options(repos = c(CRAN = "https://cran.rstudio.com/"))
install.packages("readxl")
##
## The downloaded binary packages are in
## /var/folders/f7/bg7hghjn2bjc5kc8zmr1hy840000gn/T//RtmpcigsyY/downloaded_packages
library(readxl)
mydata <- read_excel("~/Documents/triglavskl/Anketa TS Strategic Management.xlsx") # Data was partialy cleaned in 1KA and Excel
mydata$ID <- seq(1,nrow(mydata)) # Adding variable ID for better understanding of data
head(mydata)
## # A tibble: 6 × 62
## Q2 Q3 Q4a Q4b Q4c Q4d Q4e Q4f Q4g Q6 Q7a_1 Q7b_1 Q7c_1
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 3 2 -2 -2 -2 -2 -2 -2 -2 3 4 2 3
## 2 4 1 0 1 1 1 1 0 0 3 3 2 4
## 3 4 2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2
## 4 4 1 0 0 1 0 1 0 0 4 4 2 4
## 5 5 1 0 1 0 1 1 0 0 4 4 2 4
## 6 2 1 0 1 0 0 0 0 0 3 2 3 3
## # ℹ 49 more variables: Q7d_1 <dbl>, Q7e_1 <dbl>, Q7f_1 <dbl>, Q7g_1 <dbl>,
## # Q7h_1 <dbl>, Q8a_1 <dbl>, Q8b_1 <dbl>, Q8c_1 <dbl>, Q8d_1 <dbl>,
## # Q8e_1 <dbl>, Q8f_1 <dbl>, Q8g_1 <dbl>, Q8h_1 <dbl>, Q8i_1 <dbl>, Q9 <dbl>,
## # Q10 <dbl>, Q11_Q12a <dbl>, Q11_Q12b <dbl>, Q11_Q12c <dbl>, Q13a_1 <dbl>,
## # Q13b_1 <dbl>, Q13c_1 <dbl>, Q31_2a_1 <dbl>, Q31_2b_1 <dbl>, Q31_2c_1 <dbl>,
## # Q31_2d_1 <dbl>, Q31_2e_1 <dbl>, Q31_2f_1 <dbl>, Q15 <dbl>, Q16 <dbl>,
## # Q17 <dbl>, Q18 <dbl>, Q20 <dbl>, Q21 <dbl>, Q22 <dbl>, Q23 <dbl>, …
mydata$Q2 <- as.numeric(mydata$Q2)
mydata$Q6 <- as.numeric(mydata$Q6)
mydata$Q7a_1 <- as.numeric(mydata$Q7a_1)
mydata$Q7b_1 <- as.numeric(mydata$Q7b_1)
mydata$Q7c_1 <- as.numeric(mydata$Q7c_1)
mydata$Q7d_1 <- as.numeric(mydata$Q7d_1)
mydata$Q7e_1 <- as.numeric(mydata$Q7e_1)
mydata$Q7f_1 <- as.numeric(mydata$Q7f_1)
mydata$Q7g_1 <- as.numeric(mydata$Q7g_1)
mydata$Q7h_1 <- as.numeric(mydata$Q7h_1)
mydata$Q8a_1 <- as.numeric(mydata$Q8a_1)
mydata$Q8b_1 <- as.numeric(mydata$Q8b_1)
mydata$Q8c_1 <- as.numeric(mydata$Q8c_1)
mydata$Q8d_1 <- as.numeric(mydata$Q8d_1)
mydata$Q8e_1 <- as.numeric(mydata$Q8e_1)
mydata$Q8f_1 <- as.numeric(mydata$Q8f_1)
mydata$Q8g_1 <- as.numeric(mydata$Q8g_1)
mydata$Q8h_1 <- as.numeric(mydata$Q8h_1)
mydata$Q8i_1 <- as.numeric(mydata$Q8i_1)
mydata$Q10 <- as.numeric(mydata$Q10)
mydata$Q13a_1 <- as.numeric(mydata$Q13a_1)
mydata$Q13b_1 <- as.numeric(mydata$Q13b_1)
mydata$Q13c_1 <- as.numeric(mydata$Q13c_1)
mydata$Q31_2a_1 <- as.numeric(mydata$Q31_2a_1)
mydata$Q31_2b_1 <- as.numeric(mydata$Q31_2b_1)
mydata$Q31_2c_1 <- as.numeric(mydata$Q31_2c_1)
mydata$Q31_2d_1 <- as.numeric(mydata$Q31_2d_1)
mydata$Q31_2e_1 <- as.numeric(mydata$Q31_2e_1)
mydata$Q31_2f_1 <- as.numeric(mydata$Q31_2f_1)
mydata$Q16 <- as.numeric(mydata$Q16)
# Transforming variables to numeric
mydata$Q3 <- factor(mydata$Q3,
levels = c(1,2),
labels = c("Yes", "No"))
mydata$Q9 <- factor(mydata$Q9,
levels = c(1,2,3),
labels = c("Yes","No","Not sure"))
mydata$Q11_Q12a <- factor(mydata$Q11_Q12a,
levels = c(1,2,3),
labels = c("Yes","No","Not sure"))
mydata$Q11_Q12b <- factor(mydata$Q11_Q12b,
levels = c(1,2,3),
labels = c("Yes","No","Not sure"))
mydata$Q11_Q12c <- factor(mydata$Q11_Q12c,
levels = c(1,2,3),
labels = c("Yes","No","Not sure"))
mydata$Q15 <- factor(mydata$Q15,
levels = c(1,2,3,4,5,6,7,8,9,10),
labels = c("Reels","Posts","Podcast, Video","Reddit","Bank App","University","Books","Family","School","I don't like"))
mydata$Q17 <- factor(mydata$Q17,
levels = c(1,2,3),
labels = c("Yes","No","Not sure"))
mydata$Q18 <- factor(mydata$Q18,
levels = c(1,2,3,4,5,6,7),
labels = c("Friends","Family","Financial Experts","Influencers","School","My own research","Other"))
mydata$Q20 <- factor(mydata$Q20,
levels = c(1,2,3,4,5),
labels = c("A higher return always means it’s safer.","Investments with higher expected returns are usually more risky.","Risk and return are unrelated.","Government bonds always offer the highest returns.","I’m not sure."))
