Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.8     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.0     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Search for functions across packages at https://www.tidymodels.org/find/
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ scales::col_factor()           masks readr::col_factor()
## ✖ lubridate::day()               masks h2o::day()
## ✖ scales::discard()              masks purrr::discard()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ recipes::fixed()               masks stringr::fixed()
## ✖ lubridate::hour()              masks h2o::hour()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ TTR::momentum()                masks dials::momentum()
## ✖ lubridate::month()             masks h2o::month()
## ✖ yardstick::spec()              masks readr::spec()
## ✖ quantmod::summary()            masks h2o::summary(), base::summary()
## ✖ lubridate::week()              masks h2o::week()
## ✖ lubridate::year()              masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read_csv("../00_data/data_wrangled/data_clean.csv") %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## Rows: 1470 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (24): Age, DailyRate, DistanceFromHome, Education, EmployeeNumber, Envir...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "Attrition")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(Attrition ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         1 days 1 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 3 days 
##     H2O cluster name:           H2O_started_from_R_alyssadalessio_fyb567 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.23 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.1 (2024-06-14)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 3 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2345)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
y <- "Attrition"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
    x = x,
    y = y, 
    training_frame = train_h2o, 
    validation_frame = valid_h2o,
    leaderboard_frame = test_h2o, 
    # max_runtime_secs = 30, 
    max_models = 10,
    exclude_algos = "DeepLearning",
    nfolds = 5, 
    seed = 3456
)
##   |                                                                              |                                                                      |   0%  |                                                                              |====                                                                  |   5%
## 20:12:02.727: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.  |                                                                              |=============                                                         |  18%  |                                                                              |======================                                                |  31%  |                                                                              |======================================================================| 100%

