Goal is to automate building and tuning a classification model to predict employee attrition, using the h2o::h2o.automl.

Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.8     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.2
## ✔ recipes      1.1.0     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
library(tidyquant)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo 
## ── Attaching core tidyquant packages ──────────────────────── tidyquant 1.0.9 ──
## ✔ PerformanceAnalytics 2.0.4      ✔ TTR                  0.24.4
## ✔ quantmod             0.4.26     ✔ xts                  0.14.0── Conflicts ────────────────────────────────────────── tidyquant_conflicts() ──
## ✖ zoo::as.Date()                 masks base::as.Date()
## ✖ zoo::as.Date.numeric()         masks base::as.Date.numeric()
## ✖ scales::col_factor()           masks readr::col_factor()
## ✖ lubridate::day()               masks h2o::day()
## ✖ scales::discard()              masks purrr::discard()
## ✖ dplyr::filter()                masks stats::filter()
## ✖ xts::first()                   masks dplyr::first()
## ✖ recipes::fixed()               masks stringr::fixed()
## ✖ lubridate::hour()              masks h2o::hour()
## ✖ dplyr::lag()                   masks stats::lag()
## ✖ xts::last()                    masks dplyr::last()
## ✖ PerformanceAnalytics::legend() masks graphics::legend()
## ✖ TTR::momentum()                masks dials::momentum()
## ✖ lubridate::month()             masks h2o::month()
## ✖ yardstick::spec()              masks readr::spec()
## ✖ quantmod::summary()            masks h2o::summary(), base::summary()
## ✖ lubridate::week()              masks h2o::week()
## ✖ lubridate::year()              masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read_csv("../00_data/data_wrangled/data_clean.csv") %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## Rows: 1470 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (8): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (24): Age, DailyRate, DistanceFromHome, Education, EmployeeNumber, Envir...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "Attrition")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(Attrition ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         1 days 8 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    1 year, 4 months and 3 days 
##     H2O cluster name:           H2O_started_from_R_katiegoy_fyb567 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   1.34 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.4.1 (2024-06-14)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (1 year, 4 months and 3 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = (0.85), seed = 2345)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
y <- "Attrition"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
    x = x,
    y = y,
    training_frame    = train_h2o,
    validation_frame  = valid_h2o, 
    leaderboard_frame = test_h2o, 
    max_runtime_secs  = 30,
    nfolds            = 5,
    seed              = 3456
)
##   |                                                                              |                                                                      |   0%  |                                                                              |====                                                                  |   6%
## 20:10:14.482: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 20:10:14.485: AutoML: XGBoost is not available; skipping it.  |                                                                              |===========                                                           |  16%  |                                                                              |====================                                                  |  28%  |                                                                              |=====================                                                 |  30%  |                                                                              |======================                                                |  32%  |                                                                              |=============================                                         |  42%  |                                                                              |===============================                                       |  44%  |                                                                              |====================================                                  |  51%  |                                                                              |========================================                              |  58%  |                                                                              |=============================================                         |  64%  |                                                                              |==================================================                    |  71%  |                                                                              |=======================================================               |  78%  |                                                                              |===========================================================           |  85%  |                                                                              |================================================================      |  92%  |                                                                              |===================================================================== |  98%  |                                                                              |======================================================================| 100%
models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                  model_id       auc   logloss