mydata$Q21 <- factor(mydata$Q21,
levels = c(1,2,3,4),
labels = c("Buy more","Buy same","Buy less","Don't know"))
mydata$Q22 <- factor(mydata$Q22,
levels = c(1,2,3,4),
labels = c("Earn more","Less risk","No tax","Not sure"))
mydata$Q23 <- factor(mydata$Q23,
levels = c(1,2,3,4),
labels = c("You’ll always earn more.","It helps reduce risk by spreading your money out.","You won’t have to pay taxes.","Not sure."))
mydata$Q24 <- factor(mydata$Q24,
levels = c(1,2,3,4),
labels = c("18-20","21-23","24-26","27-29"))
mydata$Q25 <- factor(mydata$Q25,
levels = c(1,2,3),
labels = c("Man","Woman","Dont want to answer"))
mydata$Q26 <- factor(mydata$Q26,
levels = c(1,2,3,4,5),
labels = c("Student","Student","Employed","Unemployed","Other"))
mydata$Q27 <- factor(mydata$Q27,
levels = c(1,2,3),
labels = c("High School","Bachelor","Master"))
mydata$Q28 <- factor(mydata$Q28,
levels = c(1,2,3),
labels = c("Urban","Urban","Rural"))
mydata$Q29 <- factor(mydata$Q29,
levels = c(1,2,3,4,5,6),
labels = c("<499","500-1000","1000<","1000<","1000<","1000<"))
mydata$`Financialy literate` <- factor(mydata$`Financialy literate`,
levels = c("Yes","No"),
labels = c("Financially literate","Financially iliterate"))
summary(mydata)
## Q2 Q3 Q4a Q4b
## Min. :1.000 Yes:210 Min. :-2.0000 Min. :-2.0000
## 1st Qu.:2.000 No :116 1st Qu.:-2.0000 1st Qu.:-2.0000
## Median :4.000 Median : 0.0000 Median : 0.0000
## Mean :3.337 Mean :-0.5736 Mean :-0.3988
## 3rd Qu.:4.000 3rd Qu.: 0.0000 3rd Qu.: 1.0000
## Max. :5.000 Max. : 1.0000 Max. : 1.0000
##
## Q4c Q4d Q4e Q4f
## Min. :-2.0000 Min. :-2.0000 Min. :-2.0000 Min. :-2.0000
## 1st Qu.:-2.0000 1st Qu.:-2.0000 1st Qu.:-2.0000 1st Qu.:-2.0000
## Median : 0.0000 Median : 0.0000 Median : 0.0000 Median : 0.0000
## Mean :-0.5491 Mean :-0.3742 Mean :-0.2178 Mean :-0.6626
## 3rd Qu.: 0.0000 3rd Qu.: 1.0000 3rd Qu.: 1.0000 3rd Qu.: 0.0000
## Max. : 1.0000 Max. : 1.0000 Max. : 1.0000 Max. : 1.0000
##
## Q4g Q6 Q7a_1 Q7b_1
## Min. :-2.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:-2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median : 0.000 Median :2.500 Median :3.000 Median :3.000
## Mean :-0.635 Mean :2.758 Mean :3.166 Mean :3.215
## 3rd Qu.: 0.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. : 1.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## Q7c_1 Q7d_1 Q7e_1 Q7f_1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :4.000 Median :3.000 Median :3.000 Median :3.000
## Mean :3.439 Mean :2.979 Mean :2.972 Mean :2.813
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## Q7g_1 Q7h_1 Q8a_1 Q8b_1 Q8c_1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:1.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:4.000 1st Qu.:3.00
## Median :2.000 Median :3.000 Median :4.000 Median :4.000 Median :4.00
## Mean :2.417 Mean :2.942 Mean :3.304 Mean :4.058 Mean :3.85
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.:5.00
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.00
##
## Q8d_1 Q8e_1 Q8f_1 Q8g_1 Q8h_1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00
## 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.00
## Median :4.000 Median :3.000 Median :4.000 Median :4.000 Median :4.00
## Mean :3.534 Mean :2.586 Mean :3.693 Mean :3.663 Mean :3.58
## 3rd Qu.:4.000 3rd Qu.:3.750 3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.:4.00
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.00
