Load Packages
Load dan install packages yang akan digunakan
pacman::p_load(readxl, haven, dplyr, tidyr, survey, janitor, magrittr, ggplot2, openxlsx)
Load Data
dataku <- dataku %>%
mutate(
r101_num = as.numeric(as.character(r101)),
r102_num = as.numeric(as.character(r102)),
kabu = r101_num * 100 + r102_num,
jmlh_pddk = 100,
NAS = 100
) %>%
mutate(
NAS = as_factor(NAS),
r101 = as_factor(r101),
r105 = as_factor(r105),
r404 = as_factor(r404),
r405 = as_factor(r405),
kelum = as_factor(KELUM),
tamat = as_factor(TAMAT),
pekerjaan = as_factor(PEKERJAAN),
pendapatan = as_factor(PENDAPATAN)
)
Desain sampling
Teknik pemilihan sampel yang digunakan adalah Stratified Multi Stage
Cluster Sampling dengan tahapan:
• Tahap 1: Memilih kabupaten/kota secara PPS-Systematic dengan size
jumlah keluarga.
• Tahap 2: Memilih blok sensus pada kabupaten/kota terpilih secara
PPS Systematic dengan size jumlah keluarga dengan memperhatikan strata
daerah perkotaan/perdesaan.
• Tahap 3: memilih 10 rumah tangga pada setiap BS dari hasil
pemutakhiran secara Systematic Sampling dengan implicite stratification
pendidikan kepala rumah tangga.
• Tahap 4: Memilih 1 eligible responden usia 15-79 tahun secara
random dengan implicite stratification berdasarkan usia anggota rumah
tangga eligible.
snlik.design <- svydesign(
id = ~idkab + idbs + idruta + ididv,
strata = ~strata_ojk + strata_bs,
data = dataku,
weights = ~weight_final_5,
fpc = ~fpc1 + fpc2 + fpc3 + fpc4,
nest = FALSE
)
options(survey.adjust.domain.lonely = TRUE)
options(survey.lonely.psu = "adjust")
# Fungsi untuk menghasilkan tabel
generate_table <- function(var) {
tabel <- svyby(
formula = ~INKLUSI,
denom = ~jmlh_pddk,
by = as.formula(paste0("~", var)),
design = snlik.design,
deff = TRUE,
svyratio,
vartype = c("se", "ci", "ci", "cv", "cvpct", "var")
)
tabel[is.na(tabel)] <- 0
tabel <- tabel %>%
mutate(
theta = round(`INKLUSI/jmlh_pddk` * 100, 2),
SE = round(`se.INKLUSI/jmlh_pddk` * 100, 2),
VAR = round(SE^2, 2),
CI_LOWER = pmax(round(`ci_l` * 100, 2), 0),
CI_UPPER = pmin(round(`ci_u` * 100, 2), 100),
RSE = round(`cv%`, 2),
DEFF = round(DEff, 2)
)
tabel$Disaggr <- as.character(levels(dataku[[var]])[tabel[[var]]])
tabel %>% select(Disaggr, theta, SE, RSE, CI_LOWER, CI_UPPER, VAR, DEFF) %>%
rename(INKLUSI = theta, `CI LOWER` = CI_LOWER, `CI UPPER` = CI_UPPER)
}
Daftar variabel
vars <- c("NAS", "r101", "r105", "r404", "r405", "kelum", "tamat", "pekerjaan", "pendapatan")