## 1 StackedEnsemble_BestOfFamily_4_AutoML_4_20250423_201014 0.8319849 0.3257733
## 2 StackedEnsemble_BestOfFamily_3_AutoML_4_20250423_201014 0.8286408 0.3244964
## 3 StackedEnsemble_BestOfFamily_2_AutoML_4_20250423_201014 0.8283172 0.3241037
## 4                          GLM_1_AutoML_4_20250423_201014 0.8261597 0.3318676
## 5 StackedEnsemble_BestOfFamily_1_AutoML_4_20250423_201014 0.8258900 0.3346208
## 6    StackedEnsemble_AllModels_2_AutoML_4_20250423_201014 0.8236785 0.3286664
##       aucpr mean_per_class_error      rmse        mse
## 1 0.9513913            0.2997573 0.3075189 0.09456785
## 2 0.9509546            0.2677994 0.3068511 0.09415761
## 3 0.9504244            0.2677994 0.3068317 0.09414572
## 4 0.9466326            0.2930421 0.3082111 0.09499409
## 5 0.9494447            0.2627023 0.3115649 0.09707267
## 6 0.9491895            0.3148058 0.3100281 0.09611743
## 
## [43 rows x 7 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_4_AutoML_4_20250423_201014 
## Model Summary for Stacked Ensemble: 
##                                          key            value
## 1                          Stacking strategy cross_validation
## 2       Number of base models (used / total)              4/5
## 3           # GBM base models (used / total)              1/1
## 4           # GLM base models (used / total)              1/1
## 5  # DeepLearning base models (used / total)              0/1
## 6           # DRF base models (used / total)              2/2
## 7                      Metalearner algorithm              GLM
## 8         Metalearner fold assignment scheme           Random
## 9                         Metalearner nfolds                5
## 10                   Metalearner fold_column               NA
## 11        Custom metalearner hyperparameters             None
## 
## 
## H2OBinomialMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.0652915
## RMSE:  0.255522
## LogLoss:  0.2318406
## Mean Per-Class Error:  0.1570675
## AUC:  0.9352929
## AUCPR:  0.9829444
## Gini:  0.8705858
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left    111  47 0.297468  =47/158
## No       13 767 0.016667  =13/780
## Totals  124 814 0.063966  =60/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.559398   0.962359 296
## 2                       max f2  0.516864   0.976968 309
## 3                 max f0point5  0.714107   0.951200 259
## 4                 max accuracy  0.559398   0.936034 296
## 5                max precision  0.999279   1.000000   0
## 6                   max recall  0.282750   1.000000 364
## 7              max specificity  0.999279   1.000000   0
## 8             max absolute_mcc  0.559398   0.757864 296
## 9   max min_per_class_accuracy  0.794072   0.864103 213
## 10 max mean_per_class_accuracy  0.827794   0.866675 197
## 11                     max tns  0.999279 158.000000   0
## 12                     max fns  0.999279 774.000000   0
## 13                     max fps  0.031284 158.000000 399
## 14                     max tps  0.282750 780.000000 364
## 15                     max tnr  0.999279   1.000000   0
## 16                     max fnr  0.999279   0.992308   0
## 17                     max fpr  0.031284   1.000000 399
## 18                     max tpr  0.282750   1.000000 364
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  0.08504426
## RMSE:  0.2916235
## LogLoss:  0.3092363
## Mean Per-Class Error:  0.3684211
## AUC:  0.7474415
## AUCPR:  0.9475314
## Gini:  0.494883
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error     Rate
## Left      5  14 0.736842   =14/19
## No        0 144 0.000000   =0/144
## Totals    5 158 0.085890  =14/163
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.282227   0.953642 157
## 2                       max f2  0.282227   0.980926 157
## 3                 max f0point5  0.564962   0.940860 149
## 4                 max accuracy  0.564962   0.914110 149
## 5                max precision  0.999503   1.000000   0
## 6                   max recall  0.282227   1.000000 157
## 7              max specificity  0.999503   1.000000   0
## 8             max absolute_mcc  0.564962   0.528183 149
## 9   max min_per_class_accuracy  0.876992   0.638889  97
## 10 max mean_per_class_accuracy  0.564962   0.722953 149
## 11                     max tns  0.999503  19.000000   0
## 12                     max fns  0.999503 143.000000   0
## 13                     max fps  0.073249  19.000000 162
## 14                     max tps  0.282227 144.000000 157
## 15                     max tnr  0.999503   1.000000   0
## 16                     max fnr  0.999503   0.993056   0
## 17                     max fpr  0.073249   1.000000 162
## 18                     max tpr  0.282227   1.000000 157
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.0954623
## RMSE:  0.3089697
## LogLoss:  0.3352035
## Mean Per-Class Error:  0.351347
## AUC:  0.8428595
## AUCPR:  0.9459445
## Gini:  0.6857189
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        Left  No    Error      Rate
## Left     49 109 0.689873  =109/158
## No       10 770 0.012821   =10/780
## Totals   59 879 0.126866  =119/938
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.440213   0.928270 344
## 2                       max f2  0.287690   0.966543 377
## 3                 max f0point5  0.744858   0.923558 234
## 4                 max accuracy  0.586330   0.876333 304
## 5                max precision  0.964186   0.964981  54
## 6                   max recall  0.287690   1.000000 377
## 7              max specificity  0.999969   0.993671   0
## 8             max absolute_mcc  0.728388   0.524371 243
## 9   max min_per_class_accuracy  0.829570   0.765823 183
## 10 max mean_per_class_accuracy  0.744858   0.792851 234
## 11                     max tns  0.999969 157.000000   0
## 12                     max fns  0.999969 768.000000   0
## 13                     max fps  0.066993 158.000000 399
## 14                     max tps  0.287690 780.000000 377
## 15                     max tnr  0.999969   0.993671   0
## 16                     max fnr  0.999969   0.984615   0
## 17                     max fpr  0.066993   1.000000 399
## 18                     max tpr  0.287690   1.000000 377
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                mean       sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
## accuracy   0.891969 0.021824   0.895238   0.880829   0.865922   0.892857
## auc        0.839198 0.037756   0.799962   0.869767   0.888095   0.822830
## err        0.108031 0.021824   0.104762   0.119171   0.134078   0.107143
## err_count 20.400000 4.827007  22.000000  23.000000  24.000000  21.000000
## f0point5   0.916621 0.018093   0.923400   0.912596   0.890151   0.916955
##           cv_5_valid
## accuracy    0.925000
## auc         0.815336
## err         0.075000
## err_count  12.000000
## f0point5    0.940000
## 
## ---
##                         mean        sd cv_1_valid cv_2_valid cv_3_valid
## precision           0.903557  0.020926   0.911917   0.904459   0.870370
## r2                  0.298479  0.082610   0.233869   0.380535   0.352050
## recall              0.973325  0.016850   0.972376   0.946667   0.979167
## residual_deviance 124.732500 19.594534 135.183650 140.042500 124.069130
## rmse                0.307598  0.016599   0.301975   0.327515   0.319252
## specificity         0.467739  0.109148   0.413793   0.651163   0.400000
##                   cv_4_valid cv_5_valid
## precision           0.903409   0.927632
## r2                  0.337128   0.188814
## recall              0.975460   0.992958
## residual_deviance 133.121260  91.245960
## rmse                0.304656   0.284591
## specificity         0.484849   0.388889