##
## Q8i_1 Q9 Q10 Q11_Q12a Q11_Q12b
## Min. :1.000 Yes :254 Min. :-2.000 Yes :267 Yes : 95
## 1st Qu.:4.000 No : 44 1st Qu.: 1.000 No : 43 No :202
## Median :4.000 Not sure: 28 Median : 2.000 Not sure: 16 Not sure: 29
## Mean :3.979 Mean : 1.463
## 3rd Qu.:5.000 3rd Qu.: 3.000
## Max. :5.000 Max. : 5.000
##
## Q11_Q12c Q13a_1 Q13b_1 Q13c_1 Q31_2a_1
## Yes :212 Min. :1.000 Min. :1.00 Min. :1.00 Min. :1.000
## No : 87 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.00 1st Qu.:4.000
## Not sure: 27 Median :3.000 Median :2.00 Median :2.00 Median :4.000
## Mean :2.564 Mean :2.04 Mean :2.38 Mean :4.175
## 3rd Qu.:4.000 3rd Qu.:3.00 3rd Qu.:3.00 3rd Qu.:5.000
## Max. :5.000 Max. :5.00 Max. :5.00 Max. :5.000
##
## Q31_2b_1 Q31_2c_1 Q31_2d_1 Q31_2e_1
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:4.000 1st Qu.:4.000
## Median :4.000 Median :4.000 Median :4.000 Median :4.000
## Mean :3.681 Mean :3.525 Mean :4.012 Mean :4.101
## 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:5.000 3rd Qu.:5.000
## Max. :5.000 Max. :5.000 Max. :5.000 Max. :5.000
##
## Q31_2f_1 Q15 Q16 Q17
## Min. :1.000 Podcast, Video:60 Min. :1.000 Yes : 99
## 1st Qu.:2.000 Reels :53 1st Qu.:2.000 No :166
## Median :4.000 Bank App :53 Median :3.000 Not sure: 61
## Mean :3.261 School :35 Mean :3.126
## 3rd Qu.:4.000 Books :27 3rd Qu.:4.000
## Max. :5.000 Posts :26 Max. :5.000
## (Other) :72
## Q18
## Friends : 40
## Family : 54
## Financial Experts:122
## Influencers : 3
## School : 2
## My own research :105
## Other : 0
## Q20
## A higher return always means it’s safer. : 11
## Investments with higher expected returns are usually more risky.:280
## Risk and return are unrelated. : 10
## Government bonds always offer the highest returns. : 4
## I’m not sure. : 21
##
##
## Q21 Q22
## Buy more : 9 Earn more: 9
## Buy same : 4 Less risk:280
## Buy less :300 No tax : 4
## Don't know: 13 Not sure : 33
##
##
##
## Q23 Q24
## You’ll always earn more. : 21 18-20: 33
## It helps reduce risk by spreading your money out.:265 21-23:144
## You won’t have to pay taxes. : 0 24-26: 94
## Not sure. : 40 27-29: 55
##
##
##
## Q25 Q26 Q27 Q28
## Man :190 Student :229 High School:118 Urban:297
## Woman :136 Employed : 91 Bachelor :160 Rural: 29
## Dont want to answer: 0 Unemployed: 6 Master : 48
## Other : 0
##
##
##
## Q29 Q20 correct Q21 correct Q22 correcrt
## <499 :111 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 500-1000: 61 1st Qu.:1.0000 1st Qu.:1.0000 1st Qu.:1.0000
## 1000< :154 Median :1.0000 Median :1.0000 Median :1.0000
## Mean :0.8589 Mean :0.9202 Mean :0.8589
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000 Max. :1.0000
##
## Q23 correct 3 correct Financialy literate
## Min. :0.0000 Min. :0.000 Financially literate :278
## 1st Qu.:1.0000 1st Qu.:3.250 Financially iliterate: 48
## Median :1.0000 Median :4.000
## Mean :0.8129 Mean :3.451
## 3rd Qu.:1.0000 3rd Qu.:4.000
## Max. :1.0000 Max. :4.000
##
## ID
## Min. : 1.00
## 1st Qu.: 82.25
## Median :163.50
## Mean :163.50
## 3rd Qu.:244.75
## Max. :326.00
##
##Q8a_1 Nižji znesek vplačila (nižji vstopni prag)
GENDER
chi_square <- chisq.test(mydata$Q8a_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$Q25
## X-squared = 17.114, df = 4, p-value = 0.001837
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8a_1, mydata$'Financialy literate',
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$"Financialy literate"
## X-squared = 22.557, df = 4, p-value = 0.0001552
STAROST
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q24
## X-squared = 32.203, df = 12, p-value = 0.001287
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8a_1, mydata$Q27,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$Q27
## X-squared = 17.122, df = 8, p-value = 0.02887
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8a_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8a_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$Q26
## X-squared = 19.118, df = 8, p-value = 0.01424
RESIDENCE
chi_square <- chisq.test(mydata$Q8a_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8a_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$Q28
