      # DRF base models (used / total)              1/2
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.02949019
## RMSE:  0.1717271
## LogLoss:  0.1317953
## Mean Per-Class Error:  0.04117981
## AUC:  0.9913543
## AUCPR:  0.998036
## Gini:  0.9827085
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    146  12 0.075949  =12/158
## No        5 775 0.006410   =5/780
## Totals  151 787 0.018124  =17/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.606032   0.989151 280
## 2                       max f2  0.491206   0.993377 296
## 3                 max f0point5  0.612457   0.987245 278
## 4                 max accuracy  0.612457   0.981876 278
## 5                max precision  0.999826   1.000000   0
## 6                   max recall  0.491206   1.000000 296
## 7              max specificity  0.999826   1.000000   0
## 8             max absolute_mcc  0.612457   0.934652 278
## 9   max min_per_class_accuracy  0.762957   0.955128 248
## 10 max mean_per_class_accuracy  0.701173   0.963145 265
## 11                     max tns  0.999826 158.000000   0
## 12                     max fns  0.999826 779.000000   0
## 13                     max fps  0.020079 158.000000 399
## 14                     max tps  0.491206 780.000000 296
## 15                     max tnr  0.999826   1.000000   0
## 16                     max fnr  0.999826   0.998718   0
## 17                     max fpr  0.020079   1.000000 399
## 18                     max tpr  0.491206   1.000000 296
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.08616319
## RMSE:  0.2935357
## LogLoss:  0.3038717
## Mean Per-Class Error:  0.3192617
## AUC:  0.7613304
## AUCPR:  0.9570023
## Gini:  0.5226608
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left      7  12 0.631579   =12/19
## No        1 143 0.006944   =1/144
## Totals    8 155 0.079755  =13/163
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.444752   0.956522 154
## 2                       max f2  0.221461   0.979592 158
## 3                 max f0point5  0.444752   0.935864 154
## 4                 max accuracy  0.444752   0.920245 154
## 5                max precision  0.998253   1.000000   0
## 6                   max recall  0.221461   1.000000 158
## 7              max specificity  0.998253   1.000000   0
## 8             max absolute_mcc  0.444752   0.536942 154
## 9   max min_per_class_accuracy  0.896025   0.631579  97
## 10 max mean_per_class_accuracy  0.927727   0.721674  80
## 11                     max tns  0.998253  19.000000   0
## 12                     max fns  0.998253 143.000000   0
## 13                     max fps  0.032182  19.000000 162
## 14                     max tps  0.221461 144.000000 158
## 15                     max tnr  0.998253   1.000000   0
## 16                     max fnr  0.998253   0.993056   0
## 17                     max fpr  0.032182   1.000000 162
## 18                     max tpr  0.221461   1.000000 158
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09307648
## RMSE:  0.3050844
## LogLoss:  0.320178
## Mean Per-Class Error:  0.2351428
## AUC:  0.8503935
## AUCPR:  0.9504109
## Gini:  0.7007871
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     92  66 0.417722   =66/158
## No       41 739 0.052564   =41/780
## Totals  133 805 0.114072  =107/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.618114   0.932492 284
## 2                       max f2  0.200849   0.964109 382
## 3                 max f0point5  0.748316   0.925926 231
## 4                 max accuracy  0.624335   0.885928 283
## 5                max precision  0.999875   1.000000   0
## 6                   max recall  0.157833   1.000000 387
## 7              max specificity  0.999875   1.000000   0
## 8             max absolute_mcc  0.624335   0.570179 283
## 9   max min_per_class_accuracy  0.838339   0.784810 182
## 10 max mean_per_class_accuracy  0.748316   0.799821 231
## 11                     max tns  0.999875 158.000000   0
## 12                     max fns  0.999875 778.000000   0
## 13                     max fps  0.019574 158.000000 399
## 14                     max tps  0.157833 780.000000 387
## 15                     max tnr  0.999875   1.000000   0
## 16                     max fnr  0.999875   0.997436   0
## 17                     max fpr  0.019574   1.000000 399
## 18                     max tpr  0.157833   1.000000 387
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.899819 0.024623   0.903846   0.871134   0.888268   0.897959
## auc        0.864869 0.047371   0.850010   0.802424   0.860119   0.878811
## err        0.100181 0.024623   0.096154   0.128866   0.111732   0.102041
## err_count 19.000000 5.477226  20.000000  25.000000  20.000000  20.000000
## f0point5   0.922746 0.021448   0.918782   0.895062   0.911458   0.942118
##           cv_5_valid
## accuracy    0.937888
## auc         0.932979
## err         0.062112
## err_count  10.000000
## f0point5    0.946309
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.910988  0.027245   0.900497   0.878788   0.897436
## r2                  0.331436  0.065145   0.295306   0.253730   0.366695
## recall              0.974363  0.027818   1.000000   0.966667   0.972222
## residual_deviance 118.659770 34.186165 114.189445 168.070180 119.287560
## rmse                0.303038  0.041184   0.282136   0.361758   0.315623
## specificity         0.513264  0.164948   0.259259   0.545455   0.542857
##                   cv_4_valid cv_5_valid
## precision           0.944444   0.933775
## r2                  0.319239   0.422210
## recall              0.932927   1.000000
## residual_deviance 120.112110  71.639560
## rmse                0.304957   0.250717
## specificity         0.718750   0.500000