## A Workbook object.
##
## Worksheets:
## Sheet 1: "NAS"
##
##
## Sheet 2: "R101"
##
##
## Sheet 3: "R105"
##
##
## Sheet 4: "R404"
##
##
## Sheet 5: "R405"
##
##
## Sheet 6: "KELUM"
##
##
## Sheet 7: "TAMAT"
##
##
## Sheet 8: "PEKERJAAN"
##
##
## Sheet 9: "PENDAPATAN"
##
##
##
## Worksheet write order: 1, 2, 3, 4, 5, 6, 7, 8, 9
## Active Sheet 1: "NAS"
## Position: 1
Export
saveWorkbook(wb, "RSE_INKLUSI_KOMPOSIT_SNLIK_2025.xlsx", overwrite = TRUE)
rm(list=ls()) #Clear environment
Direktorat Statistik Kesejahteraan Rakyat, BPS, saptahas@bps.go.id
LS0tDQp0aXRsZTogIlBlbmdoaXR1bmdhbiBSU0UgSW5kaWthdG9yIDxicj4gZGVuZ2FuIDQgX2Zpbml0ZSBQb3B1bGF0aW9uIENvcnJlY3Rpb25fIChmcGMpIg0KYXV0aG9yOiAiU2FwdGEgSGFzdGhvIFBvbmNvIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIGNvZGVfZm9sZGluZzogc2hvdw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdGhlbWU6IGpvdXJuYWwNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogIHdvcmRfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCi0tLQ0KDQpgYGB7PWh0bWx9DQo8c3R5bGU+DQpib2R5ew0KdGV4dC1hbGlnbjoganVzdGlmeX0NCjwvc3R5bGU+DQpgYGANCg0KDQojIExvYWQgUGFja2FnZXMNCg0KTG9hZCBkYW4gaW5zdGFsbCBwYWNrYWdlcyB5YW5nIGFrYW4gZGlndW5ha2FuDQoNCmBgYHtyfQ0KcGFjbWFuOjpwX2xvYWQocmVhZHhsLCBoYXZlbiwgZHBseXIsIHRpZHlyLCBzdXJ2ZXksIGphbml0b3IsIG1hZ3JpdHRyLCBnZ3Bsb3QyLCBvcGVueGxzeCkNCmBgYA0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCnNldHdkKCJEOlxcMi4gUGVuZ2VtYmFuZ2FuIGRpcmlcXDEgRXhlcmNpc2UgQmFndXNcXFJTRSBEaXJlY3QgSW5kaWthdG9yXFwiKQ0KYGBgDQoNCiMgTG9hZCBEYXRhDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KZGF0YWt1IDwtIHJlYWRfc2F2KCIyMDI1MDIxNCBTTkxJS19XT1JLSU5HX0FMVDEuc2F2IikNCmBgYA0KDQpgYGB7cn0NCmRhdGFrdSA8LSBkYXRha3UgJT4lDQogIG11dGF0ZSgNCiAgICByMTAxX251bSA9IGFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKHIxMDEpKSwNCiAgICByMTAyX251bSA9IGFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKHIxMDIpKSwgIA0KICAgIGthYnUgPSByMTAxX251bSAqIDEwMCArIHIxMDJfbnVtLA0KICAgIGptbGhfcGRkayA9IDEwMCwNCiAgICBOQVMgPSAxMDANCiAgKSAlPiUNCiAgbXV0YXRlKA0KICAgIE5