## X-squared = 6.4114, df = 4, p-value = 0.1705
DOHODEK
chi_square <- chisq.test(mydata$Q8a_1, mydata$Q29,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8a_1 and mydata$Q29
## X-squared = 45.155, df = 8, p-value = 3.44e-07
##Q8b_1 NIŽJE VPRAVLJALJSE PROVIZIJE
GENDER
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q25
## X-squared = 6.6107, df = 4, p-value = 0.1579
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8b_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$"Financialy literate"
## X-squared = 21.924, df = 4, p-value = 0.0002075
STAROST
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q24
## X-squared = 32.203, df = 12, p-value = 0.001287
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q27
## X-squared = 37.369, df = 8, p-value = 9.842e-06
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q26
## X-squared = 10.685, df = 8, p-value = 0.2202
RESIDENCE
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q28
## X-squared = 11.087, df = 4, p-value = 0.02561
DOHODEK
chi_square <- chisq.test(mydata$Q8b_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8b_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8b_1 and mydata$Q29
## X-squared = 9.7208, df = 8, p-value = 0.2852
##Q8c_1 BOLJ JASNE INFO
GENDER
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q25
## X-squared = 10.398, df = 4, p-value = 0.03423
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8c_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$"Financialy literate"
## X-squared = 18.014, df = 4, p-value = 0.001226
STAROST
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q24
## X-squared = 36.749, df = 12, p-value = 0.0002454
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q27
## X-squared = 8.9484, df = 8, p-value = 0.3467
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q26
## X-squared = 14.246, df = 8, p-value = 0.07558
RESIDENCE
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q28
## X-squared = 6.7222, df = 4, p-value = 0.1513
DOHODEK
chi_square <- chisq.test(mydata$Q8c_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8c_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8c_1 and mydata$Q29
## X-squared = 13.681, df = 8, p-value = 0.09048
##Q8d_1 BOLJŠA UPORABNIŠKA IZKUŠNJA
GENDER
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q25
## X-squared = 19.034, df = 4, p-value = 0.0007738
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8d_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$"Financialy literate"
## X-squared = 3.3435, df = 4, p-value = 0.5021
STAROST
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q24
## X-squared = 44.354, df = 12, p-value = 1.329e-05
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q27
## X-squared = 15.281, df = 8, p-value = 0.05391
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q26
## X-squared = 11.749, df = 8, p-value = 0.1627
RESIDENCE
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q28
## X-squared = 7.048, df = 4, p-value = 0.1334
DOHODEK
chi_square <- chisq.test(mydata$Q8d_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8d_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8d_1 and mydata$Q29
## X-squared = 17.964, df = 8, p-value = 0.0215
##8e_1 TRAJNOSTNI ESG
GENDER
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q25
## X-squared = 18.885, df = 4, p-value = 0.0008279
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8e_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$"Financialy literate"
## X-squared = 7.3349, df = 4, p-value = 0.1192
STAROST
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q24
## X-squared = 29.093, df = 12, p-value = 0.003817
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q27
## X-squared = 31.404, df = 8, p-value = 0.0001191
TRENUTNI STATSUS