Save and Load

?h2o.getModel
?h2o.saveModel
?h2o.loadModel

h2o.getModel("StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_220113") %>%
    h2o.saveModel("h2o_models/")
## [1] "/Users/ronjadahlin/Desktop/PSU_DAT3100/11_module13/h2o_models/StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_220113"
best_model <- h2o.loadModel("h2o_models/StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_220113")

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
predictions_tbl <- predictions %>%
    as_tibble()

predictions_tbl %>%
    bind_cols(test_tbl)
## # A tibble: 369 × 35
##    predict   Left     No   Age Attrition BusinessTravel    DailyRate Department 
##    <fct>    <dbl>  <dbl> <dbl> <fct>     <fct>                 <dbl> <fct>      
##  1 Left    0.566  0.434     41 Left      Travel_Rarely          1102 Sales      
##  2 No      0.0114 0.989     49 No        Travel_Frequently       279 Research &…
##  3 No      0.306  0.694     33 No        Travel_Frequently      1392 Research &…
##  4 No      0.194  0.806     59 No        Travel_Rarely          1324 Research &…
##  5 No      0.0504 0.950     38 No        Travel_Frequently       216 Research &…
##  6 No      0.282  0.718     29 No        Travel_Rarely           153 Research &…
##  7 No      0.0313 0.969     34 No        Travel_Rarely          1346 Research &…
##  8 Left    0.920  0.0797    28 Left      Travel_Rarely           103 Research &…
##  9 No      0.482  0.518     22 No        Non-Travel             1123 Research &…
## 10 No      0.0179 0.982     53 No        Travel_Rarely          1219 Sales      
## # ℹ 359 more rows
## # ℹ 27 more variables: DistanceFromHome <dbl>, Education <dbl>,
## #   EducationField <fct>, EmployeeNumber <dbl>, EnvironmentSatisfaction <dbl>,
## #   Gender <fct>, HourlyRate <dbl>, JobInvolvement <dbl>, JobLevel <dbl>,
## #   JobRole <fct>, JobSatisfaction <dbl>, MaritalStatus <fct>,
## #   MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## #   OverTime <fct>, PercentSalaryHike <dbl>, PerformanceRating <dbl>, …

Evaluate model

performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_220113"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_220113"
## 
## 
## $model_checksum
## [1] "-5477638965910938064"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_b3ae_3"
## 
## 
## $frame_checksum
## [1] "-54192601206779456"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.74546e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.09593178
## 
## $RMSE
## [1] 0.3097286
## 
## $nobs
## [1] 369
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.2954603
## 
## $logloss
## [1] 0.3298632
## 
## $AUC
## [1] 0.8281014
## 
## $pr_auc
## [1] 0.9448252
## 
## $Gini
## [1] 0.6562028
## 
## $mean_per_class_error
## [1] 0.2997573
## 
## $domain
## [1] "Left" "No"  
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        Left  No  Error       Rate
## Left     25  35 0.5833 =  35 / 60
## No        5 304 0.0162 =  5 / 309
## Totals   30 339 0.1084 = 40 / 369
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.998872 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.998270 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.997997 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.997330 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.997268 0.025478 0.016116 0.060790 0.170732  0.800000 0.012945    0.983333
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.011878               0.012945                0.498139  59 305   1   4
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 0.983333 0.987055 0.016667 0.012945   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.140098 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.119244 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.089569 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.079660 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.067913 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.026979 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.406195   0.938272 338
## 2                       max f2  0.242736   0.969868 356
## 3                 max f0point5  0.453710   0.917124 332
## 4                 max accuracy  0.453710   0.891599 332
## 5                max precision  0.998872   1.000000   0
## 6                   max recall  0.242736   1.000000 356
## 7              max specificity  0.998872   1.000000   0
## 8             max absolute_mcc  0.453710   0.548151 332
## 9   max min_per_class_accuracy  0.851371   0.750000 246
## 10 max mean_per_class_accuracy  0.826511   0.763107 260
## 11                     max tns  0.998872  60.000000   0
## 12                     max fns  0.998872 308.000000   0
## 13                     max fps  0.026979  60.000000 368
## 14                     max tps  0.242736 309.000000 356
## 15                     max tnr  0.998872   1.000000   0
## 16                     max fnr  0.998872   0.996764   0
## 17                     max fpr  0.026979   1.000000 368
## 18                     max tpr  0.242736   1.000000 356
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate: 83.74 %, avg score: 82.62 %
##    group cumulative_data_fraction lower_threshold     lift cumulative_lift
## 1      1               0.01084011        0.997288 1.194175        1.194175
## 2      2               0.02168022        0.995434 0.895631        1.044903
## 3      3               0.03252033        0.994099 1.194175        1.094660
## 4      4               0.04065041        0.993462 1.194175        1.114563
## 5      5               0.05149051        0.992471 1.194175        1.131323
## 6      6               0.10027100        0.988103 1.127832        1.129625
## 7      7               0.15176152        0.982859 1.194175        1.151526
## 8      8               0.20054201        0.978371 1.127832        1.145762
## 9      9               0.30081301        0.965992 1.161900        1.151141
## 10    10               0.40108401        0.949477 1.129625        1.145762
## 11    11               0.50135501        0.921102 1.161900        1.148990
## 12    12               0.59891599        0.885463 1.028317        1.129333
## 13    13               0.69918699        0.828207 1.065075        1.120117
## 14    14               0.79945799        0.723312 0.871425        1.088925
## 15    15               0.89972900        0.458767 1.000525        1.079074
## 16    16               1.00000000        0.026979 0.290475        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.998117                 1.000000         0.998117
## 2       0.750000 0.996487                 0.875000         0.997302
## 3       1.000000 0.994768                 0.916667         0.996457
## 4       1.000000 0.993633                 0.933333         0.995892
## 5       1.000000 0.992972                 0.947368         0.995278
## 6       0.944444 0.989847                 0.945946         0.992636
## 7       1.000000 0.985275                 0.964286         0.990138
## 8       0.944444 0.980652                 0.959459         0.987831
## 9       0.972973 0.972096                 0.963964         0.982586
## 10      0.945946 0.959492                 0.959459         0.976812
## 11      0.972973 0.935919                 0.962162         0.968634
## 12      0.861111 0.904902                 0.945701         0.958252
## 13      0.891892 0.861469                 0.937984         0.944372
## 14      0.729730 0.771025                 0.911864         0.922630
## 15      0.837838 0.608045                 0.903614         0.887571
## 16      0.243243 0.275444                 0.837398         0.826193
##    capture_rate cumulative_capture_rate       gain cumulative_gain
## 1      0.012945                0.012945  19.417476       19.417476
## 2      0.009709                0.022654 -10.436893        4.490291
## 3      0.012945                0.035599  19.417476        9.466019
## 4      0.009709                0.045307  19.417476       11.456311
## 5      0.012945                0.058252  19.417476       13.132345
## 6      0.055016                0.113269  12.783172       12.962477
## 7      0.061489                0.174757  19.417476       15.152566
## 8      0.055016                0.229773  12.783172       14.576227
## 9      0.116505                0.346278  16.189976       15.114143
## 10     0.113269                0.459547  12.962477       14.576227
## 11     0.116505                0.576052  16.189976       14.898977
## 12     0.100324                0.676375   2.831715       12.933269
## 13     0.106796                0.783172   6.507478       12.011741
## 14     0.087379                0.870550 -12.857518        8.892546
## 15     0.100324                0.970874   0.052480        7.907358
## 16     0.029126                1.000000 -70.952506        0.000000
##    kolmogorov_smirnov
## 1            0.012945
## 2            0.005987
## 3            0.018932
## 4            0.028641
## 5            0.041586
## 6            0.079935
## 7            0.141424
## 8            0.179773
## 9            0.279612
## 10           0.359547
## 11           0.459385
## 12           0.476375
## 13           0.516505
## 14           0.437217
## 15           0.437540
## 16           0.000000
## 
## $residual_deviance
## [1] 243.439
## 
## $null_deviance
## [1] 327.7324
## 
## $AIC
## [1] 251.439
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 368
## 
## $residual_degrees_of_freedom
## [1] 365
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.40619464311803:
##        Left  No    Error     Rate
## Left     25  35 0.583333   =35/60
## No        5 304 0.016181   =5/309
## Totals   30 339 0.108401  =40/369
h2o.metric(performance_h2o)
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.998872 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.998270 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.997997 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.997330 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.997268 0.025478 0.016116 0.060790 0.170732  0.800000 0.012945    0.983333
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.011878               0.012945                0.498139  59 305   1   4
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 0.983333 0.987055 0.016667 0.012945   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.140098 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.119244 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.089569 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.079660 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.067913 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.026979 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368