Save and Load

?h2o.getModel
?h2o.saveModel
?h2o.loadModel

model <- h2o.getModel("StackedEnsemble_BestOfFamily_2_AutoML_2_20250422_121303") 
   model_path <- h2o.saveModel(object = model, path = "h2o_models/", force = TRUE)

best_model <- h2o.loadModel(model_path)

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
##   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
predictions_tbl <- predictions %>%
    as_tibble()

predictions_tbl %>% 
    bind_cols(test_tbl)
## # A tibble: 369 × 35
##    predict   Left     No   Age Attrition BusinessTravel    DailyRate Department 
##    <fct>    <dbl>  <dbl> <dbl> <fct>     <fct>                 <dbl> <fct>      
##  1 No      0.510  0.490     41 Left      Travel_Rarely          1102 Sales      
##  2 No      0.0177 0.982     49 No        Travel_Frequently       279 Research &…
##  3 No      0.359  0.641     33 No        Travel_Frequently      1392 Research &…
##  4 No      0.204  0.796     59 No        Travel_Rarely          1324 Research &…
##  5 No      0.0531 0.947     38 No        Travel_Frequently       216 Research &…
##  6 No      0.318  0.682     29 No        Travel_Rarely           153 Research &…
##  7 No      0.0349 0.965     34 No        Travel_Rarely          1346 Research &…
##  8 Left    0.901  0.0990    28 Left      Travel_Rarely           103 Research &…
##  9 No      0.337  0.663     22 No        Non-Travel             1123 Research &…
## 10 No      0.0222 0.978     53 No        Travel_Rarely          1219 Sales      
## # ℹ 359 more rows
## # ℹ 27 more variables: DistanceFromHome <dbl>, Education <dbl>,
## #   EducationField <fct>, EmployeeNumber <dbl>, EnvironmentSatisfaction <dbl>,
## #   Gender <fct>, HourlyRate <dbl>, JobInvolvement <dbl>, JobLevel <dbl>,
## #   JobRole <fct>, JobSatisfaction <dbl>, MaritalStatus <fct>,
## #   MonthlyIncome <dbl>, MonthlyRate <dbl>, NumCompaniesWorked <dbl>,
## #   OverTime <fct>, PercentSalaryHike <dbl>, PerformanceRating <dbl>, …