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q26
## X-squared = 9.7079, df = 8, p-value = 0.2861
RESIDENCE
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q28
## X-squared = 17.79, df = 4, p-value = 0.001356
DOHODEK
chi_square <- chisq.test(mydata$Q8e_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8e_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8e_1 and mydata$Q29
## X-squared = 16.246, df = 8, p-value = 0.03899
##8f_1 PREGLEDNA NALOŽBENA STRATEGIJA
GENDER
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q25
## X-squared = 7.9974, df = 4, p-value = 0.09167
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8f_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$"Financialy literate"
## X-squared = 13.883, df = 4, p-value = 0.007677
STAROST
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q24
## X-squared = 48.04, df = 12, p-value = 3.076e-06
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q27
## X-squared = 24.58, df = 8, p-value = 0.001831
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q26
## X-squared = 16.09, df = 8, p-value = 0.04111
RESIDENCE
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q28
## X-squared = 6.7708, df = 4, p-value = 0.1485
DOHODEK
chi_square <- chisq.test(mydata$Q8f_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8f_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8f_1 and mydata$Q29
## X-squared = 31.9, df = 8, p-value = 9.706e-05
##8g_1 IZOBRAŽEVALNE VSEBINE O INVESTIRANJU
GENDER
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q25
## X-squared = 14.95, df = 4, p-value = 0.004807
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8g_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$"Financialy literate"
## X-squared = 8.9838, df = 4, p-value = 0.0615
STAROST
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q24
## X-squared = 66.38, df = 12, p-value = 1.514e-09
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q27
## X-squared = 31.471, df = 8, p-value = 0.0001158
TRENUTNI STATUS
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q26
## X-squared = 21.702, df = 8, p-value = 0.005499
RESIDENCE
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q28
## X-squared = 9.5344, df = 4, p-value = 0.04905
DOHODEK
chi_square <- chisq.test(mydata$Q8g_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8g_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8g_1 and mydata$Q29
## X-squared = 26.477, df = 8, p-value = 0.0008699
##8h_1 PRILAGOJENI NASVETI
GENDER
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q25
## X-squared = 6.437, df = 4, p-value = 0.1688
FINANCIALY LITERATE
chi_square <- chisq.test(mydata$Q8h_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$"Financialy literate"
## X-squared = 1.9595, df = 4, p-value = 0.7432
STAROST
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q24
## X-squared = 38.862, df = 12, p-value = 0.0001109
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q27
## X-squared = 24.117, df = 8, p-value = 0.00219
TRENUTNI STATSUS
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q26
## X-squared = 11.14, df = 8, p-value = 0.1939
RESIDENCE
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q28
## X-squared = 12.823, df = 4, p-value = 0.01217
DOHODEK
chi_square <- chisq.test(mydata$Q8h_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8h_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8h_1 and mydata$Q29
## X-squared = 20.482, df = 8, p-value = 0.008657
##8i_1 VISOKA PREGLEDNOST (PODATKI O PROVIZIJI, TVEGANJU, USPEŠNOS)
GENDER
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q25,
correct = TRUE)
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q25
## X-squared = 6.553, df = 4, p-value = 0.1615
FINANCILY LITERATE
chi_square <- chisq.test(mydata$Q8i_1, mydata$'Financialy literate',