Evaluate the output of h2o.automl

models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                   model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_1_AutoML_11_20250423_201202 0.8336570 0.3250877
## 2    StackedEnsemble_AllModels_1_AutoML_11_20250423_201202 0.8275620 0.3311942
## 3                          GLM_1_AutoML_11_20250423_201202 0.8261597 0.3318676
## 4                          GBM_2_AutoML_11_20250423_201202 0.8080906 0.3494185
## 5                          GBM_1_AutoML_11_20250423_201202 0.8071197 0.3487110
## 6                      XGBoost_1_AutoML_11_20250423_201202 0.8033981 0.3540796
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9524284            0.3231392 0.3086336 0.09525469
## 2 0.9511222            0.2895631 0.3124007 0.09759422
## 3 0.9466326            0.2930421 0.3082111 0.09499409
## 4 0.9476344            0.3379450 0.3243230 0.10518538
## 5 0.9495705            0.3177994 0.3248711 0.10554125
## 6 0.9408309            0.3513754 0.3235331 0.10467365
## 
## [12 rows x 7 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_1_AutoML_11_20250423_201202 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              4/5
## 3      # GBM base models (used / total)              1/1
## 4  # XGBoost base models (used / total)              1/1
## 5      # GLM base models (used / total)              1/1
## 6      # DRF base models (used / total)              1/2
## 7                 Metalearner algorithm              GLM
## 8    Metalearner fold assignment scheme           Random
## 9                    Metalearner nfolds                5
## 10              Metalearner fold_column               NA
## 11   Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.04039314
## RMSE:  0.2009804
## LogLoss:  0.1597266
## Mean Per-Class Error:  0.07919507
## AUC:  0.979828
## AUCPR:  0.9952117
## Gini:  0.959656
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    135  23 0.145570  =23/158
## No       10 770 0.012821  =10/780
## Totals  145 793 0.035181  =33/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.614781   0.979021 271
## 2                       max f2  0.406882   0.987842 305
## 3                 max f0point5  0.679826   0.978822 254
## 4                 max accuracy  0.657200   0.964819 262
## 5                max precision  0.999563   1.000000   0
## 6                   max recall  0.406882   1.000000 305
## 7              max specificity  0.999563   1.000000   0
## 8             max absolute_mcc  0.657200   0.873516 262
## 9   max min_per_class_accuracy  0.763278   0.930380 227
## 10 max mean_per_class_accuracy  0.740545   0.939549 237
## 11                     max tns  0.999563 158.000000   0
## 12                     max fns  0.999563 778.000000   0
## 13                     max fps  0.021597 158.000000 399
## 14                     max tps  0.406882 780.000000 305
## 15                     max tnr  0.999563   1.000000   0
## 16                     max fnr  0.999563   0.997436   0
## 17                     max fpr  0.021597   1.000000 399
## 18                     max tpr  0.406882   1.000000 305
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.08564897
## RMSE:  0.2926585
## LogLoss:  0.3030019
## Mean Per-Class Error:  0.3455775
## AUC:  0.7627924
## AUCPR:  0.9562414
## Gini:  0.5255848
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left      6  13 0.684211   =13/19
## No        1 143 0.006944   =1/144
## Totals    7 156 0.085890  =14/163
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.385576   0.953333 155
## 2                       max f2  0.203388   0.979592 158
## 3                 max f0point5  0.453411   0.934211 153
## 4                 max accuracy  0.453411   0.914110 153
## 5                max precision  0.999475   1.000000   0
## 6                   max recall  0.203388   1.000000 158
## 7              max specificity  0.999475   1.000000   0
## 8             max absolute_mcc  0.453411   0.498118 153
## 9   max min_per_class_accuracy  0.886259   0.659722 100
## 10 max mean_per_class_accuracy  0.646522   0.705592 144
## 11                     max tns  0.999475  19.000000   0
## 12                     max fns  0.999475 143.000000   0
## 13                     max fps  0.047843  19.000000 162
## 14                     max tps  0.203388 144.000000 158
## 15                     max tnr  0.999475   1.000000   0
## 16                     max fnr  0.999475   0.993056   0
## 17                     max fpr  0.047843   1.000000 162
## 18                     max tpr  0.203388   1.000000 158
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.09449772
## RMSE:  0.3074048
## LogLoss:  0.3212977
## Mean Per-Class Error:  0.3001947
## AUC:  0.8490506
## AUCPR:  0.9547088
## Gini:  0.6981013
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     68  90 0.569620   =90/158
## No       24 756 0.030769   =24/780
## Totals   92 846 0.121535  =114/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.513265   0.929889 317
## 2                       max f2  0.184838   0.964153 387
## 3                 max f0point5  0.718349   0.922810 241
## 4                 max accuracy  0.515316   0.878465 316
## 5                max precision  0.999181   1.000000   0
## 6                   max recall  0.184838   1.000000 387
## 7              max specificity  0.999181   1.000000   0
## 8             max absolute_mcc  0.636646   0.536015 279
## 9   max min_per_class_accuracy  0.841613   0.772152 181
## 10 max mean_per_class_accuracy  0.790133   0.790084 209
## 11                     max tns  0.999181 158.000000   0
## 12                     max fns  0.999181 778.000000   0
## 13                     max fps  0.017583 158.000000 399
## 14                     max tps  0.184838 780.000000 387
## 15                     max tnr  0.999181   1.000000   0
## 16                     max fnr  0.999181   0.997436   0
## 17                     max fpr  0.017583   1.000000 399
## 18                     max tpr  0.184838   1.000000 387
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.891432 0.024434   0.909091   0.886010   0.855556   0.887755
## auc        0.849945 0.026559   0.862076   0.889922   0.838818   0.836959
## err        0.108568 0.024434   0.090909   0.113990   0.144444   0.112245
## err_count 20.400000 4.827007  19.000000  22.000000  26.000000  22.000000
## f0point5   0.916626 0.025622   0.935175   0.900243   0.881988   0.920897
##           cv_5_valid
## accuracy    0.918750
## auc         0.821948
## err         0.081250
## err_count  13.000000
## f0point5    0.944828
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.903702  0.032252   0.926316   0.880952   0.860606
## r2                  0.311269  0.052565   0.345603   0.373210   0.290453
## recall              0.973408  0.010980   0.972376   0.986667   0.979310
## residual_deviance 120.180690 17.574808 113.260960 134.430590 130.997650
## rmse                0.306345  0.026419   0.275545   0.329445   0.333377
## specificity         0.489902  0.083904   0.500000   0.534884   0.342857
##                   cv_4_valid cv_5_valid
## precision           0.912281   0.938356
## r2                  0.310664   0.236416
## recall              0.957055   0.971631
## residual_deviance 129.853960  92.360300
## rmse                0.310678   0.282680
## specificity         0.545455   0.526316