Evaluate model

?h2o.performance
performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_2_AutoML_2_20250422_121303"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_2_AutoML_2_20250422_121303"
## 
## 
## $model_checksum
## [1] "2553004402731027456"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_a921_3"
## 
## 
## $frame_checksum
## [1] "-54192601206779456"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.745453e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.09414572
## 
## $RMSE
## [1] 0.3068317
## 
## $nobs
## [1] 369
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.3085774
## 
## $logloss
## [1] 0.3241037
## 
## $AUC
## [1] 0.8283172
## 
## $pr_auc
## [1] 0.9504244
## 
## $Gini
## [1] 0.6566343
## 
## $mean_per_class_error
## [1] 0.2677994
## 
## $domain
## [1] "Left" "No"  
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        Left  No  Error       Rate
## Left     30  30 0.5000 =  30 / 60
## No       11 298 0.0356 = 11 / 309
## Totals   41 328 0.1111 = 41 / 369
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.996628 0.006452 0.004042 0.015974 0.165312  1.000000 0.003236    1.000000
## 2  0.996550 0.012862 0.008078 0.031546 0.168022  1.000000 0.006472    1.000000
## 3  0.996400 0.019231 0.012107 0.046729 0.170732  1.000000 0.009709    1.000000
## 4  0.995127 0.025559 0.016129 0.061538 0.173442  1.000000 0.012945    1.000000
## 5  0.994630 0.031847 0.020145 0.075988 0.176152  1.000000 0.016181    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns fns fps tps
## 1     0.022971               0.003236                0.501618  60 308   0   1
## 2     0.032530               0.006472                0.503236  60 307   0   2
## 3     0.039895               0.009709                0.504854  60 306   0   3
## 4     0.046130               0.012945                0.506472  60 305   0   4
## 5     0.051645               0.016181                0.508091  60 304   0   5
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996764 0.000000 0.003236   0
## 2 1.000000 0.993528 0.000000 0.006472   1
## 3 1.000000 0.990291 0.000000 0.009709   2
## 4 1.000000 0.987055 0.000000 0.012945   3
## 5 1.000000 0.983819 0.000000 0.016181   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 364  0.195339 0.918276 0.965625 0.875354 0.850949  0.848901 1.000000
## 365  0.192739 0.916914 0.965022 0.873375 0.848238  0.846575 1.000000
## 366  0.151425 0.915556 0.964419 0.871404 0.845528  0.844262 1.000000
## 367  0.099002 0.914201 0.963818 0.869443 0.842818  0.841962 1.000000
## 368  0.092206 0.912851 0.963217 0.867490 0.840108  0.839674 1.000000
## 369  0.046577 0.911504 0.962617 0.865546 0.837398  0.837398 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 364    0.083333     0.265973               0.083333                0.541667   5
## 365    0.066667     0.237568               0.066667                0.533333   4
## 366    0.050000     0.205458               0.050000                0.525000   3
## 367    0.033333     0.167527               0.033333                0.516667   2
## 368    0.016667     0.118299               0.016667                0.508333   1
## 369    0.000000     0.000000               0.000000                0.500000   0
##     fns fps tps      tnr      fnr      fpr      tpr idx
## 364   0  55 309 0.083333 0.000000 0.916667 1.000000 363
## 365   0  56 309 0.066667 0.000000 0.933333 1.000000 364
## 366   0  57 309 0.050000 0.000000 0.950000 1.000000 365
## 367   0  58 309 0.033333 0.000000 0.966667 1.000000 366
## 368   0  59 309 0.016667 0.000000 0.983333 1.000000 367
## 369   0  60 309 0.000000 0.000000 1.000000 1.000000 368
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold      value idx
## 1                       max f1  0.558664   0.935636 327
## 2                       max f2  0.272902   0.969260 357
## 3                 max f0point5  0.579639   0.919826 324
## 4                 max accuracy  0.558664   0.888889 327
## 5                max precision  0.996628   1.000000   0
## 6                   max recall  0.272902   1.000000 357
## 7              max specificity  0.996628   1.000000   0
## 8             max absolute_mcc  0.558664   0.545280 327
## 9   max min_per_class_accuracy  0.835161   0.766667 250
## 10 max mean_per_class_accuracy  0.829362   0.770065 252
## 11                     max tns  0.996628  60.000000   0
## 12                     max fns  0.996628 308.000000   0
## 13                     max fps  0.046577  60.000000 368
## 14                     max tps  0.272902 309.000000 357
## 15                     max tnr  0.996628   1.000000   0
## 16                     max fnr  0.996628   0.996764   0
## 17                     max fpr  0.046577   1.000000 368
## 18                     max tpr  0.272902   1.000000 357
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate: 83.74 %, avg score: 83.04 %