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$"Financialy literate", correct =
## TRUE): Chi-squared approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$"Financialy literate"
## X-squared = 6.9882, df = 4, p-value = 0.1365
STAROST
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q24,
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$Q24, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q24
## X-squared = 41.651, df = 12, p-value = 3.812e-05
IZOBRAZBA
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q27,
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$Q27, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q27
## X-squared = 36.752, df = 8, p-value = 1.278e-05
TRENUTNI STATSUS
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q26,
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$Q26, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q26
## X-squared = 21.418, df = 8, p-value = 0.006115
RESIDENCE
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q28,
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$Q28, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q28
## X-squared = 5.5959, df = 4, p-value = 0.2314
DOHODEK
chi_square <- chisq.test(mydata$Q8i_1, mydata$Q29,
correct = TRUE)
## Warning in chisq.test(mydata$Q8i_1, mydata$Q29, correct = TRUE): Chi-squared
## approximation may be incorrect
chi_square
##
## Pearson's Chi-squared test
##
## data: mydata$Q8i_1 and mydata$Q29
## X-squared = 20.45, df = 8, p-value = 0.008761
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
mydata_summary1 <- mydata %>%
group_by(mydata$Q25) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary1)
## # A tibble: 2 × 10
## `mydata$Q25` `Smaller minimal investment` `Smaller management fees`
## <fct> <dbl> <dbl>
## 1 Man 3.06 4.13
## 2 Woman 3.64 3.96
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary1 <- mydata_summary1 %>%
rename(Group = `mydata$Q25`) # This is crucial
# Pivot longer for ggplot
mydata_long1 <- mydata_summary1 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long1, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by gender",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary2 <- mydata %>%
group_by(mydata$'Financialy literate') %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary2)
## # A tibble: 2 × 10
## `mydata$"Financialy literate"` Smaller minimal invest…¹ Smaller management f…²
## <fct> <dbl> <dbl>
## 1 Financially literate 3.25 4.13
## 2 Financially iliterate 3.60 3.65
## # ℹ abbreviated names: ¹`Smaller minimal investment`,
## # ²`Smaller management fees`
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary2 <- mydata_summary2 %>%
rename(Group = `mydata$"Financialy literate"`) # This is crucial
# Pivot longer for ggplot
mydata_long2 <- mydata_summary2 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long2, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by financial literacy",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary3 <- mydata %>%
group_by(mydata$Q24) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary3)
## # A tibble: 4 × 10
## `mydata$Q24` `Smaller minimal investment` `Smaller management fees`
## <fct> <dbl> <dbl>
## 1 18-20 3.58 4.09
## 2 21-23 3.26 4.22
## 3 24-26 3.33 3.66
## 4 27-29 3.22 4.29
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary3 <- mydata_summary3 %>%
rename(Group = `mydata$Q24`) # This is crucial
# Pivot longer for ggplot
mydata_long3 <- mydata_summary3 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long3, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by age group",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary4 <- mydata %>%
group_by(mydata$Q27) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary3)