Save and Load

?h2o.getModel
?h2o.saveModel
?h2o.loadModel

# h2o.getModel("GLM_1_AutoML_6_20250422_204739") %>%
  #  h2o.saveModel("h2o_models/")

# h2o.getModel("StackedEnsemble_BestOfFamily_1_AutoML_6_20250422_204739") %>%
   # h2o.saveModel("h2o_models/")

best_model <- models_h2o@leader

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
predictions_tbl <- predictions %>%
    as_tibble()

predictions_tbl %>% 
    bind_cols(test_tbl)
## # A tibble: 369 × 35
##    predict   Left     No   Age Attrition BusinessTravel    DailyRate Department 
##    <fct>    <dbl>  <dbl> <dbl> <fct>     <fct>                 <dbl> <fct>      
##  1 No      0.571  0.429     41 Left      Travel_Rarely          1102 Sales      
##  2 No      0.0186 0.981     49 No        Travel_Frequently       279 Research &…
##  3 No      0.410  0.590     33 No        Travel_Frequently      1392 Research &…
##  4 No      0.240  0.760     59 No        Travel_Rarely          1324 Research &…
##  5 No      0.0455 0.954     38 No        Travel_Frequently       216 Research &…
##  6 No      0.341  0.659     29 No        Travel_Rarely           153 Research &…
##  7 No      0.0342 0.966     34 No        Travel_Rarely          1346 Research &…
##  8 Left    0.920  0.0804    28 Left      Travel_Rarely           103 Research &…
##  9 No      0.368  0.632     22 No        Non-Travel             1123 Research &…
## 10 No      0.0268 0.973     53 No        Travel_Rarely          1219 Sales      
## # ℹ 359 more rows
## # ℹ 27 more variables: DistanceFromHome <dbl>, Education <dbl>,
## #   EducationField <fct>, EmployeeNumber <dbl>, EnvironmentSatisfaction <dbl>,
## #   Gender <fct>, HourlyRate <dbl>, JobInvolvement <dbl>, JobLevel <dbl>,
## #   JobRole <fct>, JobSatisfaction <dbl>, MaritalStatus <fct>,
## #   MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## #   OverTime <fct>, PercentSalaryHike <dbl>, PerformanceRating <dbl>, …