BUyA9IGFzX2ZhY3RvcihOQVMpLA0KICAgIHIxMDEgPSBhc19mYWN0b3IocjEwMSksDQogICAgcjEwNSA9IGFzX2ZhY3RvcihyMTA1KSwNCiAgICByNDA0ID0gYXNfZmFjdG9yKHI0MDQpLA0KICAgIHI0MDUgPSBhc19mYWN0b3IocjQwNSksDQogICAga2VsdW0gPSBhc19mYWN0b3IoS0VMVU0pLA0KICAgIHRhbWF0ID0gYXNfZmFjdG9yKFRBTUFUKSwNCiAgICBwZWtlcmphYW4gPSBhc19mYWN0b3IoUEVLRVJKQUFOKSwNCiAgICBwZW5kYXBhdGFuID0gYXNfZmFjdG9yKFBFTkRBUEFUQU4pDQogICkNCmBgYA0KDQojIERlc2FpbiBzYW1wbGluZw0KDQpUZWtuaWsgcGVtaWxpaGFuIHNhbXBlbCB5YW5nIGRpZ3VuYWthbiBhZGFsYWggU3RyYXRpZmllZCBNdWx0aSBTdGFnZSBDbHVzdGVyIFNhbXBsaW5nIGRlbmdhbiB0YWhhcGFuOiANCg0K4oCiIFRhaGFwIDE6IE1lbWlsaWgga2FidXBhdGVuL2tvdGEgc2VjYXJhIFBQUy1TeXN0ZW1hdGljIGRlbmdhbiBzaXplIGp1bWxhaCBrZWx1YXJnYS4gDQoNCuKAoiBUYWhhcCAyOiBNZW1pbGloIGJsb2sgc2Vuc3VzIHBhZGEga2FidXBhdGVuL2tvdGEgdGVycGlsaWggc2VjYXJhIFBQUyBTeXN0ZW1hdGljIGRlbmdhbiBzaXplIGp1bWxhaCBrZWx1YXJnYSBkZW5nYW4gbWVtcGVyaGF0aWthbiBzdHJhdGEgZGFlcmFoIHBlcmtvdGFhbi9wZXJkZXNhYW4uDQoNCuKAoiBUYWhhcCAzOiBtZW1pbGloIDEwIHJ1bWFoIHRhbmdnYSBwYWRhIHNldGlhcCBCUyBkYXJpIGhhc2lsIHBlbXV0YWtoaXJhbiBzZWNhcmEgU3lzdGVtYXRpYyBTYW1wbGluZyBkZW5nYW4gaW1wbGljaXRlIHN0cmF0aWZpY2F0aW9uIHBlbmRpZGlrYW4ga2VwYWxhIHJ1bWFoIHRhbmdnYS4NCg0K4oCiIFRhaGFwIDQ6IE1lbWlsaWggMSBlbGlnaWJsZSByZXNwb25kZW4gdXNpYSAxNS03OSB0YWh1biBzZWNhcmEgcmFuZG9tIGRlbmdhbiBpbXBsaWNpdGUgc3RyYXRpZmljYXRpb24gYmVyZGFzYXJrYW4gdXNpYSBhbmdnb3RhIHJ1bWFoIHRhbmdnYSBlbGlnaWJsZS4NCg0KDQpgYGB7cn0NCnNubGlrLmRlc2lnbiA8LSBzdnlkZXNpZ24oDQogIGlkID0gfmlka2FiICsgaWRicyArIGlkcnV0YSArIGlkaWR2LA0KICBzdHJhdGEgPSB+c3RyYXRhX29qayArIHN0cmF0YV9icywNCiAgZGF0YSA9IGRhdGFrdSwNCiAgd2VpZ2h0cyA9IH53ZWlnaHRfZmluYWxfNSwNCiAgZnBjID0gfmZwYzEgKyBmcGMyICsgZnBjMyArIGZwYzQsDQogIG5lc3QgPSBGQUxTRQ0KKQ0KYGBgDQoNCmBgYHtyfQ0Kb3B0aW9ucyhzdXJ2ZXkuYWRqdXN0LmRvbWFpbi5sb25lbHkgPSBUUlVFKQ0Kb3B0aW9ucyhzdXJ2ZXkubG9uZWx5LnBzdSA9ICJhZGp1c3QiKQ0KDQojIEZ1bmdzaSB1bnR1ayBtZW5naGFzaWxrYW4gdGFiZWwNCmdlbmVyYXRlX3RhYmxlIDwtIGZ1bmN0aW9uKHZhcikgew0KICB0YWJlbCA8LSBzdnlieSgNCiAgICBmb3JtdWxhID0gfklOS0xVU0ksIA0KICAgIGRlbm9tID0gfmptbGhfcGRkaywgDQogICAgYnkgPSBhcy5mb3JtdWxhKHBhc3RlMCgifiIsIHZhcikpLCANCiAgICBkZXNpZ24gPSBzbmxpay5kZXNpZ24sIA0KICAgIGRlZmYgPSBUUlVFLCANCiAgICBzdnlyYXRpbywgDQogICAgdmFydHlwZSA9IGMoInNlIiwgImNpIiwgImNpIiwgImN2IiwgImN2cGN0IiwgInZhciIpDQogICkNCiAgDQogIHRhYmVsW2lzLm5hKHRhYmVsKV0gPC0gMA0KICANCiAgdGFiZWwgPC0gdGFiZWwgJT4lDQogICAgbXV0YXRlKA0KICAgICAgdGhldGEgPSByb3VuZChgSU5LTFVTSS9qbWxoX3BkZGtgICogMTAwLCAyKSwNCiAgICAgIFNFID0gcm91bmQoYHNlLklOS0xVU0kvam1saF9wZGRrYCAqIDEwMCwgMiksDQogICAgICBWQVIgPSByb3VuZChTRV4yLCAyKSwNCiAgICAgIENJX0xPV0VSID0gcG1heChyb3VuZChgY2lfbGAgKiAxMDAsIDIpLCAwKSwNCiAgICAgIENJX1VQUEVSID0gcG1pbihyb3VuZChgY2lfdWAgKiAxMDAsIDIpLCAxMDApLA0KICAgICAgUlNFID0gcm91bmQoYGN2JWAsIDIpLA0KICAgICAgREVGRiA9IHJvdW5kKERFZmYsIDIpDQogICAgKQ0KICANCiAgdGFiZWwkRGlzYWdnciA8LSBhcy5jaGFyYWN0ZXIobGV2ZWxzKGRhdGFrdVtbdmFyXV0pW3RhYmVsW1t2YXJdXV0pDQogIA0KICB0YWJlbCAlPiUgc2VsZWN0KERpc2FnZ3IsIHRoZXRhLCBTRSwgUlNFLCBDSV9MT1dFUiwgQ0lfVVBQRVIsIFZBUiwgREVGRikgJT4lDQogICAgcmVuYW1lKElOS0xVU0kgPSB0aGV0YSwgYENJIExPV0VSYCA9IENJX0xPV0VSLCBgQ0kgVVBQRVJgID0gQ0lfVVBQRVIpDQp9DQpgYGANCg0KRGFmdGFyIHZhcmlhYmVsDQoNCmBgYHtyfQ0KdmFycyA8LSBjKCJOQVMiLCAicjEwMSIsICJyMTA1IiwgInI0MDQiLCAicjQwNSIsICJrZWx1bSIsICJ0YW1hdCIsICJwZWtlcmphYW4iLCAicGVuZGFwYXRhbiIpDQpgYGANCg0KYGBge3IsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQoNCiMgQnVhdCB3b3JrYm9vaw0Kd2IgPC0gY3JlYXRlV29ya2Jvb2soKQ0KDQojTG9vcGluZyB1bnR1ayBzZXRpYXAgdmFyaWFiZWwNCmZvciAodmFyIGluIHZhcnMpIHsNCiAgdGFiZWwgPC0gZ2VuZXJhdGVfdGFibGUodmFyKQ0KICBzaGVldF9uYW1lIDwtIHRvdXBwZXIodmFyKSAgIyBLb252ZXJzaSBuYW1hIHNoZWV0IGFnYXIgbGViaWggamVsYXMNCiAgYWRkV29ya3NoZWV0KHdiLCBzaGVldF9uYW1lKQ0KICB3cml0ZURhdGEod2IsIHNoZWV0X25hbWUsIHRhYmVsKQ0KfQ0KDQp3Yg0KYGBgDQoNCiMgRXhwb3J0DQoNCmBgYHtyfQ0Kc2F2ZVdvcmtib29rKHdiLCAiUlNFX0lOS0xVU0lfS09NUE9TSVRfU05MSUtfMjAyNS54bHN4Iiwgb3ZlcndyaXRlID0gVFJVRSkNCnJtKGxpc3Q9bHMoKSkgI0NsZWFyIGVudmlyb25tZW50DQpgYGANCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCj4gRGlyZWt0b3JhdCBTdGF0aXN0aWsgS2VzZWphaHRlcmFhbiBSYWt5YXQsIEJQUywgW3NhcHRhaGFzXEBicHMuZ28uaWRdKG1haWx0bzpzYXB0YWhhc0BicHMuZ28uaWQpey5lbWFpbH0NCg0KDQoNCg==