## # A tibble: 4 × 10
## Group Smaller minimal investme…¹ Smaller management f…² Clearer information …³
## <fct> <dbl> <dbl> <dbl>
## 1 18-20 3.58 4.09 4.03
## 2 21-23 3.26 4.22 4.09
## 3 24-26 3.33 3.66 3.63
## 4 27-29 3.22 4.29 3.49
## # ℹ abbreviated names: ¹`Smaller minimal investment`,
## # ²`Smaller management fees`, ³`Clearer information about risk and return`
## # ℹ 6 more variables: `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary4 <- mydata_summary4 %>%
rename(Group = `mydata$Q27`) # This is crucial
# Pivot longer for ggplot
mydata_long4 <- mydata_summary4 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long4, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by highest education attained",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary5 <- mydata %>%
group_by(mydata$Q26) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary5)
## # A tibble: 3 × 10
## `mydata$Q26` `Smaller minimal investment` `Smaller management fees`
## <fct> <dbl> <dbl>
## 1 Student 3.31 4.04
## 2 Employed 3.32 4.13
## 3 Unemployed 3 3.67
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary5 <- mydata_summary5 %>%
rename(Group = `mydata$Q26`) # This is crucial
# Pivot longer for ggplot
mydata_long5 <- mydata_summary5 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long5, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by current status",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary6 <- mydata %>%
group_by(mydata$Q28) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary6)
## # A tibble: 2 × 10
## `mydata$Q28` `Smaller minimal investment` `Smaller management fees`
## <fct> <dbl> <dbl>
## 1 Urban 3.26 4.06
## 2 Rural 3.79 4.07
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary6 <- mydata_summary6 %>%
rename(Group = `mydata$Q28`) # This is crucial
# Pivot longer for ggplot
mydata_long6 <- mydata_summary6 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long6, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by area of living",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
library(dplyr)
mydata_summary7 <- mydata %>%
group_by(mydata$Q29) %>%
summarise(
'Smaller minimal investment' = mean(Q8a_1, na.rm = TRUE),
'Smaller management fees' = mean(Q8b_1, na.rm = TRUE),
'Clearer information about risk and return' = mean(Q8c_1, na.rm = TRUE),
'Better user experience' = mean(Q8d_1, na.rm = TRUE),
'ESG focus' = mean(Q8e_1, na.rm = TRUE),
'Transparent investment strategy' = mean(Q8f_1, na.rm = TRUE),
'Good customer support' = mean(Q8g_1, na.rm = TRUE),
'Peer recommendations' = mean(Q8h_1, na.rm = TRUE),
'Easy to understand content' = mean(Q8i_1, na.rm = TRUE)
)
print(mydata_summary7)
## # A tibble: 3 × 10
## `mydata$Q29` `Smaller minimal investment` `Smaller management fees`
## <fct> <dbl> <dbl>
## 1 <499 3.38 4.11
## 2 500-1000 3.10 4.15
## 3 1000< 3.33 3.99
## # ℹ 7 more variables: `Clearer information about risk and return` <dbl>,
## # `Better user experience` <dbl>, `ESG focus` <dbl>,
## # `Transparent investment strategy` <dbl>, `Good customer support` <dbl>,
## # `Peer recommendations` <dbl>, `Easy to understand content` <dbl>
library(tidyr)
library(ggplot2)
library(dplyr)
# Rename the grouping column to "Group" for clarity
mydata_summary7 <- mydata_summary7 %>%
rename(Group = `mydata$Q29`) # This is crucial
# Pivot longer for ggplot
mydata_long7 <- mydata_summary7 %>%
pivot_longer(cols = -Group, names_to = "variable", values_to = "mean_score")
# Plot
ggplot(mydata_long7, aes(x = variable, y = mean_score, fill = Group)) +
geom_col(position = "dodge") +
theme_minimal() +
labs(
title = "Likelyhood of investments into mutual funds based on features by average net monthly income",
x = "Perception Attribute",
y = "Average Score"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))