Evaluate model

?h2o.performance
performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_1_AutoML_11_20250423_201202"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_1_AutoML_11_20250423_201202"
## 
## 
## $model_checksum
## [1] "-1353109486293577944"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_84df_3"
## 
## 
## $frame_checksum
## [1] "-54192601206779456"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.745454e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.09525469
## 
## $RMSE
## [1] 0.3086336
## 
## $nobs
## [1] 369
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.3004329
## 
## $logloss
## [1] 0.3250877
## 
## $AUC
## [1] 0.833657
## 
## $pr_auc
## [1] 0.9524284
## 
## $Gini
## [1] 0.6673139
## 
## $mean_per_class_error
## [1] 0.3231392
## 
## $domain
## [1] "Left" "No"  
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        Left  No  Error       Rate
## Left     22  38 0.6333 =  38 / 60
## No        4 305 0.0129 =  4 / 309
## Totals   26 343 0.1138 = 42 / 369
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.999138 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.998393 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.998301 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.998284 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.998197 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.186603 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.184337 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.093343 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.080355 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.063383 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.040375 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.338453   0.935583 342
## 2                       max f2  0.331377   0.967130 345
## 3                 max f0point5  0.803109   0.916003 267
## 4                 max accuracy  0.457557   0.886179 332
## 5                max precision  0.999138   1.000000   0
## 6                   max recall  0.186603   1.000000 363
## 7              max specificity  0.999138   1.000000   0
## 8             max absolute_mcc  0.457557   0.523400 332
## 9   max min_per_class_accuracy  0.830093   0.770227 250
## 10 max mean_per_class_accuracy  0.803109   0.784385 267
## 11                     max tns  0.999138  60.000000   0
## 12                     max fns  0.999138 308.000000   0
## 13                     max fps  0.040375  60.000000 368
## 14                     max tps  0.186603 309.000000 363
## 15                     max tnr  0.999138   1.000000   0
## 16                     max fnr  0.999138   0.996764   0
## 17                     max fpr  0.040375   1.000000 368
## 18                     max tpr  0.186603   1.000000 363
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate: 83.74 %, avg score: 82.82 %
##    group cumulative_data_fraction lower_threshold     lift cumulative_lift
## 1      1               0.01084011        0.998225 1.194175        1.194175
## 2      2               0.02168022        0.997247 1.194175        1.194175
## 3      3               0.03252033        0.996829 1.194175        1.194175
## 4      4               0.04065041        0.995987 1.194175        1.194175
## 5      5               0.05149051        0.994895 1.194175        1.194175
## 6      6               0.10027100        0.990247 1.127832        1.161900
## 7      7               0.15176152        0.983997 1.131323        1.151526
## 8      8               0.20054201        0.979805 1.127832        1.145762
## 9      9               0.30081301        0.966587 1.129625        1.140383
## 10    10               0.40108401        0.947058 1.161900        1.145762
## 11    11               0.50135501        0.922632 1.129625        1.142535
## 12    12               0.59891599        0.883244 1.161003        1.145543
## 13    13               0.69918699        0.817651 1.032800        1.129375
## 14    14               0.79945799        0.702771 0.871425        1.097022
## 15    15               0.89972900        0.501538 0.903700        1.075477
## 16    16               1.00000000        0.040375 0.322750        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.998529                 1.000000         0.998529
## 2       1.000000 0.997770                 1.000000         0.998149
## 3       1.000000 0.996975                 1.000000         0.997758
## 4       1.000000 0.996245                 1.000000         0.997455
## 5       1.000000 0.995628                 1.000000         0.997071
## 6       0.944444 0.992047                 0.972973         0.994627
## 7       0.947368 0.987033                 0.964286         0.992050
## 8       0.944444 0.982008                 0.959459         0.989608
## 9       0.945946 0.973794                 0.954955         0.984336
## 10      0.972973 0.957572                 0.959459         0.977645
## 11      0.945946 0.935275                 0.956757         0.969171
## 12      0.972222 0.903677                 0.959276         0.958503
## 13      0.864865 0.854414                 0.945736         0.943575
## 14      0.729730 0.772793                 0.918644         0.922155
## 15      0.756757 0.624763                 0.900602         0.889012
## 16      0.270270 0.282454                 0.837398         0.828192
##    capture_rate cumulative_capture_rate       gain cumulative_gain
## 1      0.012945                0.012945  19.417476       19.417476
## 2      0.012945                0.025890  19.417476       19.417476
## 3      0.012945                0.038835  19.417476       19.417476
## 4      0.009709                0.048544  19.417476       19.417476
## 5      0.012945                0.061489  19.417476       19.417476
## 6      0.055016                0.116505  12.783172       16.189976
## 7      0.058252                0.174757  13.132345       15.152566
## 8      0.055016                0.229773  12.783172       14.576227
## 9      0.113269                0.343042  12.962477       14.038310
## 10     0.116505                0.459547  16.189976       14.576227
## 11     0.113269                0.572816  12.962477       14.253477
## 12     0.113269                0.686084  16.100324       14.554321
## 13     0.103560                0.789644   3.279979       12.937458
## 14     0.087379                0.877023 -12.857518        9.702156
## 15     0.090615                0.967638  -9.630018        7.547666
## 16     0.032362                1.000000 -67.725007        0.000000
##    kolmogorov_smirnov
## 1            0.012945
## 2            0.025890
## 3            0.038835
## 4            0.048544
## 5            0.061489
## 6            0.099838
## 7            0.141424
## 8            0.179773
## 9            0.259709
## 10           0.359547
## 11           0.439482
## 12           0.536084
## 13           0.556311
## 14           0.477023
## 15           0.417638
## 16           0.000000
## 
## $residual_deviance
## [1] 239.9147
## 
## $null_deviance
## [1] 327.7324
## 
## $AIC
## [1] 249.9147
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 368
## 
## $residual_degrees_of_freedom
## [1] 364
h2o.auc(performance_h2o)
## [1] 0.833657
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.338453262465108:
##        Left  No    Error     Rate
## Left     22  38 0.633333   =38/60
## No        4 305 0.012945   =4/309
## Totals   26 343 0.113821  =42/369
h2o.metric(performance_h2o)
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.999138 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.998393 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.998301 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.998284 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.998197 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.186603 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.184337 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.093343 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.080355 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.063383 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.040375 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368