##    group cumulative_data_fraction lower_threshold     lift cumulative_lift
## 1      1               0.01084011        0.994789 1.194175        1.194175
## 2      2               0.02168022        0.993394 1.194175        1.194175
## 3      3               0.03252033        0.992820 1.194175        1.194175
## 4      4               0.04065041        0.991366 1.194175        1.194175
## 5      5               0.05149051        0.990624 1.194175        1.194175
## 6      6               0.10027100        0.985145 1.127832        1.161900
## 7      7               0.15176152        0.980467 1.131323        1.151526
## 8      8               0.20054201        0.975479 1.127832        1.145762
## 9      9               0.30081301        0.961188 1.129625        1.140383
## 10    10               0.40108401        0.941455 1.161900        1.145762
## 11    11               0.50135501        0.919741 1.129625        1.142535
## 12    12               0.59891599        0.876693 1.061489        1.129333
## 13    13               0.69918699        0.823749 1.065075        1.120117
## 14    14               0.79945799        0.717122 0.935975        1.097022
## 15    15               0.89972900        0.496993 0.903700        1.075477
## 16    16               1.00000000        0.046577 0.322750        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.996176                 1.000000         0.996176
## 2       1.000000 0.994222                 1.000000         0.995199
## 3       1.000000 0.993144                 1.000000         0.994514
## 4       1.000000 0.991980                 1.000000         0.994007
## 5       1.000000 0.990895                 1.000000         0.993352
## 6       0.944444 0.988115                 0.972973         0.990804
## 7       0.947368 0.983000                 0.964286         0.988156
## 8       0.944444 0.978004                 0.959459         0.985687
## 9       0.945946 0.968936                 0.954955         0.980103
## 10      0.972973 0.951093                 0.959459         0.972851
## 11      0.945946 0.932131                 0.956757         0.964707
## 12      0.888889 0.897836                 0.945701         0.953814
## 13      0.891892 0.851408                 0.937984         0.939128
## 14      0.783784 0.777306                 0.918644         0.918831
## 15      0.756757 0.636025                 0.900602         0.887314
## 16      0.270270 0.319751                 0.837398         0.830404
##    capture_rate cumulative_capture_rate       gain cumulative_gain
## 1      0.012945                0.012945  19.417476       19.417476
## 2      0.012945                0.025890  19.417476       19.417476
## 3      0.012945                0.038835  19.417476       19.417476
## 4      0.009709                0.048544  19.417476       19.417476
## 5      0.012945                0.061489  19.417476       19.417476
## 6      0.055016                0.116505  12.783172       16.189976
## 7      0.058252                0.174757  13.132345       15.152566
## 8      0.055016                0.229773  12.783172       14.576227
## 9      0.113269                0.343042  12.962477       14.038310
## 10     0.116505                0.459547  16.189976       14.576227
## 11     0.113269                0.572816  12.962477       14.253477
## 12     0.103560                0.676375   6.148867       12.933269
## 13     0.106796                0.783172   6.507478       12.011741
## 14     0.093851                0.877023  -6.402519        9.702156
## 15     0.090615                0.967638  -9.630018        7.547666
## 16     0.032362                1.000000 -67.725007        0.000000
##    kolmogorov_smirnov
## 1            0.012945
## 2            0.025890
## 3            0.038835
## 4            0.048544
## 5            0.061489
## 6            0.099838
## 7            0.141424
## 8            0.179773
## 9            0.259709
## 10           0.359547
## 11           0.439482
## 12           0.476375
## 13           0.516505
## 14           0.477023
## 15           0.417638
## 16           0.000000
## 
## $residual_deviance
## [1] 239.1885
## 
## $null_deviance
## [1] 327.7324
## 
## $AIC
## [1] 247.1885
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 368
## 
## $residual_degrees_of_freedom
## [1] 365
h2o.auc(performance_h2o)
## [1] 0.8283172
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.558663852668478:
##        Left  No    Error     Rate
## Left     30  30 0.500000   =30/60
## No       11 298 0.035599  =11/309
## Totals   41 328 0.111111  =41/369